Heavy liftings

Alessandro Vignati KU Leuven, Belgium

Winter School in Abstract Analysis - Hejnice - early 2019

(Not so) heavy liftings

Alessandro Vignati KU Leuven, Belgium

Winter School in Abstract Analysis - Hejnice - early 2019

990

$$\ell_2(\mathbb{N}) = \{(a_n) \mid a_n \in \mathbb{C}, \sum |a_n|^2 < \infty\}.$$

It is normed by $\|\bar{a}\|^2 = \sum |a_n|^2$.

$$\ell_2(\mathbb{N}) = \{(a_n) \mid a_n \in \mathbb{C}, \sum |a_n|^2 < \infty\}.$$

It is normed by $\|\bar{a}\|^2 = \sum |a_n|^2$.

• $\mathcal{B}(H)$ is the Banach algebra of linear bounded operators $H \to H$, normed by

$$||T|| = \sup_{\xi \in H, ||\xi||=1} ||T\xi||.$$

Multiplication is just composition. $\mathcal{B}(H)$ has a * operation $T \to T^*$ which is an isometric involution and satisfies $||T||^2 = ||TT^*||$.

$$\ell_2(\mathbb{N}) = \{(a_n) \mid a_n \in \mathbb{C}, \sum |a_n|^2 < \infty\}.$$

It is normed by $\|\bar{a}\|^2 = \sum |a_n|^2$.

• $\mathcal{B}(H)$ is the Banach algebra of linear bounded operators $H \to H$, normed by

$$||T|| = \sup_{\xi \in H, ||\xi||=1} ||T\xi||.$$

Multiplication is just composition. $\mathcal{B}(H)$ has a * operation $T \to T^*$ which is an isometric involution and satisfies $||T||^2 = ||TT^*||$. This makes it a C*-algebra.

$$\ell_2(\mathbb{N}) = \{(a_n) \mid a_n \in \mathbb{C}, \sum |a_n|^2 < \infty\}.$$

It is normed by $\|\bar{a}\|^2 = \sum |a_n|^2$.

• $\mathcal{B}(H)$ is the Banach algebra of linear bounded operators $H \to H$, normed by

$$||T|| = \sup_{\xi \in H, ||\xi|| = 1} ||T\xi||.$$

Multiplication is just composition. $\mathcal{B}(H)$ has a * operation $T \to T^*$ which is an isometric involution and satisfies $||T||^2 = ||TT^*||$. This makes it a C*-algebra.

 In general, a C*-algebra is a *-closed Banach subalgebra of B(H), for some Hilbert space H.

$$\ell_2(\mathbb{N}) = \{(a_n) \mid a_n \in \mathbb{C}, \sum |a_n|^2 < \infty\}.$$

It is normed by $\|\bar{a}\|^2 = \sum |a_n|^2$.

• $\mathcal{B}(H)$ is the Banach algebra of linear bounded operators $H \to H$, normed by

$$||T|| = \sup_{\xi \in H, ||\xi|| = 1} ||T\xi||.$$

Multiplication is just composition. $\mathcal{B}(H)$ has a * operation $T \to T^*$ which is an isometric involution and satisfies $||T||^2 = ||TT^*||$. This makes it a C*-algebra.

- In general, a C*-algebra is a *-closed Banach subalgebra of B(H), for some Hilbert space H.
- Equivalently, a C*-algebra is a Banach algebra A with an isometric involution * such that $||a||^2 = ||aa^*||$ whenever $a \in A$. (i.e., Every C*-algebra in this abstract sense can be isometrically represented as a *-closed Banach subalgebra of $\mathcal{B}(H)$, for some H).

• $M_n(\mathbb{C}) = \mathcal{B}(\ell_2(n))$, for all n. $\mathcal{B}(H)$ for all Hilbert H.

- $M_n(\mathbb{C}) = \mathcal{B}(\ell_2(n))$, for all n. $\mathcal{B}(H)$ for all Hilbert H.
- If X is a locally compact Hausdorff space,

 $C_0(X) = \{f : X \to \mathbb{C} \mid f \text{ is cont. and vanishes at } \infty\}$

is a C^{*}-algebra. (sup-norm, operations are performed pointwise, involution is pointwise complex conjugation). $C_0(X)$ unital if and only if X compact.

<ロト < 部ト < 臣 > < 臣 > 臣 の < で 4/15

- $M_n(\mathbb{C}) = \mathcal{B}(\ell_2(n))$, for all n. $\mathcal{B}(H)$ for all Hilbert H.
- If X is a locally compact Hausdorff space,

 $C_0(X) = \{f : X \to \mathbb{C} \mid f \text{ is cont. and vanishes at } \infty\}$

is a C^* -algebra. (sup-norm, operations are performed pointwise, involution is pointwise complex conjugation). $C_0(X)$ unital if and only if X compact.

• Let A_n be C^* -algebras. Then

$$\prod A_n = \{(a_n) \mid a_n \in A_n, \sup_n ||a_n|| < \infty\}$$

and

$$\bigoplus A_n = \{(a_n) \mid a_n \in A_n, \|a_n\| \to 0\}$$

<ロト < 部ト < 臣 > < 臣 > 臣 の < で 4/15

are C^* -algebras. (sup norm, coordinatewise operations).

- $M_n(\mathbb{C}) = \mathcal{B}(\ell_2(n))$, for all n. $\mathcal{B}(H)$ for all Hilbert H.
- If X is a locally compact Hausdorff space,

 $C_0(X) = \{f : X \to \mathbb{C} \mid f \text{ is cont. and vanishes at } \infty\}$

is a C^{*}-algebra. (sup-norm, operations are performed pointwise, involution is pointwise complex conjugation). $C_0(X)$ unital if and only if X compact.

• Let A_n be C^* -algebras. Then

$$\prod A_n = \{(a_n) \mid a_n \in A_n, \sup_n ||a_n|| < \infty\}$$

and

$$\bigoplus A_n = \{(a_n) \mid a_n \in A_n, \|a_n\| \to 0\}$$

are C*-algebras. (sup norm, coordinatewise operations).

If A ⊆ B are C*-algebras, and BAB ⊆ A, A is an ideal. The quotient B/A is a C*-algebra.

<ロト < 部ト < 臣 > < 臣 > 臣 の < で 4/15

- $M_n(\mathbb{C}) = \mathcal{B}(\ell_2(n))$, for all n. $\mathcal{B}(H)$ for all Hilbert H.
- If X is a locally compact Hausdorff space,

 $C_0(X) = \{f : X \to \mathbb{C} \mid f \text{ is cont. and vanishes at } \infty\}$

is a C^* -algebra. (sup-norm, operations are performed pointwise, involution is pointwise complex conjugation). $C_0(X)$ unital if and only if X compact.

• Let A_n be C^* -algebras. Then

$$\prod A_n = \{(a_n) \mid a_n \in A_n, \sup_n ||a_n|| < \infty\}$$

and

$$\bigoplus A_n = \{(a_n) \mid a_n \in A_n, \|a_n\| \to 0\}$$

are C^* -algebras. (sup norm, coordinatewise operations).

If A ⊆ B are C*-algebras, and BAB ⊆ A, A is an ideal. The quotient B/A is a C*-algebra. If A_n are C*-algebras,

$$\prod A_n / \bigoplus A_n$$

is a C^* -algebra, called the **reduced product** of the A_n 's.

 $\mathcal{F}(H) = \{T \colon H \to H \mid T[H] \text{ is finite dimensional}\}.$

 $\mathcal{F}(H) = \{T \colon H \to H \mid T[H] \text{ is finite dimensional}\}.$

< □ > < 母 > < E > < E > E の < € / 15

This is a subalgebra, but it is not $\|\cdot\|$ -closed!

 $\mathcal{F}(H) = \{ T \colon H \to H \mid T[H] \text{ is finite dimensional} \}.$

This is a subalgebra, but it is not $\|\cdot\|$ -closed! Close it.

$$\mathcal{K}(H)=\overline{\mathcal{F}(H)}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

This is the algebra of compact operators.

 $\mathcal{F}(H) = \{T \colon H \to H \mid T[H] \text{ is finite dimensional}\}.$

This is a subalgebra, but it is not $\|\cdot\|$ -closed! Close it.

$$\mathcal{K}(H) = \overline{\mathcal{F}(H)}$$

This is the algebra of compact operators.

• $\mathcal{K}(H) \subseteq \mathcal{B}(H)$ is an ideal. The quotient

 $\mathcal{Q}(H) = \mathcal{B}(H)/\mathcal{K}(H)$

is called the **Calkin algebra**. $\pi: \mathcal{B}(H) \to \mathcal{Q}(H)$ is the quotient map.

 $\mathcal{F}(H) = \{T \colon H \to H \mid T[H] \text{ is finite dimensional}\}.$

This is a subalgebra, but it is not $\|\cdot\|$ -closed! Close it.

$$\mathcal{K}(H) = \overline{\mathcal{F}(H)}$$

This is the algebra of compact operators.

• $\mathcal{K}(H) \subseteq \mathcal{B}(H)$ is an ideal. The quotient

 $Q(H) = B(H)/\mathcal{K}(H)$

is called the **Calkin algebra**. $\pi: \mathcal{B}(H) \to \mathcal{Q}(H)$ is the quotient map.

 $\mathcal{Q}(H)$ is the noncommutative analog of $\ell_{\infty}/c_0 = C(\beta \omega \setminus \omega)$, and therefore its poset of projections is the noncommutative analog of $\mathcal{P}(\omega)/\text{Fin}$.

Which C^* -algebras embed into $\mathcal{Q}(H)$? Which reduced products?

Which C^* -algebras embed into $\mathcal{Q}(H)$? Which reduced products?

Fix a sequence $(n_k)_k \subseteq \omega$. Fix $\{I_k\}$ a partition on ω such that $|I_k| = n_k$, and e_i a base for $\ell_2(\mathbb{N})$. Then $\mathcal{B}(\text{span}\{e_i \mid i \in I_k\}) \cong M_{n_k}$. This defines an embedding $\prod M_{n_k} \to \mathcal{B}(H)$.

<ロト < 部ト < 臣 > < 臣 > 臣 の < で 6/15

Which C^* -algebras embed into $\mathcal{Q}(H)$? Which reduced products?

Fix a sequence $(n_k)_k \subseteq \omega$. Fix $\{I_k\}$ a partition on ω such that $|I_k| = n_k$, and e_i a base for $\ell_2(\mathbb{N})$. Then $\mathcal{B}(\text{span}\{e_i \mid i \in I_k\}) \cong M_{n_k}$. This defines an embedding $\prod M_{n_k} \to \mathcal{B}(H)$. Note that

$$\prod M_{n_k} \cap \mathcal{K}(H) = \bigoplus M_{n_k},$$

so this defines a unital embedding

$$\prod M_{n_k} / \bigoplus M_{n_k} \to \mathcal{Q}(H).$$

∽ へ (~ 6/15

Which C^* -algebras embed into $\mathcal{Q}(H)$? Which reduced products?

Fix a sequence $(n_k)_k \subseteq \omega$. Fix $\{l_k\}$ a partition on ω such that $|I_k| = n_k$, and e_i a base for $\ell_2(\mathbb{N})$. Then $\mathcal{B}(\text{span}\{e_i \mid i \in I_k\}) \cong M_{n_k}$. This defines an embedding $\prod M_{n_k} \to \mathcal{B}(H)$. Note that

$$\prod M_{n_k} \cap \mathcal{K}(H) = \bigoplus M_{n_k},$$

so this defines a unital embedding

$$\prod M_{n_k} / \bigoplus M_{n_k} \to \mathcal{Q}(H).$$

In case one considers infinite-dimensional (as vector spaces) C^* -algebras A_n , there is no way of obtaining such a *nice* embedding

$$\phi: \prod A_n / \bigoplus A_n \to \mathcal{Q}(H).$$

(Here nice means: there are mutually orthogonal $\phi_n \colon A_n \to \mathcal{B}(H)$ such that $\phi = \pi(\sum \phi_n)$).

Which C^* -algebras embed into $\mathcal{Q}(H)$?

Which C^* -algebras embed into $\mathcal{Q}(H)$?

There is no easy way to embed many reduced products into $\mathcal{Q}(H)$. On the other hand....

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Which C^* -algebras embed into Q(H)?

There is no easy way to embed many reduced products into $\mathcal{Q}(H)$. On the other hand....

Theorem (Farah-Hirshberg-V.)

All C^* -algebras of density \aleph_1 embed into $\mathcal{Q}(H)$.

Which C^* -algebras embed into $\mathcal{Q}(H)$?

There is no easy way to embed many reduced products into $\mathcal{Q}(H)$. On the other hand....

Theorem (Farah-Hirshberg-V.)

All C^* -algebras of density \aleph_1 embed into $\mathcal{Q}(H)$. So, under CH, if A_n is separable for all n, there is an embedding

$$\prod A_n / \bigoplus A_n \to \mathcal{Q}(H).$$

Moreover, if X is a locally compact second countable space, then $C(\beta X \setminus X)$ embeds into the Calkin algebra.

<□ > < □ > < □ > < Ξ > < Ξ > Ξ のへで _{8/15}

Definition

The Proper Forcing Axiom PFA is a Forcing Axiom introduced by Shelah as a generalization of the Baire Category Theorem. It asserts that a large class of forcings (proper ones) admits generic filters intersecting \aleph_1 -many dense sets. It extends Martin's Axiom at level \aleph_1 , implies $\mathfrak{c} = \omega_2$, and implies Todorcevic's Open Colouring Axiom.

臣

Definition

The Proper Forcing Axiom PFA is a Forcing Axiom introduced by Shelah as a generalization of the Baire Category Theorem. It asserts that a large class of forcings (proper ones) admits generic filters intersecting \aleph_1 -many dense sets. It extends Martin's Axiom at level \aleph_1 , implies $\mathfrak{c} = \omega_2$, and implies Todorcevic's Open Colouring Axiom.

Why do we believe that PFA implies that there are no embeddings of certain C^* -algebras into $\mathcal{Q}(H)$?

▶ ▲ 문 ▶ ▲ 문 ▶ ... 문

Definition

The Proper Forcing Axiom PFA is a Forcing Axiom introduced by Shelah as a generalization of the Baire Category Theorem. It asserts that a large class of forcings (proper ones) admits generic filters intersecting \aleph_1 -many dense sets. It extends Martin's Axiom at level \aleph_1 , implies $\mathfrak{c} = \omega_2$, and implies Todorcevic's Open Colouring Axiom.

Why do we believe that PFA implies that there are no embeddings of certain C*-algebras into $\mathcal{Q}(H)$? Because we said that $\mathcal{Q}(H)$ and $C(\beta \omega \setminus \omega)$ look very much alike! and...

臣

Definition

The Proper Forcing Axiom PFA is a Forcing Axiom introduced by Shelah as a generalization of the Baire Category Theorem. It asserts that a large class of forcings (proper ones) admits generic filters intersecting \aleph_1 -many dense sets. It extends Martin's Axiom at level \aleph_1 , implies $\mathfrak{c} = \omega_2$, and implies Todorcevic's Open Colouring Axiom.

Why do we believe that PFA implies that there are no embeddings of certain C^* -algebras into $\mathcal{Q}(H)$? Because we said that $\mathcal{Q}(H)$ and $C(\beta \omega \setminus \omega)$ look very much alike! and...

Definition

A topological space X is said not to look like ω if it is locally compact noncompact and second countable, and there is no compact $K \subseteq X$ for which $X \setminus K \cong \omega$.

Definition

The Proper Forcing Axiom PFA is a Forcing Axiom introduced by Shelah as a generalization of the Baire Category Theorem. It asserts that a large class of forcings (proper ones) admits generic filters intersecting \aleph_1 -many dense sets. It extends Martin's Axiom at level \aleph_1 , implies $\mathfrak{c} = \omega_2$, and implies Todorcevic's Open Colouring Axiom.

Why do we believe that PFA implies that there are no embeddings of certain C^* -algebras into $\mathcal{Q}(H)$? Because we said that $\mathcal{Q}(H)$ and $C(\beta \omega \setminus \omega)$ look very much alike! and...

Definition

A topological space X is said not to look like ω if it is locally compact noncompact and second countable, and there is no compact $K \subseteq X$ for which $X \setminus K \cong \omega$.

Theorem (Dow-Hart)

Assume PFA. Suppose that X does not look like ω . Then $C(\beta X \setminus X)$ does not embed into $C(\beta \omega \setminus \omega)$. (but they do under CH!)

How do we generalize this result? Via heavy liftings!

How do we generalize this result? Via **heavy liftings**! Suppose that $A \subseteq B$ is an ideal with quotient map $\pi_A \colon B \to B/A$. Let

$$\phi \colon B/A \to \mathcal{Q}(H)$$

be an embedding.

How do we generalize this result? Via **heavy liftings**! Suppose that $A \subseteq B$ is an ideal with quotient map $\pi_A: B \to B/A$. Let

$$\phi \colon B/A o \mathcal{Q}(H)$$

be an embedding.

𝒫𝔅 9/15

The idea is to use PFA to show that whenever $\phi: B/A \to \mathcal{Q}(H)$ is an embedding, it is possible to find a **nice** lifting $\Phi: B \to \mathcal{B}(H)$

The idea is to use PFA to show that whenever $\phi: B/A \to \mathcal{Q}(H)$ is an embedding, it is possible to find a **nice** lifting $\Phi: B \to \mathcal{B}(H)$

10/15

Then, studying B and A, we want to use ZFC to show that nice maps $\Phi: B \to A$ such that $\Phi(B) \cap \mathcal{K}(H) = A$ cannot exist.

Proposition

 Let A_n be infinite-dimensional C*-algebras. Then there is no sequence of mutually orthogonal maps φ_n: A → B(H) such that Φ = ∑ φ_n is a lifting for an embedding ∏ A_n/ ⊕ A_n → Q(H).

900

Proposition

- Let A_n be infinite-dimensional C*-algebras. Then there is no sequence of mutually orthogonal maps φ_n: A → B(H) such that Φ = ∑φ_n is a lifting for an embedding ∏ A_n/⊕ A_n → Q(H).
- Suppose that X does not look like ω. There is a notion of niceness such that there is no nice map Φ: C(βX) → B(H) can be a lifting for an embedding C(βX \ X) ≅ C(βX)/C₀(X) → Q(H).

Proposition

- Let A_n be infinite-dimensional C*-algebras. Then there is no sequence of mutually orthogonal maps φ_n: A → B(H) such that Φ = ∑ φ_n is a lifting for an embedding ∏ A_n/⊕ A_n → Q(H).
- Suppose that X does not look like ω. There is a notion of niceness such that there is no nice map Φ: C(βX) → B(H) can be a lifting for an embedding C(βX \ X) ≅ C(βX)/C₀(X) → Q(H).

So we just need to lift embeddings to nice maps, and we're done!

Assume PFA. Let $\phi \colon \ell_{\infty}/c_0 \to \mathcal{Q}(H)$ be an injection. Then there are *-homomorphisms $\phi_n \colon \mathbb{C} \to \mathcal{B}(H)$ and a nonmeager dense ideal $\mathscr{I} \subseteq \mathcal{P}(\omega)$ such that $\Phi = \sum \phi_n \colon \ell_{\infty} \to \mathcal{B}(H)$ lifts ϕ on elements whose support is in \mathscr{I} .

Assume PFA. Let $\phi: \ell_{\infty}/c_0 \to \mathcal{Q}(H)$ be an injection. Then there are *-homomorphisms $\phi_n: \mathbb{C} \to \mathcal{B}(H)$ and a nonmeager dense ideal $\mathscr{I} \subseteq \mathcal{P}(\omega)$ such that $\Phi = \sum \phi_n: \ell_{\infty} \to \mathcal{B}(H)$ lifts ϕ on elements whose support is in \mathscr{I} .

Note that $\ell_{\infty}/c_0 \cong \prod \mathbb{C}/\bigoplus \mathbb{C}$. We want to replace \mathbb{C} with a finite-dimensional object, and we do so.

Assume PFA. Let $\phi: \ell_{\infty}/c_0 \to \mathcal{Q}(H)$ be an injection. Then there are *-homomorphisms $\phi_n: \mathbb{C} \to \mathcal{B}(H)$ and a nonmeager dense ideal $\mathscr{I} \subseteq \mathcal{P}(\omega)$ such that $\Phi = \sum \phi_n: \ell_{\infty} \to \mathcal{B}(H)$ lifts ϕ on elements whose support is in \mathscr{I} .

Note that $\ell_{\infty}/c_0 \cong \prod \mathbb{C}/\bigoplus \mathbb{C}$. We want to replace \mathbb{C} with a finite-dimensional object, and we do so.

Theorem (McKenney-V.)

Assume PFA. Let A_n be unital \mathbb{C}^* -algebras, $F_n \subseteq A_n$ be finite-dimensional Banach spaces, and $\phi \colon \prod A_n / \bigoplus A_n \to \mathcal{Q}(H)$ be an embedding.

Assume PFA. Let $\phi: \ell_{\infty}/c_0 \to \mathcal{Q}(H)$ be an injection. Then there are *-homomorphisms $\phi_n: \mathbb{C} \to \mathcal{B}(H)$ and a nonmeager dense ideal $\mathscr{I} \subseteq \mathcal{P}(\omega)$ such that $\Phi = \sum \phi_n: \ell_{\infty} \to \mathcal{B}(H)$ lifts ϕ on elements whose support is in \mathscr{I} .

Note that $\ell_{\infty}/c_0 \cong \prod \mathbb{C}/\bigoplus \mathbb{C}$. We want to replace \mathbb{C} with a finite-dimensional object, and we do so.

Theorem (McKenney-V.)

Assume PFA. Let A_n be unital \mathbb{C}^* -algebras, $F_n \subseteq A_n$ be finite-dimensional Banach spaces, and $\phi: \prod A_n / \bigoplus A_n \to \mathcal{Q}(H)$ be an embedding. Then there are orthogonal maps $\phi_n: F_n \to \mathcal{B}(H)$ and a nonmeager dense ideal \mathscr{I} such that $\Phi = \sum \phi_n$ lifts ϕ on elements in $\prod F_n$ whose support is in \mathscr{I} .

Assume PFA, and let A_n be unital separable infinite-dimensional C^* -algebras. Then $\prod A_n / \bigoplus A_n$ does not embed into Q(H).

<ロ> < 母> < 臣> < 臣> < 臣 > ○へで 13/15

Assume PFA, and let A_n be unital separable infinite-dimensional C^* -algebras. Then $\prod A_n / \bigoplus A_n$ does not embed into Q(H).

Theorem (V.)

Assume PFA and suppose that X does not look like ω . Then $C(\beta X \setminus X)$ does not embed into Q(H).

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 の��

Assume PFA, and let A_n be unital separable infinite-dimensional C^* -algebras. Then $\prod A_n / \bigoplus A_n$ does not embed into Q(H).

Theorem (V.)

Assume PFA and suppose that X does not look like ω . Then $C(\beta X \setminus X)$ does not embed into Q(H).

In fact a similar result can be proved for corona C^* -algebras, which are the noncommutative equivalents of Čech-Stone remainders. (i.e., the corona algebra of A embeds into Q(H) only whenever A looks like a subalgebra of $\mathcal{K}(H)$)

 \bullet We do not need PFA, but usually a stronger version of OCA and Martin's Axiom at $\aleph_1.$

- \bullet We do not need PFA, but usually a stronger version of OCA and Martin's Axiom at $\aleph_1.$
- These heavy lifting results are also used to treat automorphisms of corona algebras, and consequently homeomorphisms of spaces of the form βX \ X. They are also used to study mutual embeddings of algebras of the form C(βX \ X) and C(βY \ Y), and of corona algebras.

▲日 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ― 臣

- We do not need PFA, but usually a stronger version of OCA and Martin's Axiom at \aleph_1 .
- These heavy lifting results are also used to treat automorphisms of corona algebras, and consequently homeomorphisms of spaces of the form βX \ X. They are also used to study mutual embeddings of algebras of the form C(βX \ X) and C(βY \ Y), and of corona algebras.
- Inspired by the equivalent result of Boolean algebras and $\mathcal{P}(\omega)/\operatorname{Fin}$, Farah, Katsimpas and Vaccaro recently proved that for a given C*-algebra A one can find a ccc forcing \mathbb{P}_A that forces A to embed in $\mathcal{Q}(H)$.

- We do not need PFA, but usually a stronger version of OCA and Martin's Axiom at \aleph_1 .
- These heavy lifting results are also used to treat automorphisms of corona algebras, and consequently homeomorphisms of spaces of the form βX \ X. They are also used to study mutual embeddings of algebras of the form C(βX \ X) and C(βY \ Y), and of corona algebras.
- Inspired by the equivalent result of Boolean algebras and $\mathcal{P}(\omega)/\operatorname{Fin}$, Farah, Katsimpas and Vaccaro recently proved that for a given C*-algebra A one can find a ccc forcing \mathbb{P}_A that forces A to embed in $\mathcal{Q}(H)$.

DQC

14/15

• But such a poset is messy. Making it nicer is very much needed.

- We do not need PFA, but usually a stronger version of OCA and Martin's Axiom at \aleph_1 .
- These heavy lifting results are also used to treat automorphisms of corona algebras, and consequently homeomorphisms of spaces of the form βX \ X. They are also used to study mutual embeddings of algebras of the form C(βX \ X) and C(βY \ Y), and of corona algebras.
- Inspired by the equivalent result of Boolean algebras and $\mathcal{P}(\omega)/\operatorname{Fin}$, Farah, Katsimpas and Vaccaro recently proved that for a given C*-algebra A one can find a ccc forcing \mathbb{P}_A that forces A to embed in $\mathcal{Q}(H)$.
- But such a poset is messy. Making it nicer is very much needed.
- Again comparing Q(H) to P(ω)/Fin, it is not known if we can get that c is large and all algebras of density c embed into Q(H).

- We do not need PFA, but usually a stronger version of OCA and Martin's Axiom at \aleph_1 .
- These heavy lifting results are also used to treat automorphisms of corona algebras, and consequently homeomorphisms of spaces of the form βX \ X. They are also used to study mutual embeddings of algebras of the form C(βX \ X) and C(βY \ Y), and of corona algebras.
- Inspired by the equivalent result of Boolean algebras and $\mathcal{P}(\omega)/\operatorname{Fin}$, Farah, Katsimpas and Vaccaro recently proved that for a given C*-algebra A one can find a ccc forcing \mathbb{P}_A that forces A to embed in $\mathcal{Q}(H)$.
- But such a poset is messy. Making it nicer is very much needed.
- Again comparing Q(H) to P(ω)/Fin, it is not known if we can get that c is large and all algebras of density c embed into Q(H).
- We can also ask whether ultrapowers embed into $\mathcal{Q}(H)$. With arguments 'à la Woodin', this can lead to automatic continuity results.

- We do not need PFA, but usually a stronger version of OCA and Martin's Axiom at \aleph_1 .
- These heavy lifting results are also used to treat automorphisms of corona algebras, and consequently homeomorphisms of spaces of the form βX \ X. They are also used to study mutual embeddings of algebras of the form C(βX \ X) and C(βY \ Y), and of corona algebras.
- Inspired by the equivalent result of Boolean algebras and $\mathcal{P}(\omega)/\operatorname{Fin}$, Farah, Katsimpas and Vaccaro recently proved that for a given C*-algebra A one can find a ccc forcing \mathbb{P}_A that forces A to embed in $\mathcal{Q}(H)$.
- But such a poset is messy. Making it nicer is very much needed.
- Again comparing Q(H) to P(ω)/Fin, it is not known if we can get that c is large and all algebras of density c embed into Q(H).
- We can also ask whether ultrapowers embed into $\mathcal{Q}(H)$. With arguments 'à la Woodin', this can lead to automatic continuity results. Big problem here: the notion of gap in $\mathcal{Q}(H)$ is very complicated. There is an analytic gap in $\mathcal{Q}(H)$ which cannot be frozen by any ccc forcing!

Thanks!

