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Almost disjoint families

For A ⊆P(ω) and S ⊆ ω write A ≤ S to denote that A⊆∗ S for
every A ∈A .

Separation

Families A1, . . . ,An ⊆P(ω) are separated if there are Si such that
Ai ≤ Si for every i ≤ n and

⋂n
i=1Si = /0.

Cardinal numbers an

For n ≥ 2 we write an for the minimal size of an almost disjoint
family A that can be divided into disjoint parts A1, . . . ,An that
are not separated.
Moreover, we write aω = supn an

Cardinal number aω

aω = sup
n

an



Almost disjoint families

For A ⊆P(ω) and S ⊆ ω write A ≤ S to denote that A⊆∗ S for
every A ∈A .

Separation

Families A1, . . . ,An ⊆P(ω) are separated if there are Si such that
Ai ≤ Si for every i ≤ n and

⋂n
i=1Si = /0.

Cardinal numbers an

For n ≥ 2 we write an for the minimal size of an almost disjoint
family A that can be divided into disjoint parts A1, . . . ,An that
are not separated.
Moreover, we write aω = supn an

Cardinal number aω

aω = sup
n

an



Almost disjoint families

For A ⊆P(ω) and S ⊆ ω write A ≤ S to denote that A⊆∗ S for
every A ∈A .

Separation

Families A1, . . . ,An ⊆P(ω) are separated if there are Si such that
Ai ≤ Si for every i ≤ n and

⋂n
i=1Si = /0.

Cardinal numbers an

For n ≥ 2 we write an for the minimal size of an almost disjoint
family A that can be divided into disjoint parts A1, . . . ,An that
are not separated.
Moreover, we write aω = supn an

Cardinal number aω

aω = sup
n

an



Almost disjoint families

For A ⊆P(ω) and S ⊆ ω write A ≤ S to denote that A⊆∗ S for
every A ∈A .

Separation

Families A1, . . . ,An ⊆P(ω) are separated if there are Si such that
Ai ≤ Si for every i ≤ n and

⋂n
i=1Si = /0.

Cardinal numbers an

For n ≥ 2 we write an for the minimal size of an almost disjoint
family A that can be divided into disjoint parts A1, . . . ,An that
are not separated.
Moreover, we write aω = supn an

Cardinal number aω

aω = sup
n

an



Almost disjoint families

For A ⊆P(ω) and S ⊆ ω write A ≤ S to denote that A⊆∗ S for
every A ∈A .

Separation

Families A1, . . . ,An ⊆P(ω) are separated if there are Si such that
Ai ≤ Si for every i ≤ n and

⋂n
i=1Si = /0.

Cardinal numbers an

For n ≥ 2 we write an for the minimal size of an almost disjoint
family A that can be divided into disjoint parts A1, . . . ,An that
are not separated.
Moreover, we write aω = supn an

Cardinal number aω

aω = sup
n

an



an = min|A | where A splits into n not separated parts

Facts.

The Luzin family A says that a2 = ω1.

ω1 = a2 ≤ a3 ≤ . . .≤ aω .

Avilés & Todorcevic (2011)

1 MA implies a3 = c.

2 ω1 = a2 < a3 < .. . < aω is consistent.

Theorem

aω ≤ non(E ), where E is the σ -ideal of subsets of 2ω that can be
covered by countably many closed measure zero sets.

Bartoszyński & Shelah: Consistently,

non(E ) < min(non(N ),non(M ))
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Small almost disjoint family, following AT (2011)

Let K = nω , T = n<ω .
Take X ⊆ K that cannot be covered by countably many closed
measure zero sets in K . Define for x ∈ K

Bi (x) = {σ ∈ T : σ a i ≺ x}

Ai = {Bi (x) : x ∈ X}

Then A = A0∪ . . .∪An−1 is an almost disjoint family and Ai are
not separated.
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Extension operators

Definition

Given compact spaces K ⊆ L, a bounded linear operator
E : C (K )→ C (L) such that (Eg)|K = g for g ∈ C (K ) is called an
extension operator.
E is bounded if

‖E‖= sup{‖Eg‖ : ‖g‖ ≤ 1}< ∞.

Examples

If K is metrizable then there is a norm-one extension operator
for every compact L⊇ K (Borsuk-Dugundji).

If K is not ccc and L⊇ K is separable then there is no
extension operator (Pe lczyński).
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Countable discrete extensions

Definition

If K is compact then by a countable discrete extension of K we
mean any compact space of the form K ∪ω.

Problem

Which compacta K admit a countable discrete extension K ∪ω

with no extension operator C (K )→ C (K ∪ω)?

Alexandrov-Urysohn spaces (aka Mrówka-Isbell)

AU(A ) = ω ∪A ∪{∞}

For A ∈ AU(A ), sets {A}∪A\F , F ∈ fin form a local base.
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The main thing

Proposition(for n fixed)

Let a compact space K contain a discrete set D with a single
cluster point p. Suppose there are pairwise disjoint open sets Ui

such that |Ui ∩D| ≥ an for every i ≤ n.
Then there is a countable discrete extension K ∪ω of K such that
‖E‖ ≥ n for any extension operator E : C (K )→ C (K ∪ω).

Corollary

If K satisifes the assumptions of Proposition for every n then K
has a countable discrete extension without extension operators.
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Application

Separable injectivity of c0

If a Banach space X contains c0 and X/c0 is separable then c0 is
complemented in X , i.e. X = c0⊕Y for some closed subspace Y
of X .

Problem (Castillo, Kalton)

Suppose that X contains c0 and X/c0 is isomorphic to C (2κ ).
Must c0 be complemented in X?

Answers

1 Correa & Tausk: ‘No’ for κ ≥ c.

2 Marciszewski & GP: ‘Yes’ for κ = ω1 under MA(ω1).

3 ‘No’ for κ ≥ aω .
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