Indestructibility of the tree property

Šárka Stejskalová

Charles University, Faculty of Arts (FF UK), Department of Logic
logika.ff.cuni.cz/sarka

Hejnice
January 30, 2019
Recall the following definition:

Definition

Let κ be a regular cardinal. A κ-tree is called *Aronszajn* if it has no cofinal branch. The tree property holds at κ if there are no κ-Aronszajn trees.
Recall the following definition:

Definition

Let κ be a regular cardinal. A κ-tree is called *Aronszajn* if it has no cofinal branch. The tree property holds at κ if there are no κ-Aronszajn trees.

The tree property is a compactness property which has been recently extensively studied. In order to construct models with the tree property, it is helpful to try to understand which forcings cannot create new κ-Aronszajn trees (we say that the tree property is *indestructible* by these forcings).
In this talk, we will discuss primarily the indestructibility over the Mitchell model $V[\mathcal{M}(\omega, \kappa)]$ in which the tree property holds at $\omega_2 = \kappa$ with $2^\omega = \omega_2$. We assume that κ is supercompact in V.
In this talk, we will discuss primarily the indestructibility over the Mitchell model $V[M(\omega, \kappa)]$ in which the tree property holds at $\omega_2 = \kappa$ with $2^\omega = \omega_2$. We assume that κ is supercompact in V.

Let us write $M = M(\omega, \kappa)$. We will not define M. For our purposes it suffices to say that there are projections

$$\text{Add}(\omega, \kappa) \times T \rightarrow_{\text{onto}} M \rightarrow_{\text{onto}} \text{Add}(\omega, \kappa)$$

for some ω_1-closed forcing T (the term forcing),

Ś. Stejskalová Indestructibility of the tree property
In this talk, we will discuss primarily the indestructibility over the Mitchell model \(V[\mathbb{M}(\omega, \kappa)] \) in which the tree property holds at \(\omega_2 = \kappa \) with \(2^{\omega} = \omega_2 \). We assume that \(\kappa \) is supercompact in \(V \).

Let us write \(\mathbb{M} = \mathbb{M}(\omega, \kappa) \). We will not define \(\mathbb{M} \). For our purposes it suffices to say that there are projections

\[
\text{Add}(\omega, \kappa) \times T \rightarrow_{\text{onto}} \mathbb{M} \rightarrow_{\text{onto}} \text{Add}(\omega, \kappa)
\]

for some \(\omega_1 \)-closed forcing \(T \) (the term forcing), and that if \(\alpha < \kappa \) is inaccessible, then in \(V[\mathbb{M}_\alpha] \) there are projections

\[
\text{Add}(\omega, \kappa) \times T_\alpha \rightarrow_{\text{onto}} \mathbb{M}/\mathbb{M}_\alpha \rightarrow_{\text{onto}} \text{Add}(\omega, \kappa),
\]

where \(\mathbb{M}_\alpha \) is regularly embedded into \(\mathbb{M} \) as its “initial segment” and \(T_\alpha \) is \(\omega_1 \)-closed in \(V[\mathbb{M}_\alpha] \).
The product analysis on the previous slide and the so called branch lemmas imply (using a standard method which we will omit here) the tree property at ω_2. For clarity we state the lemmas just for the specific case of ω_2.
The product analysis on the previous slide and the so called branch lemmas imply (using a standard method which we will omit here) the tree property at ω_2. For clarity we state the lemmas just for the specific case of ω_2.

(Folkore) Assume that P is a ccc forcing notion. Then P does not add cofinal branches to ω_2-Aronszajn trees.
The product analysis on the previous slide and the so called branch lemmas imply (using a standard method which we will omit here) the tree property at ω_2. For clarity we state the lemmas just for the specific case of ω_2.

- **(Folkore)** Assume that P is a ccc forcing notion. Then P does not add cofinal branches to ω_2-Aronszajn trees.

- **(Unger)** Suppose $2^{\omega} \geq \omega_2$. Assume that P and Q are forcing notions such that P is ccc and Q is ω_1-closed. If T is a ω_2-tree in $V[P]$, then forcing with Q over $V[P]$ does not add cofinal branches to T.
Remark. Earlier arguments for the tree property were based on Silver’s lemma\(^1\) and require in our specific case a stronger property of \(\omega_1\)-square-cc for \(P\).\(^2\) Unger’s result strengthens Silver’s lemma and consequently weakens the assumption required for \(P\) to ccc. This is not important for Add(\(\omega, \kappa\)) (which is even \(\omega_1\)-Knaster) but becomes important if we wish to consider arbitrary ccc forcings for the indestructibility results.

\(^1\)2\(\omega \geq \omega_2\) implies that \(\omega_1\)-closed forcings do not add cofinal branches to \(\omega_2\)-trees
\(^2\)\(P\) is \(\omega_1\)-square-cc iff \(P \times P\) is ccc
Let us discuss the following result:

Theorem (Honzik, S. (2019))

Suppose κ is supercompact. The tree property at ω_2 in $V[M]$ is indestructible by all ccc forcings which live in $V[\text{Add}(\omega, \kappa)]$.

First notice that $V[\text{Add}(\omega, \kappa)] \subseteq V[M]$ so the statement of the theorem makes sense.

Let us repeat that we require just ccc and not a stronger form of ccc such as ω_1-Knaster or "square-ccc", which is often required.
Let us discuss the following result:

Theorem (Honzik, S. (2019))

Suppose κ is supercompact. The tree property at ω_2 in $V[M]$ is indestructible by all ccc forcings which live in $V[Add(\omega, \kappa)]$.

First notice that $V[Add(\omega, \kappa)] \subseteq V[M]$ so the statement of the theorem makes sense.
Let us discuss the following result:

Theorem (Honzik, S. (2019))

Suppose κ is supercompact. The tree property at ω_2 in $V[M]$ is indestructible by all ccc forcings which live in $V[\text{Add}(\omega, \kappa)]$.

First notice that $V[\text{Add}(\omega, \kappa)] \subseteq V[M]$ so the statement of the theorem makes sense.

Let us repeat that we require just ccc and not a stronger form of ccc such as ω_1-Knaster or “square-ccc”, which is often required.
Suppose \mathbb{Q} is a ccc forcing in $V[\text{Add}(\omega, \kappa)]$ and let us fix an $\text{Add}(\omega, \kappa)$-name $\check{\mathbb{Q}}$ for \mathbb{Q}.
Suppose \(\mathbb{Q} \) is a ccc forcing in \(V[\mathrm{Add}(\omega, \kappa)] \) and let us fix an \(\mathrm{Add}(\omega, \kappa) \)-name \(\dot{\mathbb{Q}} \) for \(\mathbb{Q} \).

Choose a supercompact embedding \(j : V \rightarrow M \) with critical point \(\kappa \) so that \(M \) is closed under sequences of size \(|M * \dot{\mathbb{Q}}| \).
Suppose \(\mathbb{Q} \) is a ccc forcing in \(V[\text{Add}(\omega, \kappa)] \) and let us fix an \(\text{Add}(\omega, \kappa) \)-name \(\check{\mathbb{Q}} \) for \(\mathbb{Q} \).

- Choose a supercompact embedding \(j : V \rightarrow M \) with critical point \(\kappa \) so that \(M \) is closed under sequences of size \(|M \ast \check{\mathbb{Q}}| \).
- \(j \) restricted to \(M \ast \check{\mathbb{Q}} \) is a regular embedding into \(j(M \ast \check{\mathbb{Q}}) \) due to \(M \ast \check{\mathbb{Q}} \) being \(\kappa \)-cc, and one can therefore lift to \(j : V[M \ast \check{\mathbb{Q}}] \rightarrow M[j(M \ast \check{\mathbb{Q}})] \).
Suppose Q is a ccc forcing in $V[\text{Add}(\omega, \kappa)]$ and let us fix an Add(ω, κ)-name \dot{Q} for Q.

- Choose a supercompact embedding $j : V \to M$ with critical point κ so that M is closed under sequences of size $|M*\dot{Q}|$.
- j restricted to $M*\dot{Q}$ is a regular embedding into $j(M*\dot{Q})$ due to $M*\dot{Q}$ being κ-cc, and one can therefore lift to $j : V[M*\dot{Q}] \to M[j(M*\dot{Q})]$.
- Since M is closed under sequences of size $|M*\dot{Q}|$, the regular embedding is an element of M, and it follows that $M[j(M*\dot{Q})]$ can be written as $M[M*\dot{Q} * \dot{Q}]$ for some forcing \dot{Q}.
Over $M[\mathbb{M} \ast \dot{Q}]$ there is a projection from the product

$$j(\text{Add}(\omega, \kappa) \ast \dot{Q})/(\text{Add}(\omega, \kappa) \ast \dot{Q}) \times T_\kappa$$

onto \dot{Q}, where the first component of the product is ccc in $M[\mathbb{M} \ast \dot{Q}]$ and T_κ is ω_1-closed in $M[\mathbb{M}]$.
Over $M[M \ast \dot{Q}]$ there is a projection from the product

$$j(\text{Add}(\omega, \kappa) \ast \dot{Q})/(\text{Add}(\omega, \kappa) \ast \dot{Q}) \times T_\kappa$$

onto \dot{Q}, where the first component of the product is ccc in $M[M \ast \dot{Q}]$ and T_κ is ω_1-closed in $M[M]$.

The argument can be finished by the standard method using the fact that a ccc forcing cannot add a cofinal branch to an ω_2-Aronszajn tree, and neither can an ω_1-closed forcing over a ccc forcing.
The theorem can be generalized by using a more complex forcing R (with similar properties as M) which yields the following:

Theorem (Honzik, S. (2019))

Suppose κ is supercompact. There is a forcing R such that over $V[R]$ the tree property at $\omega_2 = \kappa$ is indestructible by all these forcings:

- $\text{ccc forcings living in } V[\text{Add}(\omega, \kappa)]$.
- ω_1-closed, ω_2-cc forcings.
- ω_2-directed closed forcings.
- ω_1-cc or ω_1-distributive forcings of size ω_1.
Some applications. The theorem generalizes to other cardinals: one can show that if $\kappa < \lambda$ are regular and λ supercompact, then all $\kappa^+-\text{cc}$ forcings living in $V[\text{Add}(\kappa, \lambda)]$ preserve the tree property at $\lambda = \kappa^{++}V[M(\kappa, \lambda)]$. With the additional assumption that κ is Laver-indestructible supercompact:
Some applications. The theorem generalizes to other cardinals: one can show that if $\kappa < \lambda$ are regular and λ supercompact, then all κ^+-cc forcings living in $V[\text{Add}(\kappa, \lambda)]$ preserve the tree property at $\lambda = \kappa^{++} V[\mathbb{M}(\kappa, \lambda)]$. With the additional assumption that κ is Laver-indestructible supercompact:

- $\mathbb{M}(\kappa, \lambda) \ast \text{Prk}^{V[\text{Add}(\kappa, \lambda)]}$ forces the tree property at the double successor of a singular strong limit cardinal with countable cofinality, where Prk^M denotes the vanilla Prikry forcing defined in a model M.
Some applications. The theorem generalizes to other cardinals: one can show that if $\kappa < \lambda$ are regular and λ supercompact, then all $\kappa^+\text{-cc}$ forcings living in $V[\text{Add}(\kappa, \lambda)]$ preserve the tree property at $\lambda = \kappa^{++} V[\mathcal{M}(\kappa, \lambda)]$. With the additional assumption that κ is Laver-indestructible supercompact:

- $\mathcal{M}(\kappa, \lambda) \ast \text{Prk}^V[\text{Add}(\kappa, \lambda)]$ forces the tree property at the double successor of a singular strong limit cardinal with countable cofinality, where Prk^M denotes the vanilla Prikry forcing defined in a model M.

- $\mathcal{M}(\kappa, \lambda) \ast (\text{Add}(\kappa, \delta) \ast \text{Prk}^V[\text{Add}(\kappa, \delta)])$ forces the tree property at the double successor of a singular strong limit cardinal with countable cofinality, while making 2^κ arbitrarily large (by choosing a large enough δ).
\(\mathbb{M}(\kappa, \lambda) \ast (\text{Add}(\kappa, \delta) \ast \text{Mag}^V[\text{Add}(\kappa, \delta)]) \) forces the tree property at the double successor of a singular strong limit cardinal with an arbitrary cofinality \(\omega < \mu < \kappa \), while making \(2^\kappa \) arbitrarily large, where \(\text{Mag}^M \) is the Magidor forcing in \(M \) defined with respect to a sequence of measures of length \(\mu \).
M(\kappa, \lambda) \ast (\text{Add}(\kappa, \delta) \ast \text{Mag}^V[\text{Add}(\kappa, \delta)]) forces the tree property at the double successor of a singular strong limit cardinal with an arbitrary cofinality \omega < \mu < \kappa, while making \(2^\kappa\) arbitrarily large, where \text{Mag}^M is the Magidor forcing in \text{M} defined with respect to a sequence of measures of length \mu.

There are applications for cardinal invariants (for instance to the ultrafilter number on \kappa because all subsets of \kappa added by \text{M}(\kappa, \lambda) are added already by \text{Add}(\kappa, \lambda)).
Open questions. Let us mention just one important question:

Q1. Is the tree property indestructible over $V[\mathcal{M}]$ by all ccc forcings Q living in $V[\mathcal{M}]$? Or more generally, by all κ^+-cc forcings Q living in $V[\mathcal{M}(\kappa, \lambda)]$ (κ can be measurable now)?
Open questions. Let us mention just one important question:

Q1. Is the tree property indestructible over $V[\mathcal{M}]$ by all ccc forcings \mathcal{Q} living in $V[\mathcal{M}]$? Or more generally, by all $\kappa^+-\text{cc}$ forcings \mathcal{Q} living in $V[\mathcal{M}(\kappa, \lambda)]$ (κ can be measurable now)?

Notice that our proof relies heavily on the product analysis which uses the fact that $\text{Add}(\kappa, \lambda) * \dot{\mathcal{Q}}$ is meaningful (and $\kappa^+-\text{cc}$). This cannot be done if \mathcal{Q} lives in $V[\mathcal{M}(\kappa, \lambda)]$.