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Recall the following definition:

Definition

Let κ be a regular cardinal. A κ-tree is called Aronszajn if it has
no cofinal branch. The tree property holds at κ if there are no
κ-Aronszajn trees.

The tree property is a compactness property which has been
recently extensively studied. In order to construct models with the
tree property, it is helpful to try to understand which forcings
cannot create new κ-Aronszajn trees (we say that the tree property
is indestructible by these forcings).
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In this talk, we will discuss primarily the indestructibility over the
Mitchell model V [M(ω, κ)] in which the tree property holds at
ω2 = κ with 2ω = ω2. We assume that κ is supercompact in V .

Let us write M = M(ω, κ). We will not define M. For our
purposes it suffices to say that there are projections

Add(ω, κ)× T→onto M→onto Add(ω, κ)

for some ω1-closed forcing T (the term forcing),and that if α < κ
is inaccessible, then in V [Mα] there are projections

Add(ω, κ)× Tα →onto M/Mα →onto Add(ω, κ),

where Mα is regularly embedded into M as its “initial segment”
and Tα is ω1-closed in V [Mα].
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Branch lemmas

The product analysis on the previous slide and the so called branch
lemmas imply (using a standard method which we will omit here)
the tree property at ω2. For clarity we state the lemmas just for
the specific case of ω2.

(Folkore) Assume that P is a ccc forcing notion. Then P does
not add cofinal branches to ω2-Aronszajn trees.

(Unger) Suppose 2ω ≥ ω2. Assume that P and Q are forcing
notions such that P is ccc and Q is ω1-closed. If T is a
ω2-tree in V [P], then forcing with Q over V [P] does not add
cofinal branches to T .
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Š. Stejskalová Indestructibility of the tree property



Branch lemmas

The product analysis on the previous slide and the so called branch
lemmas imply (using a standard method which we will omit here)
the tree property at ω2. For clarity we state the lemmas just for
the specific case of ω2.

(Folkore) Assume that P is a ccc forcing notion. Then P does
not add cofinal branches to ω2-Aronszajn trees.

(Unger) Suppose 2ω ≥ ω2. Assume that P and Q are forcing
notions such that P is ccc and Q is ω1-closed. If T is a
ω2-tree in V [P], then forcing with Q over V [P] does not add
cofinal branches to T .
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Remark. Earlier arguments for the tree property were based on
Silver’s lemma1 and require in our specific case a stronger property
of ω1-square-cc for P.2 Unger’s result strengthens Silver’s lemma
and consequently weakens the assumption required for P to ccc.
This is not important for Add(ω, κ) (which is even ω1-Knaster) but
becomes important if we wish to consider arbitrary ccc forcings for
the indestructibility results.

12ω ≥ ω2 implies that ω1-closed forcings do not add cofinal branches to
ω2-trees

2P is ω1-square-cc iff P × P is ccc
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Let us discuss the following result:

Theorem (Honzik, S. (2019))

Suppose κ is supercompact. The tree property at ω2 in V [M] is
indestructible by all ccc forcings which live in V [Add(ω, κ)].

First notice that V [Add(ω, κ)] ⊆ V [M] so the statement of the
theorem makes sense.

Let us repeat that we require just ccc and not a stronger form of
ccc such as ω1-Knaster or “square-ccc”, which is often required.
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Suppose Q is a ccc forcing in V [Add(ω, κ)] and let us fix an
Add(ω, κ)-name Q̇ for Q.

Choose a supercompact embedding j : V → M with critical
point κ so that M is closed under sequences of size |M ∗ Q̇|.
j restricted to M ∗ Q̇ is a regular embedding into j(M ∗ Q̇)
due to M ∗ Q̇ being κ-cc, and one can therefore lift to
j : V [M ∗ Q̇]→ M[j(M ∗ Q̇)].

Since M is closed under sequences of size |M ∗ Q̇|, the regular
embedding is an element of M, and it follows that
M[j(M ∗ Q̇)] can be written as M[M ∗ Q̇ ∗ Q̇] for some forcing
Q̇.
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Over M[M ∗ Q̇] there is a projection from the product

j(Add(ω, κ) ∗ Q̇)/(Add(ω, κ) ∗ Q̇) × Tκ

onto Q̇, where the first component of the product is ccc in
M[M ∗ Q̇] and Tκ is ω1-closed in M[M].

The argument can be finished by the standard method using
the fact that a ccc forcing cannot add a cofinal branch to an
ω2-Aronszajn tree, and neither can an ω1-closed forcing over a
ccc forcing.
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The theorem can be generalized by using a more complex forcing
R (with similar properties as M) which yields the following:

Theorem (Honzik, S. (2019))

Suppose κ is supercompact. There is a forcing R such that over
V [R] the tree property at ω2 = κ is indestructible by all these
forcings:

ccc forcings living in V [Add(ω, κ)].

ω1-closed, ω2-cc forcings.

ω2-directed closed forcings.

ω1-cc or ω1-distrubutive forcings of size ω1.
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Some applications. The theorem generalizes to other cardinals:
one can show that if κ < λ are regular and λ supercompact, then
all κ+-cc forcings living in V [Add(κ, λ)] preserve the tree property
at λ = κ++V [M(κ,λ)]. With the additional assumption that κ is
Laver-indestructible supercompact:

M(κ, λ) ∗ PrkV [Add(κ,λ)] forces the tree property at the double
successor of a singular strong limit cardinal with countable
cofinality, where PrkM denotes the vanilla Prikry forcing
defined in a model M.

M(κ, λ) ∗ (Add(κ, δ) ∗ PrkV [Add(κ,δ)]) forces the tree property
at the double successor of a singular strong limit cardinal with
countable cofinality, while making 2κ arbitrarily large (by
choosing a large enough δ).
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M(κ, λ) ∗ (Add(κ, δ) ∗MagV [Add(κ,δ)]) forces the tree property
at the double successor of a singular strong limit cardinal with
an arbitrary cofinality ω < µ < κ, while making 2κ arbitrarily
large, where MagM is the Magidor forcing in M defined with
respect to a sequence of measures of length µ.

There are applications for cardinal invariants (for instance to
the ultrafilter number on κ because all subsets of κ added by
M(κ, λ) are added already by Add(κ, λ)).
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Open questions. Let us mention just one important question:

Q1. Is the tree property indestructible over V [M] by all ccc
forcings Q living in V [M]? Or more generally, by all κ+-cc forcings
Q living in V [M(κ, λ)] (κ can be measurable now)?

Notice that our proof relies heavily on the product analysis which
uses the fact that Add(κ, λ) ∗ Q̇ is meaningful (and κ+-cc). This
cannot be done if Q lives in V [M(κ, λ)].
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