FUBINI AND SMITAL AMONG TREES Marcin Michalski, marcin.k.michalski@pwr.edu.pl

Let \mathcal{I} be a σ -ideal in a Polish space X possessing a Borel base and containing singletons. Let us recall some notions concerning ideals.

Definition 1. We call a set $L \subseteq X$ an \mathcal{I} -Luzin set if $|L \cap A| < |L|$ for all $A \in \mathcal{I}$. L is called a super \mathcal{I} -Luzin set, if $L \cap B$ is an \mathcal{I} -Luzin set for every \mathcal{I} -positive Borel set B.

In addition, let \mathcal{I} be invariant σ -ideal in a Polish group (X, +).

Definition 2. We say that \mathcal{I} has a Weaker Smital Property (WSP), if there exists a countable dense set D such that for every \mathcal{I} -positive Borel set B a set D + B is \mathcal{I} -residual.

In [2] and [1] we have explored how possessing WSP and or some other properties by \mathcal{I} affects the behavior of \mathcal{I} -Luzin sets. Namely

Theorem 1. The following are true

- (i) If \mathcal{I} has WSP or \mathcal{I} is κ -cc, then \mathcal{I} -Luzin sets are \mathcal{I} -nonmeasurable.
- (ii) \mathcal{I} -Luzin sets are \mathcal{I} -nonmeasurable if, and only if, \mathcal{I} is tall.
- (iii) If \mathcal{I} -Luzin sets exist and \mathcal{I} has WSP, then super \mathcal{I} -Luzin sets exist.

We have obtained the following results related to WSP.

Theorem 2. If \mathcal{I} has WSP, then \mathcal{I} is ccc or $cov(\mathcal{I}) = \omega_1$.

Theorem 3. If \mathcal{I} has WSP, then the following are equivalent:

- (i) $\operatorname{cov}(\mathcal{I}) \ge \omega_2;$
- (ii) For every family of sets $\{B_{\alpha} : \alpha < \omega_1\} \subseteq Bor(X) \setminus \mathcal{I}$ there is a set $T \subseteq \omega_1$ of cardinality ω_1 such that $\bigcap_{\alpha \in T} B_{\alpha} \neq \emptyset$.

The latter theorem generalizes a result obtained in [3], which was the answer to a question asked by Peter Simon during 8^{th} Winter School in Abstract Analysis.

The result concerning WSP and (non)measurability of \mathcal{I} -Luzin sets in the Theorem 1 is based on the following lemma.

Lemma 1. Let $P \subseteq \mathbb{R}$ be a perfect set. Then there exists a perfect set $P' \subseteq P$ such that $|P' \cap (x+P')| \leq 1$ for every $x \neq 0$.

It can be used to give a simple example of set that witnesses that a σ -ideal of countable sets $[\mathbb{R}]^{\leq \omega}$ does not have the Fubini Property. Let us recall that a pair $(\mathcal{I}, \mathcal{J})$ of σ -ideals $\mathcal{I} \subseteq P(X)$ and $\mathcal{J} \subseteq P(Y)$ has the Fubini Property, if

$$(\forall B \in Bor(X \times Y))(\{x \in X : B_x \notin \mathcal{J}\} \in \mathcal{I} \Rightarrow \{y \in X : B^y \notin \mathcal{I}\} \in \mathcal{J})$$

We will prove the following generalization of the above lemma.

Lemma 2. Let $T \subseteq \mathbb{Z}^{<\omega}$ be a Laver (resp. Miller) tree. Then there exists a Laver (resp. Miller) subtree $T' \subseteq T$ such that

$$|[T'] \cap (x + [T'])| \le \omega,$$

for all $x \in \mathbb{Z}^{\omega}$ satisfying $(\forall^{\infty} n)(x(n) \neq 0)$.

Let us denote by \mathcal{L} the Laver ideal - a σ -ideal of sets that are not strongly dominating. We will use this lemma to prove the following theorem.

Theorem 4. Let $[\mathbb{Z}^{\omega}]^{\leq \omega} \subseteq \mathcal{J} \subseteq \mathcal{L}$. Then the pair $(\mathcal{L}, \mathcal{J})$ does not satisfy the Fubini Property.

These results were achieved together with Robert Rałowski and Szymon Żeberski.

References

- [1] Michalski M., On some relations between properties of invariant σ -ideals in Polish spaces, 14th Students' Science Conference (2016), Fundamental research questions, pp. 29-33.
- [2] Michalski M., Żeberski Sz., Some properties of *I*-Luzin, Topology and its Applications, 189 (2015), pp. 122-135.
- [3] Cichoń J., Szymański A., Weglorz B., On intersection of sets of positive Lebesgue measure, Colloquium Mathematicum, vol. 52, no. 2 (1987), pp. 173-174.