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H is the separable complex Hilbert space

`2(N) = {(an) | an ∈ C,
∑
|an|2 <∞}.

It is normed by ‖ā‖2 =
∑
|an|2.

B(H) is the Banach algebra of linear bounded operators H → H, normed
by

‖T‖ = sup
ξ∈H,‖ξ‖=1

‖Tξ‖ .

Multiplication is just composition. B(H) has a ∗ operation T → T ∗ which
is an isometric involution and satisfies ‖T‖2 = ‖TT ∗‖. This makes it a
C∗-algebra.

In general, a C∗-algebra is a ∗-closed Banach subalgebra of B(H), for
some Hilbert space H.

Equivalently, a C∗-algebra is a Banach algebra A with an isometric
involution ∗ such that ‖a‖2 = ‖aa∗‖ whenever a ∈ A. (i.e., Every
C∗-algebra in this abstract sense can be isometrically represented as a
∗-closed Banach subalgebra of B(H), for some H).
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Examples:

Mn(C) = B(`2(n)), for all n. B(H) for all Hilbert H.

If X is a locally compact Hausdorff space,

C0(X ) = {f : X → C | f is cont. and vanishes at ∞}

is a C∗-algebra. (sup-norm, operations are performed pointwise, involution
is pointwise complex conjugation). C0(X ) unital if and only if X compact.

Let An be C∗-algebras. Then∏
An = {(an) | an ∈ An, sup

n
‖an‖ <∞}

and ⊕
An = {(an) | an ∈ An, ‖an‖ → 0}

are C∗-algebras. (sup norm, coordinatewise operations).

If A ⊆ B are C∗-algebras, and BAB ⊆ A, A is an ideal. The quotient B/A
is a C∗-algebra. If An are C∗-algebras,∏

An/
⊕

An

is a C∗-algebra, called the reduced product of the An’s.
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Take H = `2(N). Let

F(H) = {T : H → H | T [H] is finite dimensional}.

This is a subalgebra, but it is not ‖·‖-closed! Close it.

K(H) = F(H).

This is the algebra of compact operators.

K(H) ⊆ B(H) is an ideal. The quotient

Q(H) = B(H)/K(H)

is called the Calkin algebra. π : B(H)→ Q(H) is the quotient map.

Q(H) is the noncommutative analog of `∞/c0 = C(βω \ ω), and therefore its
poset of projections is the noncommutative analog of P(ω)/Fin.
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Question

Which C∗-algebras embed into Q(H)? Which reduced products?

Fix a sequence (nk)k ⊆ ω. Fix {Ik} a partition on ω such that |Ik | = nk , and ei
a base for `2(N). Then B(span{ei | i ∈ Ik}) ∼= Mnk . This defines an embedding∏

Mnk → B(H). Note that∏
Mnk ∩ K(H) =

⊕
Mnk ,

so this defines a unital embedding∏
Mnk /

⊕
Mnk → Q(H).

In case one considers infinite-dimensional (as vector spaces) C∗-algebras An,
there is no way of obtaining such a nice embedding

φ :
∏

An/
⊕

An → Q(H).

(Here nice means: there are mutually orthogonal φn : An → B(H) such that
φ = π(

∑
φn)).
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Question

Which C∗-algebras embed into Q(H)?

There is no easy way to embed many reduced products into Q(H). On the
other hand....

Theorem (Farah-Hirshberg-V.)

All C∗-algebras of density ℵ1 embed into Q(H). So, under CH, if An is
separable for all n, there is an embedding∏

An/
⊕

An → Q(H).

Moreover, if X is a locally compact second countable space, then C(βX \ X )
embeds into the Calkin algebra.
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We turn to nonembedding.

Definition

The Proper Forcing Axiom PFA is a Forcing Axiom introduced by Shelah as a
generalization of the Baire Category Theorem. It asserts that a large class of
forcings (proper ones) admits generic filters intersecting ℵ1-many dense sets. It
extends Martin’s Axiom at level ℵ1, implies c = ω2, and implies Todorcevic’s
Open Colouring Axiom.

Why do we believe that PFA implies that there are no embeddings of certain
C∗-algebras into Q(H)? Because we said that Q(H) and C(βω \ ω) look very
much alike! and...

Definition

A topological space X is said not to look like ω if it is locally compact
noncompact and second countable, and there is no compact K ⊆ X for which
X \ K ∼= ω.

Theorem (Dow-Hart)

Assume PFA. Suppose that X does not look like ω. Then C(βX \ X ) does not
embed into C(βω \ ω). (but they do under CH!)
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How do we generalize this result? Via heavy liftings!

Suppose that A ⊆ B is
an ideal with quotient map πA : B → B/A. Let

φ : B/A→ Q(H)

be an embedding.

B B(H)

Q(H)B/A

πA π

φ
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The idea is to use PFA to show that whenever φ : B/A→ Q(H) is an
embedding, it is possible to find a nice lifting Φ: B → B(H)

B B(H)

Q(H)B/A

πA

Φ

π

φ

Then, studying B and A, we want to use ZFC to show that nice maps
Φ: B → A such that Φ(B) ∩ K(H) = A cannot exist.
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Proposition

Let An be infinite-dimensional C∗-algebras. Then there is no sequence of
mutually orthogonal maps φn : A→ B(H) such that Φ =

∑
φn is a lifting

for an embedding
∏

An/
⊕

An → Q(H).

Suppose that X does not look like ω. There is a notion of niceness such
that there is no nice map Φ: C(βX )→ B(H) can be a lifting for an
embedding C(βX \ X ) ∼= C(βX )/C0(X )→ Q(H).

So we just need to lift embeddings to nice maps, and we’re done!
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Theorem (McKenney-V.)

Assume PFA. Let φ : `∞/c0 → Q(H) be an injection. Then there are
∗-homomorphisms φn : C→ B(H) and a nonmeager dense ideal I ⊆ P(ω)
such that Φ =

∑
φn : `∞ → B(H) lifts φ on elements whose support is in I .

Note that `∞/c0 ∼=
∏

C/
⊕

C. We want to replace C with a finite-dimensional
object, and we do so.

Theorem (McKenney-V.)

Assume PFA. Let An be unital C∗-algebras, Fn ⊆ An be finite-dimensional
Banach spaces, and φ :

∏
An/

⊕
An → Q(H) be an embedding. Then there

are orthogonal maps φn : Fn → B(H) and a nonmeager dense ideal I such that
Φ =

∑
φn lifts φ on elements in

∏
Fn whose support is in I .
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Theorem (McKenney-V.+V.)

Assume PFA, and let An be unital separable infinite-dimensional C∗-algebras.
Then

∏
An/

⊕
An does not embed into Q(H).

Theorem (V.)

Assume PFA and suppose that X does not look like ω. Then C(βX \ X ) does
not embed into Q(H).

In fact a similar result can be proved for corona C∗-algebras, which are the
noncommutative equivalents of Čech-Stone remainders. (i.e., the corona
algebra of A embeds into Q(H) only whenever A looks like a subalgebra of
K(H))
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More things to say/to do:

We do not need PFA, but usually a stronger version of OCA and Martin’s
Axiom at ℵ1.

These heavy lifting results are also used to treat automorphisms of corona
algebras, and consequently homeomorphisms of spaces of the form
βX \ X . They are also used to study mutual embeddings of algebras of
the form C(βX \ X ) and C(βY \ Y ), and of corona algebras.

Inspired by the equivalent result of Boolean algebras and P(ω)/Fin,
Farah, Katsimpas and Vaccaro recently proved that for a given C∗-algebra
A one can find a ccc forcing PA that forces A to embed in Q(H).

But such a poset is messy. Making it nicer is very much needed.

Again comparing Q(H) to P(ω)/Fin, it is not known if we can get that c
is large and all algebras of density c embed into Q(H).

We can also ask whether ultrapowers embed into Q(H). With arguments
’à la Woodin’, this can lead to automatic continuity results. Big problem
here: the notion of gap in Q(H) is very complicated. There is an analytic
gap in Q(H) which cannot be frozen by any ccc forcing!
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Thanks!


