Hereditary (bi)coreflective subcategories in certain categories of semitopological groups

Veronika Pitrová

Jan Evangelista Purkyně University in Ústí nad Labem

Winter School in Abstract Analysis 2019
Semitopological groups

- (G, \circ) – group with a topology
Semitopological groups

- (G, \circ) – group with a topology
 - $\circ : G \times G \to G$ is separately continuous
Semitopological groups

- \((G, \circ)\) – group with a topology
 \(\circ : G \times G \to G\) is separately continuous

\(\forall g \in G : (g, x) \mapsto g \circ x\)
\((x, g) \mapsto x \circ g\) are continuous
Semitopological groups

- (G, \circ) – group with a topology
 - $\circ : G \times G \to G$ is separately continuous
 - $\forall g \in G : (g, x) \mapsto g \circ x$
 - $(x, g) \mapsto x \circ g$ are continuous

- **STopGr** – the category of all semitopological groups and continuous homomorphisms
Semitopological groups

- \((G, \circ)\) – group with a topology
 - \(\circ : G \times G \to G\) is separately continuous
 - \(\forall g \in G : (g, x) \mapsto g \circ x\)
 - \((x, g) \mapsto x \circ g\) are continuous

- \textbf{STopGr} – the category of all semitopological groups and continuous homomorphisms

- all maps are continuous homomorphisms
Semitopological groups

- (G, \circ) – group with a topology
 - $\circ : G \times G \to G$ is separately continuous
 - $\forall g \in G : (g, x) \mapsto g \circ x$
 - $(x, g) \mapsto x \circ g$ are continuous

- STopGr – the category of all semitopological groups and continuous homomorphisms

- all maps are continuous homomorphisms

- every subcategory of STopGr is full – subcategories are determined by their classes of objects
Semitopological groups

- (G, \circ) – group with a topology
 $\circ : G \times G \to G$ is separately continuous
 $\forall g \in G : (g, x) \mapsto g \circ x$
 $(x, g) \mapsto x \circ g$ are continuous

- \mathbf{STopGr} – the category of all semitopological groups and continuous homomorphisms
 - all maps are continuous homomorphisms
 - every subcategory of \mathbf{STopGr} is full – subcategories are determined by their classes of objects
 - every subcategory of \mathbf{STopGr} is isomorphism-closed
Epireflective subcategories

- $A \subseteq \text{STopGr}$ is reflective in STopGr:
Epireflective subcategories

- \(A \subseteq \text{STopGr} \) is reflective in \(\text{STopGr} \):
 \[
 \forall G \in \text{STopGr} \; \exists H \in A, \; r : G \to H
 \]
 such that the following diagram commutes:

 \[
 \begin{array}{ccc}
 G & \xrightarrow{f} & H \\
 \downarrow{r} & & \downarrow{! \bar{f}} \\
 H' & \xrightarrow{f} & H'
 \end{array}
 \]

- \(\text{epireflective: every reflection is an epimorphism} \)
- \(\text{extremal epireflective: every reflection is an extremal epimorphism (quotient map)} \)
Epireflective subcategories

- $A \subseteq \text{STopGr}$ is reflective in STopGr:

 $\forall G \in \text{STopGr} \ \exists H \in A, \ r : G \to H :$

 $\forall H' \in A \ \forall f : G \to H' \ \exists! \bar{f} : H \to H'$, such that the following diagram commutes:

 \[
 \begin{array}{ccc}
 G & \xrightarrow{r} & H \\
 \downarrow{f} & & \downarrow{\bar{f}} \\
 H' & &
 \end{array}
 \]
Epireflective subcategories

- $A \subseteq \text{STopGr}$ is reflective in STopGr:
 \[\forall G \in \text{STopGr} \ \exists H \in A, \ r : G \to H : \]
 \[\forall H' \in A \ \forall f : G \to H' \ \exists! \bar{f} : H \to H', \text{ such that the following diagram commutes:} \]

\[
\begin{array}{ccc}
 G & \xrightarrow{r} & H \\
 \downarrow{f} & & \downarrow{\bar{f}} \\
 H' & & \\
\end{array}
\]

- epireflective: every reflection is an epimorphism
A \subseteq \text{STopGr} \text{ is reflective in } \text{STopGr}:

\forall G \in \text{STopGr} \ \exists H \in A, \ r: G \to H :
\forall H' \in A \ \forall f: G \to H' \ \exists! \bar{f}: H \to H', \text{ such that the following diagram commutes:}

\begin{align*}
G & \xrightarrow{r} H \\
\downarrow f & \quad \quad \downarrow \bar{f} \\
H' & \end{align*}

- epireflective: every reflection is an epimorphism
- extremal epireflective: every reflection is an extremal epimorphism (quotient map)
Epireflective subcategories of STopGr

- epireflective \iff closed under the formation of products and subgroups
Epireflective subcategories of STopGr

- epireflective \Leftrightarrow closed under the formation of products and subgroups
 - quasitopological groups (QTopGr)
 - paratopological groups (PTopGr)
 - topological groups (TopGr)
 - extremal epireflective \Leftrightarrow closed under the formation of products, subgroups and semitopological groups with finer topologies
 - abelian semitopological groups (STopAb)
 - torsion-free semitopological groups
 - Hausdorff semitopological groups
Epireflective subcategories of STopGr

- epireflective \iff closed under the formation of products and subgroups
 - quasitopological groups (QTopGr)
 - paratopological groups (PTopGr)
 - topological groups (TopGr)
- extremal epireflective \iff closed under the formation of products, subgroups and semitopological groups with finer topologies
Epireflective subcategories of \textit{STopGr}

- epireflective \iff closed under the formation of products and subgroups
 - quasitopological groups (\textit{QTopGr})
 - paratopological groups (\textit{PTopGr})
 - topological groups (\textit{TopGr})
- extremal epireflective \iff closed under the formation of products, subgroups and semitopological groups with finer topologies
 - abelian semitopological groups (\textit{STopAb})
 - torsion-free semitopological groups
 - Hausdorff semitopological groups
Coreflective subcategories

\[B \subseteq A \] is coreflective in \(A \):
Coreflective subcategories

- \(\mathcal{B} \subseteq \mathcal{A} \) is coreflective in \(\mathcal{A} \):
 \[
 \forall G \in \mathcal{A} \ \exists H \in \mathcal{B}, \ c : H \to G
 \]

Monocoreflective: every coreflection is a monomorphism

Bicoreflective: every coreflection is a bimorphism (monomorphism and epimorphism)

Veronika Pitrová
Coreflective subcategories

- \(B \subseteq A \) is coreflective in \(A \):

 \[
 \forall G \in A \ \exists H \in B, \ c : H \to G :
 \forall H' \in B \ \forall f : H' \to G \ \exists! \bar{f} : H' \to H, \text{ such that the following diagram commutes:}
 \]

 \[
 \begin{array}{ccc}
 H & \xrightarrow{c} & G \\
 \uparrow \bar{f} & & \downarrow f \\
 H' & \xrightarrow{f} & H \\
 \end{array}
 \]

 monocoreflective: every coreflection is a monomorphism
 bicoreflective: every coreflection is a bimorphism (monomorphism and epimorphism)

Veronika Pitrová
Coreflective subcategories

- \(B \subseteq A \) is coreflective in \(A \):

\[
\forall G \in A \; \exists H \in B, \; c : H \to G : \forall H' \in B \; \forall f : H' \to G \; \exists! \; \tilde{f} : H' \to H, \text{ such that the following diagram commutes:}
\]

\[
\begin{array}{ccc}
H & \xrightarrow{c} & G \\
\uparrow \tilde{f} & & \downarrow f \\
H' & & \\
\end{array}
\]

- monocoreflective: every coreflection is a monomorphism
Coreflective subcategories

- \(B \subseteq A \) is coreflective in \(A \):
 \[
 \forall G \in A \ \exists H \in B, \ c : H \to G :
 \forall H' \in B \ \forall f : H' \to G \ \exists! \ \bar{f} : H' \to H, \text{ such that the following diagram commutes:}
 \]

\[
\begin{array}{ccc}
H & \xrightarrow{c} & G \\
\uparrow \bar{f} & & \downarrow f \\
H' & \xrightarrow{f} & \\
\end{array}
\]

- monocoreflective: every coreflection is a monomorphism
- bicoreflective: every coreflection is a bimorphism (monomorphism and epimorphism)
Coreflective subcategories in \(\mathbf{A} \)

- monocoreflective \(\iff \) closed under the formation of coproducts and extremal quotients
Coreflective subcategories in \mathbf{A}

- monocoreflective \iff closed under the formation of coproducts and extremal quotients
 - extremal quotient: $G_1 \overset{q}{\rightarrow} G_2$
- monocoreflective \Leftrightarrow closed under the formation of coproducts and extremal quotients
 - extremal quotient: $G_1 \xrightarrow{q} G_2 \xrightarrow{r} G_3$
Coreflective subcategories in \mathbf{A}

- monocoreflective \Leftrightarrow closed under the formation of coproducts and extremal quotients
 - extremal quotient: $G_1 \xrightarrow{q} G_2 \xrightarrow{r} G_3$
 - coproduct: the most general group from \mathbf{A} that is generated by the given groups
Coreflective subcategories in \mathbf{A}

- monocoreflective \iff closed under the formation of coproducts and extremal quotients
 - extremal quotient: $G_1 \xrightarrow{q} G_2 \xrightarrow{r} G_3$
 - coproduct: the most general group from \mathbf{A} that is generated by the given groups
- hereditary: closed under the formation of subgroups
Coreflective subcategories in \mathbf{A}

- monocoreflective \iff closed under the formation of coproducts and extremal quotients
 - extremal quotient: $G_1 \xrightarrow{q} G_2 \xrightarrow{r} G_3$
 - coproduct: the most general group from \mathbf{A} that is generated by the given groups
- hereditary: closed under the formation of subgroups
- hereditary coreflective \Rightarrow monocoreflective
Coreflective subcategories in \mathbf{A}

- monocoreflective \iff closed under the formation of coproducts and extremal quotients
 - extremal quotient: $G_1 \xrightarrow{q} G_2 \xrightarrow{r} G_3$
 - coproduct: the most general group from \mathbf{A} that is generated by the given groups
- hereditary: closed under the formation of subgroups
- hereditary coreflective \Rightarrow monocoreflective
- coreflective, contains $r(\mathbb{Z}) \Rightarrow$ bicoreflective
Coreflective subcategories in \mathbf{A}

- monocoreflective \Leftrightarrow closed under the formation of coproducts and extremal quotients
 - extremal quotient: $G_1 \xrightarrow{q} G_2 \xrightarrow{r} G_3$
 - coproduct: the most general group from \mathbf{A} that is generated by the given groups
- hereditary: closed under the formation of subgroups
- hereditary coreflective \Rightarrow monocoreflective
- coreflective, contains $r(\mathbb{Z})$ \Rightarrow bicoreflective
 - e.g. \mathbf{QTopGr} in \mathbf{STopGr}, \mathbf{TopGr} in \mathbf{PTopGr}
The questions

Which hereditary coreflective subcategories of \(A \) are also bicoreflective in \(A \)?
The questions

Which hereditary coreflective subcategories of A are also bicoreflective in A?

- **STopGr, QTopGr**: every hereditary coreflective subcategory of A that contains a non-indiscrete group is bicoreflective in A.

What are maximal hereditary coreflective subcategories of A that are not bicoreflective in A?

What is the group $r(Z)$?
The questions

Which hereditary coreflective subcategories of A are also bicoreflective in A?

- STopGr, QTopGr: every hereditary coreflective subcategory of A that contains a non-indiscrete group is bicoreflective in A.
 Are there other epireflective subcategories of STopGr with this property?
Which hereditary coreflective subcategories of A are also bicoreflective in A?

- STopGr, QTopGr: every hereditary coreflective subcategory of A that contains a non-indiscrete group is bicoreflective in A. Are there other epireflective subcategories of STopGr with this property?
- What are maximal hereditary coreflective subcategories of A that are not bicoreflective in A?
The questions

Which hereditary coreflective subcategories of \(A \) are also bicoreflective in \(A \)?

- **\(\text{STopGr} \), \(\text{QTopGr} \):** every hereditary coreflective subcategory of \(A \) that contains a non-indiscrete group is bicoreflective in \(A \). Are there other epireflective subcategories of \(\text{STopGr} \) with this property?

- What are maximal hereditary coreflective subcategories of \(A \) that are not bicoreflective in \(A \)?

- What is the group \(r(\mathbb{Z}) \)?
The group $r(\mathbb{Z})$

$r(\mathbb{Z})$ can be:

- A finite cyclic group \mathbb{Z}_n
- The group of integers with a topology such that $\mathbb{Z} \to n\mathbb{Z}$ is continuous for every $n \in \mathbb{N}$
- \mathbb{Z} with a topology that is not T_0
The group $r(\mathbb{Z})$

$r(\mathbb{Z})$ can be:

- a finite cyclic group \mathbb{Z}_n
The group $r(\mathbb{Z})$

$r(\mathbb{Z})$ can be:

- a finite cyclic group \mathbb{Z}_n
- the group of integers with a topology such that $\mathbb{Z} \to n\mathbb{Z}$ is continuous for every $n \in \mathbb{N}$
$r(\mathbb{Z})$ can be:

- a finite cyclic group \mathbb{Z}_n
- the group of integers with a topology such that $\mathbb{Z} \to n\mathbb{Z}$ is continuous for every $n \in \mathbb{N}$
- \mathbb{Z}
The group $r(\mathbb{Z})$

$r(\mathbb{Z})$ can be:

- a finite cyclic group \mathbb{Z}_n
- the group of integers with a topology such that $\mathbb{Z} \to n\mathbb{Z}$ is continuous for every $n \in \mathbb{N}$
- \mathbb{Z}
- \mathbb{Z}_n
The group $r(\mathbb{Z})$

$r(\mathbb{Z})$ can be:

- a finite cyclic group \mathbb{Z}_n
- the group of integers with a topology such that $\mathbb{Z} \rightarrow n\mathbb{Z}$ is continuous for every $n \in \mathbb{N}$
- \mathbb{Z}
- \mathbb{Z}_n
- \mathbb{Z} with a topology that is not T_0
The group $r(\mathbb{Z})$

$r(\mathbb{Z})$ can be:

- a finite cyclic group \mathbb{Z}_n
- the group of integers with a topology such that $\mathbb{Z} \to n\mathbb{Z}$ is continuous for every $n \in \mathbb{N}$
- \mathbb{Z}
- \mathbb{Z}_n
- \mathbb{Z} with a topology that is not T_0
- \mathbb{Z} with the topology generated by all non-trivial subgroups
STopGr, QTopGr:
every hereditary coreflective subcategory of A that contains a non-indiscrete group is bicoreflective in A
STopGr, QTopGr:
every hereditary coreflective subcategory of A that contains a non-indiscrete group is bireflective in A

ereditary coreflective, not bireflective:
 - only the trivial group
 - all indiscrete groups
$r(\mathbb{Z}) = \mathbb{Z}$

- **STopGr, QTopGr:**
 every hereditary coreflective subcategory of A that contains a non-indiscrete group is bicoreflective in A

- **hereditary coreflective, not bicoreflective:**
 - only the trivial group
 - all indiscrete groups

- **A:** extremal epireflective in $STopGr$, $A \subseteq STopAb$
\(r(\mathbb{Z}) = \mathbb{Z} \)

- **STopGr, QTopGr:**
 every hereditary coreflective subcategory of \(A \) that contains a non-indiscrete group is bicoreflective in \(A \)
 hereditary coreflective, not bicoreflective:
 - only the trivial group
 - all indiscrete groups

- **A:** extremal epireflective in **STopGr**, \(A \subseteq \text{STopAb} \)
 B: such groups \(G \) from \(A \) that no infinite cyclic subgroup of \(G \) is \(T_0 \)
STopGr, QTopGr:
every hereditary coreflective subcategory of \(A \) that contains a non-indiscrete group is bicoreflective in \(A \)
hereditary coreflective, not bicoreflective:
- only the trivial group
- all indiscrete groups

A: extremal epireflective in \(STopGr, \ A \subseteq STopAb \)
B: such groups \(G \) from \(A \) that no infinite cyclic subgroup of \(G \) is \(T_0 \)
B is the largest hereditary coreflective subcategory of \(A \) that is not bicoreflective in \(A \)
$r(\mathbb{Z}) = \mathbb{Z}_n$

- **A:** such groups G that every element of G is a divisor of n
\[r(\mathbb{Z}) = \mathbb{Z}_n \]

- **A**: such groups \(G \) that every element of \(G \) is a divisor of \(n \)
 - \(A \) is extremal epireflective in \(\text{STopGr} \), \(r(\mathbb{Z}) = \mathbb{Z}_n \)
$r(\mathbb{Z}) = \mathbb{Z}_n$

- **A**: such groups G that every element of G is a divisor of n

 A is extremal epireflective in STopGr, $r(\mathbb{Z}) = \mathbb{Z}_n$

 every hereditary coreflective subcategory of A that contains a non-indiscrete group is bicoreflective in A
\(r(\mathbb{Z}) = \mathbb{Z}_n \)

- **A**: such groups \(G \) that every element of \(G \) is a divisor of \(n \)
 \(A \) is extremal epireflective in \(\text{STopGr} \),
 every hereditary coreflective subcategory of \(A \) that contains a non-indiscrete group is bicoreflective in \(A \)
- \(r(\mathbb{Z}) = \mathbb{Z}_p \), \(p \) is a prime number
$r(\mathbb{Z}) = \mathbb{Z}_n$

- **A**: such groups G that every element of G is a divisor of n

 A is extremal epireflective in STopGr, $r(\mathbb{Z}) = \mathbb{Z}_n$

 every hereditary coreflective subcategory of A that contains a non-indiscrete group is bicoreflective in A

- $r(\mathbb{Z}) = \mathbb{Z}_p$, p is a prime number

 every hereditary coreflective subcategory of A that contains a non-indiscrete group is bicoreflective in A
A: such groups G that every element of G is a divisor of n

A is extremal epireflective in STopGr, $r(\mathbb{Z}) = \mathbb{Z}_n$

every hereditary coreflective subcategory of A that contains a
non-indiscrete group is bicoreflective in A

$r(\mathbb{Z}) = \mathbb{Z}_p$, p is a prime number

every hereditary coreflective subcategory of A that contains a
non-indiscrete group is bicoreflective in A

$A \subseteq \text{STopAb}$, $r(\mathbb{Z}) = \mathbb{Z}_n$, $n = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$
\(r(\mathbb{Z}) = \mathbb{Z}_n \)

- \(\textbf{A:} \) such groups \(G \) that every element of \(G \) is a divisor of \(n \)
 - \(\textbf{A} \) is extremal epireflective in \(\text{STopGr} \), \(r(\mathbb{Z}) = \mathbb{Z}_n \)
 - every hereditary coreflective subcategory of \(A \) that contains a non-indiscrete group is bicoreflective in \(A \)

- \(r(\mathbb{Z}) = \mathbb{Z}_p \), \(p \) is a prime number
 - every hereditary coreflective subcategory of \(A \) that contains a non-indiscrete group is bicoreflective in \(A \)

- \(\textbf{A} \subseteq \text{STopAb}, \ r(\mathbb{Z}) = \mathbb{Z}_n, \ n = p_1^{\alpha_1} \cdots p_k^{\alpha_k} \)

\(\textbf{B_i:} \) such groups \(G \) from \(\textbf{A} \) that if \(H \) is a cyclic subgroup of \(G \) of order \(p_i^{\alpha_i} \) then its topology is strictly coarser then the subspace topology induced from \(r(\mathbb{Z}) \)
\(r(\mathbb{Z}) = \mathbb{Z}_n \)

- **A**: such groups \(G \) that every element of \(G \) is a divisor of \(n \) is extremal epireflective in \(\text{STopGr} \), \(r(\mathbb{Z}) = \mathbb{Z}_n \) every hereditary coreflective subcategory of \(A \) that contains a non-indiscrete group is bicoreflective in \(A \)

- \(r(\mathbb{Z}) = \mathbb{Z}_p \), \(p \) is a prime number every hereditary coreflective subcategory of \(A \) that contains a non-indiscrete group is bicoreflective in \(A \)

- \(A \subseteq \text{STopAb} \), \(r(\mathbb{Z}) = \mathbb{Z}_n \), \(n = p_1^{\alpha_1} \cdots p_k^{\alpha_k} \)

 - \(B_i \): such groups \(G \) from \(A \) that if \(H \) is a cyclic subgroup of \(G \) of order \(p_i^{\alpha_i} \) then its topology is strictly coarser than the subspace topology induced from \(r(\mathbb{Z}) \)

 - \(B_i \) are maximal hereditary coreflective subcategories of \(A \) that are not bicoreflective in \(A \)
$r(\mathbb{Z}) = \mathbb{Z}$, topology is not T_0

- $A \subseteq \text{STopAb}$
 - the closure of $\{0\}$ in $r(\mathbb{Z})$ is $\langle n \rangle$
\(r(\mathbb{Z}) = \mathbb{Z} \), topology is not \(T_0 \)

- \(A \subseteq \text{STopAb} \)
 - the closure of \{0\} in \(r(\mathbb{Z}) \) is \(\langle n \rangle \)

- \(\langle n \rangle \rightarrow r(\mathbb{Z}) \) is an epimorphism: every hereditary coreflective subcategory of \(A \) that contains a non-trivial group is bicoreflective in \(A \)
$r(\mathbb{Z}) = \mathbb{Z}$, topology is not T_0

- $A \subseteq \text{STopAb}$
 the closure of $\{0\}$ in $r(\mathbb{Z})$ is $\langle n \rangle$

- $\langle n \rangle \rightarrow r(\mathbb{Z})$ is an epimorphism: every hereditary coreflective subcategory of A that contains a non-trivial group is bicoreflective in A

- $k \mid n$ is minimal such that $\langle k \rangle \rightarrow r(\mathbb{Z})$ is an not epimorphism:
A \subseteq S\text{TopAb} \\
the closure of \{0\} in \(r(\mathbb{Z}) \) is \(\langle n \rangle \) \\
\(\langle n \rangle \rightarrow r(\mathbb{Z}) \) is an epimorphism: every hereditary coreflective subcategory of A that contains a non-trivial group is bicoreflective in A \\
\(k | n \) is minimal such that \(\langle k \rangle \rightarrow r(\mathbb{Z}) \) is an not epimorphism:

\(B_k \): such groups \(G \) from A that if \(H \) is an infinite cyclic subgroup of \(G \) then the topology of \(H \) is not finer that the topology of \(\langle k \rangle \)
$r(\mathbb{Z}) = \mathbb{Z}$, topology is not T_0

- $A \subseteq \text{STopAb}$
 - the closure of $\{0\}$ in $r(\mathbb{Z})$ is $\langle n \rangle$
- $\langle n \rangle \rightarrow r(\mathbb{Z})$ is an epimorphism: every hereditary coreflective subcategory of A that contains a non-trivial group is bicoreflective in A
- $k|n$ is minimal such that $\langle k \rangle \rightarrow r(\mathbb{Z})$ is an not epimorphism: B_k: such groups G from A that if H is an infinite cyclic subgroup of G then the topology of H is not finer that the topology of $\langle k \rangle$
 - B_k are maximal hereditary coreflective subcategories of A that are not bicoreflective in A
$r(\mathbb{Z}) = \mathbb{Z}$, topology is generated by all non-trivial subgroups

- $A \subseteq \text{TopAb}$
$r(\mathbb{Z}) = \mathbb{Z}$, topology is generated by all non-trivial subgroups $A \subseteq \text{TopAb}$, where $B_p (p - \text{prime number})$:
\(r(\mathbb{Z}) = \mathbb{Z} \), topology is generated by all non-trivial subgroups

- \(A \subseteq \text{TopAb} \)
 - \(B_p \) (\(p \) – prime number): such groups \(G \) from \(A \) that if \(H \) is an infinite cyclic subgroup of \(G \) then there exists \(n \in \mathbb{N} \) such that the subgroup of index \(p^n \) is not open in \(H \)
$r(\mathbb{Z}) = \mathbb{Z}$, topology is generated by all non-trivial subgroups

- $\mathbb{A} \subseteq \text{TopAb}$
- \mathbb{B}_p (p – prime number): such groups G from \mathbb{A} that if H is an infinite cyclic subgroup of G then there exists $n \in \mathbb{N}$ such that the subgroup of index p^n is not open in H.
- \mathbb{B}_p are maximal hereditary coreflective subcategories of \mathbb{A} that are not bicoreflective in \mathbb{A}.
Suggestions for further research

- What happens in the case of non-abelian groups?
Suggestions for further research

- What happens in the case of non-abelian groups?
- What happens when $r(\mathbb{Z})$ is the group of integers with a topology generated by some of its non-trivial subgroups?
Suggestions for further research

- What happens in the case of non-abelian groups?
- What happens when \(r(\mathbb{Z}) \) is the group of integers with a topology generated by some of its non-trivial subgroups?
- What happens when \(r(\mathbb{Z}) \) is the group of integers with a topology that is not generated by its subgroups?
Thank you for your attention.