SET-THEORETIC METHODS IN TOPOLOGY AND REAL FUNCTIONS THEORY
DEDICATED TO 80TH BIRTHDAY OF LEV BUKOVSKÝ

CONFIRMED SPEAKERS
Aleksander Błaszczyk
Vera Fischer
István Juhász
Menachem Magidor
Dilip Raghavan

SCIENTIFIC COMMITTEE
David Chodounský
Martin Goldstern
Klaas Pieter Hart
Ľubica Holá
Thomas Jech
Miroslav Repický
Masami Sakai
Lyubomyr Zdomskyy

ORGANIZING COMMITTEE
Peter Eliaš Miroslav Repický Viera Šottová Jaroslav Šupina

umv.science.upjs.sk/setmath
setmath@upjs.sk
On a level measure

Jaroslav Šupina

joint work with J. Borzová, L. Halčinová, O. Hutník and J. Kiselák

Institute of Mathematics
Faculty of Science
P.J. Šafárik University in Košice

February 1, 2019

Supported by the grant APVV-16-0337.
Basic setting

\(X \) is a topological space.

\(\mathcal{E}_B \) is a family of all Borel subsets of \(X \).
Warning!

\[
\text{measure} \neq \text{measure}
\]

\[
\text{measure} = \text{function } m : \mathcal{E}_B \rightarrow [0, +\infty] \text{ such that } m(\emptyset) = 0
\]

monotone measure

non-additive integrals
measure \neq measure

measure $= \text{ function } m : E_B \to [0, +\infty]$ such that $m(\emptyset) = 0$

monotone measure

non-additive integrals
Warning!

measure \neq \text{measure}

\text{measure} = \text{function } m : E_B \rightarrow [0, +\infty] \text{ such that } m(\emptyset) = 0

\text{monotone measure}

\text{non-additive integrals}
Warning!

measure ≠ measure

measure = function \(m : \mathcal{E}_B \rightarrow [0, +\infty] \) such that \(m(\emptyset) = 0 \)

monotone measure

non-additive integrals
Level sets and level measure

\[\alpha \]

\[\{x \in X; f(x) \geq \alpha \} \]

\[h_{\mu,f}(\alpha) = \mu(f \geq \alpha) := \mu(\{x \in X; f(x) \geq \alpha\}) \]

Integrals

- The Lebesgue integral
 \[(L) \int_X f \ d\mu = \int_0^\infty \mu(f \geq \alpha) \ d\alpha \]

- The Choquet integral
 \[(Ch) \int_X f \ d\mu = \int_0^\infty \mu(f \geq \alpha) \ d\alpha \]

- The Sugeno integral
 \[(Su) \int_X f \ d\mu = \sup_{\alpha > 0} M \{\alpha, \mu(f \geq \alpha)\} \]
Level sets and level measure

\[\{ x \in X ; \ f(x) \geq \alpha \} \]

\[h_{\mu,f}(\alpha) = \mu(f \geq \alpha) := \mu(\{ x \in X ; \ f(x) \geq \alpha \}) \]

Integrals

- The Lebesgue integral (L) \[\int_X f \, d\mu = \int_0^\infty \mu(f \geq \alpha) \, d\alpha \]
- The Choquet integral (Ch) \[\int_X f \, d\mu = \int_0^\infty \mu(f \geq \alpha) \, d\alpha \]
- The Sugeno integral (Su) \[\int_X f \, d\mu = \sup_{\alpha > 0} M \{ \alpha, \mu(f \geq \alpha) \} \]
Level sets and level measure

\[\{ x \in X; f(x) \geq \alpha \} \]

\[h_{\mu,f}(\alpha) = \mu(f \geq \alpha) := \mu(\{ x \in X; f(x) \geq \alpha \}) \]

Integrals

- The Lebesgue integral
 \[(L) \int_X f \, d\mu = \int_0^\infty \mu(f \geq \alpha) \, d\alpha \]

- The Choquet integral
 \[(Ch) \int_X f \, d\mu = \int_0^\infty \mu(f \geq \alpha) \, d\alpha \]

- The Sugeno integral
 \[(Su) \int_X f \, d\mu = \sup_{\alpha > 0} M \{ \alpha, \mu(f \geq \alpha) \} \]
Level sets and level measure

\[\{ x \in X; \ f(x) \geq \alpha \} \]

\[h_{\mu,f}(\alpha) = \mu(f \geq \alpha) := \mu(\{ x \in X; \ f(x) \geq \alpha \}) \]

Integrals

- **The Lebesgue integral** \((L) \int_X f \, d\mu = \int_0^\infty \mu(f \geq \alpha) \, d\alpha \)

- **The Choquet integral** \((Ch) \int_X f \, d\mu = \int_0^\infty \mu(f \geq \alpha) \, d\alpha \)

- **The Sugeno integral** \((Su) \int_X f \, d\mu = \sup_{\alpha > 0} M \{ \alpha, \mu(f \geq \alpha) \} \)
(Ch) \[\int_X h \, d\mu := \int_0^\infty \mu(\{x \in X : h(x) > \alpha\}) \, d\alpha \]

(Ch) \[\int x_i \, d\mu = x_m \cdot \mu\{m, p, e\} + (x_e - x_m) \cdot \mu\{p, e\} + (x_p - x_e) \cdot \mu\{p\} \]

\[= x_m \cdot (\mu\{m, p, e\} - \mu\{p, e\}) + x_e \cdot (\mu\{p, e\} - \mu\{p\}) + x_p \cdot \mu\{p\} \]
(Ch) \[
\int_X h \, d\mu := \int_0^\infty \mu \left(\{ x \in X : h(x) > \alpha \} \right) \, d\alpha
\]

(Ch) \[
\int_{\{m,p,e\}} x_i \, d\mu = x_m \cdot \mu \{m,p,e\} + (x_e - x_m) \cdot \mu \{p,e\} + (x_p - x_e) \cdot \mu \{p\}
\]

\[
= x_m \cdot \left(\mu \{m,p,e\} - \mu \{p,e\} \right) + x_e \cdot \left(\mu \{p,e\} - \mu \{p\} \right) + x_p \cdot \mu \{p\}
\]

<table>
<thead>
<tr>
<th></th>
<th>mathematics</th>
<th>physics</th>
<th>english</th>
<th>mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16</td>
<td>15</td>
<td>11</td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>{m}</th>
<th>{p}</th>
<th>{e}</th>
<th>{m, p}</th>
<th>{m, e}</th>
<th>{p, e}</th>
<th>{m, p, e}</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>(\frac{1}{3})</td>
<td>(\frac{1}{3})</td>
<td>(\frac{1}{3})</td>
<td>(\frac{2}{3})</td>
<td>(\frac{2}{3})</td>
<td>(\frac{2}{3})</td>
<td>1</td>
</tr>
</tbody>
</table>

\[
\int_{\{m,p,e\}} x_i \, d\# = \frac{1}{3} \cdot 11 + \frac{1}{3} \cdot 15 + \frac{1}{3} \cdot 16
\]
\[
\int_{\mathcal{X}} x_i \, d\mu = 0.2 \cdot 19 + 0.4 \cdot 12 + 0.4 \cdot 11
\]
<table>
<thead>
<tr>
<th></th>
<th>mathematics</th>
<th>physics</th>
<th>english</th>
<th>mean</th>
<th>µ-mean</th>
<th>ν-Choquet</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16</td>
<td>15</td>
<td>11</td>
<td>14</td>
<td>14,6</td>
<td>13,8</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>12</td>
<td>19</td>
<td>14</td>
<td>13</td>
<td>13,3</td>
</tr>
<tr>
<td>3</td>
<td>17</td>
<td>16</td>
<td>9</td>
<td>14</td>
<td>15,5</td>
<td>13,6</td>
</tr>
</tbody>
</table>

\[
\nu\{m\} = 0,4 \\
\nu\{p\} = 0,4 \\
\nu\{e\} = 0,2 \\
\nu\{m, p\} = 0,6 \\
\nu\{m, e\} = 0,9 \\
\nu\{p, e\} = 0,9 \\
\nu\{m, p, e\} = 1
\]
A new concept - three steps to super level measures

| metric space X | premeasure $\sigma : \mathcal{E} \subseteq \mathcal{E}_B \rightarrow [0, \infty)$ |

(A) **Size.** a function $s : \mathcal{B}(X) \rightarrow [0, +\infty]^{\mathcal{E}}$ satisfying

(i) if $|f| \leq |g|$, then $s(f)(a) \leq s(g)(a)$;

(ii) $s(\lambda f)(a) = |\lambda| s(f)(a)$ for each $\lambda \in \mathbb{C}$;

(iii) $s(f + g)(a) \leq C_s s(f)(a) + C_s s(g)(a)$ for some fixed $C_s \geq 1$ depending only on s.

A triple (X, σ, s) is called an outer measure space.

(B) **Outer essential supremum.** $f \in \mathcal{B}(X), b \in \mathcal{E}_B$

$$\text{outsup}_b s(f) := \sup \{s(f1_b)(a); a \in \mathcal{E}\}$$

(C) **Super level measure.** $(X, \sigma, s), f \in \mathcal{B}(X), \alpha > 0$

$$\mu(s(f) > \alpha) := \inf \left\{ \mu(b) : b \in \mathcal{E}_B, \text{outsup}_{X \setminus b} s(f) \leq \alpha \right\}$$
Is a new concept useful?

- natural L^p theory for outer measures offers a unifying language for both Carleson measure and time-frequency analysis
- gaining a streamlined view on time-frequency analysis was the original motivation for their paper
- the outcome of a long evolution process
- a point of the paper is that in many examples of their interest the bound is a Hölder inequality with respect to an outer measure

Is a new concept useful outside of functional analysis?

Hopefully …
Three steps to super level measures - Y. Do and C. Thiele, modified

(A) **Size.** a function $s : \mathcal{B}(X) \to [0, \infty]$ satisfying

(i) if $|f| \leq |g|$, then $s(f)(a) \leq s(g)(a)$;
(ii) $s(\lambda f)(a) = |\lambda| s(f)(a)$ for each $\lambda \in \mathbb{C}$;
(iii) $s(f + g)(a) \leq C_s s(f)(a) + C_s s(g)(a)$ for some fixed $C_s \geq 1$ depending only on s.

A triple (X, σ, s) is called an outer measure space.

(B) **Outer essential supremum.** $f \in \mathcal{B}(X), \ F \in \mathcal{E}_B$

$$\text{outsup}_b s(f)(E) := \sup \{ s(f 1_b)(a) : a \in E \}$$

(C) **Super level measure.** $(X, \sigma, s), \ f \in \mathcal{B}(X), \ \alpha > 0$ \quad (X, \mathcal{E}, s)

$$\mu(s(f)(E) > \alpha) := \inf \left\{ \mu(b) : b \in \mathcal{E}_B, \ \text{outsup}_{X \setminus b} s(f) \leq \alpha \right\}$$
An example

\[\text{An example} \]

\[\text{s}_{\text{int}}(f)(a) = (L) \int_a |f| \, d\mu \]

(A) **Size.** a function \(s : \mathcal{B}(X) \to [0, +\infty]^{E_B} \) satisfying

(i) if \(|f| \leq |g| \), then \(s(f)(a) \leq s(g)(a) \);

(ii) \(s(\lambda f)(a) = |\lambda| s(f)(a) \) for each \(\lambda \in \mathbb{C} \);

(iii) \(s(f + g)(a) \leq C_s s(f)(a) + C_s s(g)(a) \) for some fixed \(C_s \geq 1 \) depending only on \(s \).
(B) **Outer essential supremum.** \(f \in \mathcal{B}(X), b \in E_B, \text{ reasonable } E \)

\[
\text{outsup}_{b} s_{\text{int}}(f)\langle E \rangle := \sup\{s_{\text{int}}(f1_{b})(a) : a \in E\}
\]

\[
= \sup\{(L) \int_{a \cap b} f \, d\mu : a \in E\}
\]

\[
= (L) \int_{b} f \, d\mu = s_{\text{int}}(f)(b)
\]
An example

\[
\begin{align*}
\text{s}_{\text{int}}(f)(a) &= (L) \int_{a} |f| \, d\mu \\
\end{align*}
\]

(B) **Outer essential supremum.** \(f \in \mathcal{B}(X), \ b \in E_B, \) reasonable \(E \)

\[
\text{outsup}_{b} \text{ s}_{\text{int}}(f) \langle E \rangle := \sup \{ \text{s}_{\text{int}}(f 1_b)(a) : a \in E \} \\
= \sup \{ (L) \int_{a \cap b} f \, d\mu : a \in E \} \\
= (L) \int_{b} f \, d\mu = \text{s}_{\text{int}}(f)(b)
\]
An example

\[s_{\text{int}}(f)(a) = (L) \int_a |f| \, d\mu \]

(B) **Outer essential supremum.** \(f \in \mathcal{B}(X), \ b \in \mathbf{E}_B, \) reasonable \(\mathbf{E} \)

\[
\text{outsup}_b s_{\text{int}}(f)(\mathbf{E}) := \sup \{ s_{\text{int}}(f1_a)(a) : a \in \mathbf{E} \}
\]

\[
= \sup \{ (L) \int_{a \cap b} f \, d\mu : a \in \mathbf{E} \}
\]

\[
= (L) \int_b f \, d\mu = s_{\text{int}}(f)(b)
\]
An example

\[s_{\text{int}}(f)(a) = (L) \int_a^b |f| \, d\mu \]

(B) **Outer essential supremum.** \(f \in \mathcal{B}(X), b \in E_B, \) reasonable \(E \)

\[
\text{outsup}_{b} s_{\text{int}}(f)\langle E \rangle := \sup \{ s_{\text{int}}(f1_b)(a) : a \in E \}
\]

\[
= \sup \{ (L) \int_{a \cap b} f \, d\mu : a \in E \}
\]

\[
= (L) \int_b^b f \, d\mu = s_{\text{int}}(f)(b)
\]
An example

\[
\text{s_{int}}(f)(a) = (L) \int_{a} |f| \, d\mu
\]

(B) **Outer essential supremum.** \(f \in \mathcal{B}(X), \ b \in E_B, \ \text{reasonable} \ E \)

\[
\text{outsup}_{b} \text{s_{int}}(f)\langle E \rangle := \sup \{ \text{s_{int}}(f1_{b})(a) : a \in E \}
\]

\[
= \sup \{ (L) \int_{a \cap b} f \, d\mu : a \in E \}
\]

\[
= (L) \int_{b} f \, d\mu = \text{s_{int}}(f)(b)
\]
An example

\[s_{\text{int}}(f)(a) = (L) \int_a |f| \, d\mu \]

(C) Super level measure. \((X, E, s), f \in \mathcal{B}(X), \alpha > 0\)

\[\mu(s_{\text{int}}(f)(E) > \alpha) := \inf \left\{ \mu(b) : b \in E_B, \ \overset{\text{outsup}_{X \setminus b}}{\text{sup}} s_{\text{int}}(f) \leq \alpha \right\} \]

\[= \inf \left\{ \mu(b) : b \in E_B, \ (L) \int_{X \setminus b} f \, d\mu \leq \alpha \right\} \]
An example

\[
s_{\text{int}}(f)(a) = (L) \int_a |f| \, d\mu
\]

(C) Super level measure. \((X, E, s), f \in \mathcal{B}(X), \alpha > 0 \)

\[
\mu(s_{\text{int}}(f)(E) > \alpha) := \inf \left\{ \mu(b) : b \in E_B, \out\sup_{X \setminus b} s_{\text{int}}(f) \leq \alpha \right\}
\]

\[
= \inf \left\{ \mu(b) : b \in E_B, (L) \int_{X \setminus b} f \, d\mu \leq \alpha \right\}
\]
An example

\[\text{s}_{\text{int}}(f)(a) = (L) \int_{a}^{\infty} |f| \, d\mu \]

(C) Super level measure. \((X, E, s), f \in \mathcal{B}(X), \alpha > 0 \)

\[\mu(\text{s}_{\text{int}}(f) \langle E \rangle > \alpha) := \inf \left\{ \mu(b) : b \in E_B, \text{outsup}_{X \setminus b} \text{s}_{\text{int}}(f) \leq \alpha \right\} \]

\[= \inf \left\{ \mu(b) : b \in E_B, (L) \int_{X \setminus b} f \, d\mu \leq \alpha \right\} \]
Is the new concept a generalization of the original one?

\[s_\infty(f)(a) = \sup |f|[a] \]

(A) Size. a function \(s : \mathcal{B}(X) \to [0, +\infty]^E_B \) satisfying

(i) if \(|f| \leq |g|\), then \(s(f)(a) \leq s(g)(a) \);

(ii) \(s(\lambda f)(a) = |\lambda| s(f)(a) \) for each \(\lambda \in \mathbb{C} \);

(iii) \(s(f + g)(a) \leq C_s s(f)(a) + C_s s(g)(a) \) for some fixed \(C_s \geq 1 \) depending only on \(s \).
Is the new concept a generalization of the original one?

\[s_\infty(f)(a) = \sup |f|[a] \]

(B) **Outer essential supremum.** \(f \in \mathcal{B}(X) \), \(b \in \mathcal{E}_B \), reasonable \(\mathcal{E} \)

\[
\text{outsup}_{b} s_\infty(f)(E) := \sup \{ s_\infty(f1_b)(a) : a \in \mathcal{E} \}
\]

\[= \sup \{ \sup |f|[a \cap b] : a \in \mathcal{E} \} \]

\[= \sup |f|[b] = s_\infty(f)(b) \]
Is the new concept a generalization of the original one?

\[s_\infty(f)(a) = \sup |f|[a] \]

(B) Outer essential supremum. \(f \in \mathcal{B}(X), \ b \in E_B, \) reasonable \(E \)

\[
\text{outsup}_{b} s_\infty(f)(E) := \sup \{ s_\infty(f1_b)(a) : a \in E \} \\
= \sup \{ \sup |f|[a \cap b] : a \in E \} \\
= \sup |f|[b] = s_\infty(f)(b)
\]
Is the new concept a generalization of the original one?

\[s_\infty(f)(a) = \sup |f|_a \]

(B) **Outer essential supremum.** \(f \in \mathcal{B}(X), \; b \in E_B \), reasonable \(E \)

\[
\text{outsup}_{b} s_\infty(f) \langle E \rangle := \sup \{ s_\infty(f \mathbf{1}_b)(a) : \; a \in E \} \\
= \sup \{ \sup |f|[a \cap b] : \; a \in E \} \\
= \sup |f|[b] = s_\infty(f)(b)
\]
Is the new concept a generalization of the original one?

\[s_\infty(f)(a) = \sup |f|[a] \]

\(\text{(C) Super level measure.} \quad (X, E, s), f \in \mathcal{B}(X), \alpha > 0 \)

\[
\mu(s_{\text{int}}(f)(E) > \alpha) := \inf \left\{ \mu(b) : b \in E_B, \ \text{outrsup} \ s_\infty(f) \leq \alpha \right\}
\]

\[
= \inf \{ \mu(b) : b \in E_B, \ \sup |f|[b] \leq \alpha \} \]
Is the new concept a generalization of the original one?

\[s_\infty(f)(a) = \sup |f|[a] \]

(C) Super level measure. \((X, E, s), f \in \mathcal{B}(X), \alpha > 0 \)

\[\mu(\text{sint}(f)(E) > \alpha) := \inf \left\{ \mu(b) : b \in E_B, \sup_{X \setminus b} \text{outsup} s_\infty(f) \leq \alpha \right\} \]

\[= \inf \{ \mu(b) : b \in E_B, \sup |f|[b] \leq \alpha \} \]
Is the new concept a generalization of the original one?

For each $\alpha > 0$ we may write

$$h_{\mu,f}(\alpha) = \mu(\{x \in X; |f(x)| > \alpha\}) = \inf \left\{ \mu(b) : b \in \mathbf{E}_B, \left(\forall x \in X \setminus b\right) |f(x)| \leq \alpha \right\}.$$

X

$\{x \in X; f(x) > \alpha\}$

$\{x \in X; f(x) \leq \alpha\}$
Is the new concept a generalization of the original one?

For each $\alpha > 0$ we may write

$$h_{\mu,f}(\alpha) = \mu\left(\{x \in X; |f(x)| > \alpha\}\right) = \inf \left\{ \mu(b): b \in E_B, \sup_{x \in X \setminus b} |f(x)| \leq \alpha \right\}.$$
How far is the new concept from the old one?

$$s_{sum}(f)(a) = \sum_{i \in a} |f(i)|$$

$$\mu(s_{sum}(f)(E) > \alpha) = \inf \left\{ \mu(b) : \sum_{i \in X \setminus a} |f(i)| \leq \alpha \right\}$$

$$\mu(s(f)(E) > \alpha) = m(\{x \in X; |G_f(x)| > \beta \alpha\})?$$

$$X = \{a, b, c\}$$

We assume that μ is strictly increasing with respect to the following order \prec on E_{power}:

$$\emptyset \prec \{a\} \prec \{b\} \prec \{c\} \prec \{a, b\} \prec \{a, c\} \prec \{b, c\} \prec X.$$

We define a function f on X as $f(a) = 2$, $f(b) = 3$, $f(c) = 4$.

$$X = \{a, b, c\}$$
How far is the new concept from the old one?

\[\text{s}_{\text{sum}}(f)(a) = \sum_{i \in a} |f(i)| \]

\[\mu(\text{s}_{\text{sum}}(f) \langle E \rangle > \alpha) = \inf \left\{ \mu(b) : \sum_{i \in X \setminus a} |f(i)| \leq \alpha \right\} \]

?\[\mu(s(f) \langle E \rangle > \alpha) = m(\{x \in X; |G_f(x)| > \beta_\alpha\})? \]

\[X = \{a, b, c\} \]

We assume that \(\mu \) is strictly increasing with respect to the following order \(\prec \) on \(E_{\text{power}} \):

\[\emptyset \prec \{a\} \prec \{b\} \prec \{c\} \prec \{a, b\} \prec \{a, c\} \prec \{b, c\} \prec X. \]

We define a function \(f \) on \(X \) as \(f(a) = 2, f(b) = 3, f(c) = 4. \)
How far is the new concept from the old one?

\[s_{\text{sum}}(f)(a) = \sum_{i \in a} |f(i)| \]

\[\mu(s_{\text{sum}}(f)(E) > \alpha) = \inf \left\{ \mu(b) : \sum_{i \in X \setminus a} |f(i)| \leq \alpha \right\} \]

\[?\mu(s(f)(E) > \alpha) = m(\{x \in X; |G_f(x)| > \beta \alpha\})? \]

\(X = \{a, b, c\} \)

We assume that \(\mu \) is strictly increasing with respect to the following order \(\prec \) on \(E_{\text{power}} \):

\(\emptyset \prec \{a\} \prec \{b\} \prec \{c\} \prec \{a, b\} \prec \{a, c\} \prec \{b, c\} \prec X. \)

We define a function \(f \) on \(X \) as \(f(a) = 2, f(b) = 3, f(c) = 4. \)
How far is the new concept from the old one?

\[s_{\text{sum}}(f)(a) = \sum_{i \in a} |f(i)| \]

\[\mu(s_{\text{sum}}(f) \langle E \rangle > \alpha) = \inf \left\{ \mu(b) : \sum_{i \in X \setminus a} |f(i)| \leq \alpha \right\} \]

\[?\mu(s(f) \langle E \rangle > \alpha) = m(\{x \in X ; |G_f(x)| > \beta \alpha\})? \]

\[X = \{a, b, c\} \]

We assume that \(\mu \) is strictly increasing with respect to the following order \(\prec \) on \(E_{\text{power}} \):

\[\emptyset \prec \{a\} \prec \{b\} \prec \{c\} \prec \{a, b\} \prec \{a, c\} \prec \{b, c\} \prec X. \]

We define a function \(f \) on \(X \) as \(f(a) = 2, f(b) = 3, f(c) = 4. \)
How far is the new concept from the old one?

\[
\text{s}_{\text{sum}}(f)(a) = \sum_{i \in a} |f(i)|
\]

\[
\mu(\text{s}_{\text{sum}}(f)(E) > \alpha) = \inf \left\{ \mu(b) : \sum_{i \in X \setminus a} |f(i)| \leq \alpha \right\}
\]

\[
?\mu(\text{s}(f)(E) > \alpha) = m(\{x \in X; |G_f(x)| > \beta \alpha\})?
\]

\[
X = \{a, b, c\}
\]

We assume that \(\mu\) is strictly increasing with respect to the following order \(\prec\) on \(E_{\text{power}}\): \[
\emptyset \prec \{a\} \prec \{b\} \prec \{c\} \prec \{a, b\} \prec \{a, c\} \prec \{b, c\} \prec X.
\]

We define a function \(f\) on \(X\) as \(f(a) = 2, f(b) = 3, f(c) = 4.\)
How far is the new concept from the old one?

Topological space X, Borel subsets E_B, monotone measure $\mu : E_B \to [0, +\infty]$

- A new underlying set E_B.
- A new induced monotone measure $m_\mu : 2^{E_B} \to [0, +\infty]$

$$m_\mu(F) := \inf\{\mu(a) : a \in E_B \setminus F\}.$$

- A new induced function $t_f : E_B \to [0, +\infty]$

$$t_f(a) := \overset{\text{outsup}}{X \setminus a} s(f)(E).$$

Proposition

Let (X, E, s) be a sub-Borel size space. Then for every $f \in \mathcal{B}(X)$ we have

$$\mu(s(f)(E) > \alpha) = m_\mu(\{a \in E_B : t_f(a) > \alpha\}).$$

Proof. Just different notation:

$$\mu(s(f)(E) > \alpha) = \inf \left\{ \mu(a) : a \in E_B, \overset{\text{outsup}}{X \setminus a} s(f)(E) \leq \alpha \right\} =$$

$$= \inf \{\mu(a) : a \in E_B, t_f(a) \leq \alpha\} = m_\mu(\{a \in E_B : t_f(a) > \alpha\}).$$
How far is the new concept from the old one?

Topological space X, Borel subsets E_B, monotone measure $\mu : E_B \to [0, +\infty]$

▶ A new underlying set E_B.
▶ A new induced monotone measure $m_\mu : 2^{E_B} \to [0, +\infty]$

$$m_\mu(F) := \inf \{ \mu(a) : a \in E_B \setminus F \}.$$

▶ A new induced function $t_f : E_B \to [0, +\infty]$

$$t_f(a) := \operatorname{outsup} s(f)(E).$$

Proposition

Let (X, E, s) be a sub-Borel size space. Then for every $f \in B(X)$ we have

$$\mu(s(f)(E) > \alpha) = m_\mu(\{ a \in E_B : t_f(a) > \alpha \}).$$

Proof. Just different notation:

$$\mu(s(f)(E) > \alpha) = \inf \left\{ \mu(a) : a \in E_B, \ \operatorname{outsup} s(f)(E) \leq \alpha \right\} =$$

$$= \inf \left\{ \mu(a) : a \in E_B, \ t_f(a) \leq \alpha \right\} = m_\mu(\{ a \in E_B : t_f(a) > \alpha \}).$$
How far is the new concept from the old one?

Topological space X, Borel subsets E_B, monotone measure $\mu : E_B \to [0, +\infty]$

- A new underlying set E_B.
- A new induced monotone measure $m_\mu : 2^{E_B} \to [0, +\infty]$
 \[m_\mu(F) := \inf \{ \mu(a) : a \in E_B \setminus F \}. \]

- A new induced function $t_f : E_B \to [0, +\infty]$
 \[t_f(a) := \text{outsup}_{X \setminus a} s(f)(E). \]

Proposition

Let (X, E, s) be a sub-Borel size space. Then for every $f \in B(X)$ we have
\[\mu(s(f)(E) > \alpha) = m_\mu(\{ a \in E_B : t_f(a) > \alpha \}). \]

Proof. Just different notation:

\[\mu(s(f)(E) > \alpha) = \inf \left\{ \mu(a) : a \in E_B, \text{outsup}_{X \setminus a} s(f)(E) \leq \alpha \right\} = \]

\[= \inf \{ \mu(a) : a \in E_B, t_f(a) \leq \alpha \} = m_\mu(\{ a \in E_B : t_f(a) > \alpha \}). \]

□
How far is the new concept from the old one?

Topological space X, Borel subsets E_B, monotone measure $\mu : E_B \to [0, +\infty]$

- A new underlying set E_B.
- A new induced monotone measure $m_\mu : 2^{E_B} \to [0, +\infty]$

$$m_\mu(F) := \inf\{\mu(a) : a \in E_B \setminus F\}.$$

- A new induced function $t_f : E_B \to [0, +\infty]$

$$t_f(a) := \text{outsup}_{X \setminus a} s(f)(E).$$

Proposition

Let (X, E, s) be a sub-Borel size space. Then for every $f \in B(X)$ we have

$$\mu(s(f)(E) > \alpha) = m_\mu(\{a \in E_B : t_f(a) > \alpha\}).$$

Proof. Just different notation:

$$\mu(s(f)(E) > \alpha) = \inf\left\{ \mu(a) : a \in E_B, \text{outsup}_{X \setminus a} s(f)(E) \leq \alpha \right\} =$$

$$= \inf\{\mu(a) : a \in E_B, t_f(a) \leq \alpha\} = m_\mu(\{a \in E_B : t_f(a) > \alpha\}).$$
How far is the new concept from the old one?

Topological space \(X \), Borel subsets \(\mathcal{E}_B \), monotone measure \(\mu : \mathcal{E}_B \to [0, +\infty] \)

- A new underlying set \(\mathcal{E}_B \).
- A new induced monotone measure \(m_\mu : 2^{\mathcal{E}_B} \to [0, +\infty] \)

\[
m_\mu(F) := \inf \{ \mu(a) : a \in \mathcal{E}_B \setminus F \}.
\]

- A new induced function \(t_f : \mathcal{E}_B \to [0, +\infty] \)

\[
t_f(a) := \mathop{\operatorname{outsup}}_{X \setminus a} s(f)(\langle \mathcal{E} \rangle).
\]

Proposition

Let \((X, \mathcal{E}, s)\) be a sub-Borel size space. Then for every \(f \in \mathcal{B}(X) \) we have

\[
\mu(s(f)(\langle \mathcal{E} \rangle) > \alpha) = m_\mu(\{a \in \mathcal{E}_B : t_f(a) > \alpha\}).
\]

Proof. Just different notation:

\[
\begin{align*}
\mu(s(f)(\langle \mathcal{E} \rangle) > \alpha) &= \inf \left\{ \mu(a) : a \in \mathcal{E}_B, \mathop{\operatorname{outsup}}_{X \setminus a} s(f)(\langle \mathcal{E} \rangle) \leq \alpha \right\} = \\
&= \inf \{ \mu(a) : a \in \mathcal{E}_B, t_f(a) \leq \alpha \} = m_\mu(\{a \in \mathcal{E}_B : t_f(a) > \alpha\}).
\end{align*}
\]
How far is the new concept from the old one?

Topological space X, Borel subsets E_B, monotone measure $\mu : E_B \to [0, +\infty]$

- A new underlying set E_B.
- A new induced monotone measure $m_\mu : 2^{E_B} \to [0, +\infty]$

 $$m_\mu(F) := \inf\{\mu(a) : a \in E_B \setminus F\}.$$

- A new induced function $t_f : E_B \to [0, +\infty]$

 $$t_f(a) := \operatorname{outsup}_{X \setminus a} s(f)(E).$$

Proposition

Let (X, E, s) be a sub-Borel size space. Then for every $f \in B(X)$ we have

$$\mu(s(f)\langle E \rangle > \alpha) = m_\mu(\{a \in E_B : t_f(a) > \alpha\}).$$

Proof. Just different notation:

$$\mu(s(f)\langle E \rangle > \alpha) = \inf \left\{ \mu(a) : a \in E_B, \ \operatorname{outsup}_{X \setminus a} s(f)\langle E \rangle \leq \alpha \right\} =$$

$$= \inf \{\mu(a) : a \in E_B, \ t_f(a) \leq \alpha\} = m_\mu(\{a \in E_B : t_f(a) > \alpha\}).$$
How far is the new concept from the old one?

Topological space \(X \), Borel subsets \(\mathbb{E}_B \), monotone measure \(\mu : \mathbb{E}_B \to [0, +\infty] \)

- A new underlying set \(\mathbb{E}_B \).
- A new induced monotone measure \(m_\mu : 2^{\mathbb{E}_B} \to [0, +\infty] \)

\[
m_\mu(F) := \inf\{\mu(a) : a \in \mathbb{E}_B \setminus F\}.
\]

- A new induced function \(t_f : \mathbb{E}_B \to [0, +\infty] \)

\[
t_f(a) := \operatorname{outsup}_{X \setminus a} s(f)(\mathbb{E}).
\]

Proposition

Let \((X, \mathbb{E}, s) \) be a sub-Borel size space. Then for every \(f \in \mathcal{B}(X) \) we have

\[
\mu(s(f)(\mathbb{E}) > \alpha) = m_\mu(\{a \in \mathbb{E}_B : t_f(a) > \alpha\}).
\]

Proof. Just different notation:

\[
\mu(s(f)(\mathbb{E}) > \alpha) = \inf \left\{ \mu(a) : a \in \mathbb{E}_B, \ \operatorname{outsup}_{X \setminus a} s(f)(\mathbb{E}) \leq \alpha \right\} = \inf \{\mu(a) : a \in \mathbb{E}_B, t_f(a) \leq \alpha\} = m_\mu(\{a \in \mathbb{E}_B : t_f(a) > \alpha\}).
\]
How far is the new concept from the old one?

Topological space X, Borel subsets E_B, monotone measure $\mu : E_B \to [0, +\infty]$

- A new underlying set E_B.
- A new induced monotone measure $m_\mu : 2^{E_B} \to [0, +\infty]$

\[m_\mu(F) := \inf\{\mu(a) : a \in E_B \setminus F\}. \]

- A new induced function $t_f : E_B \to [0, +\infty]$

\[t_f(a) := \text{outsup}_{X \setminus a} s(f)(E). \]

Proposition

Let (X, E, s) be a sub-Borel size space. Then for every $f \in \mathcal{B}(X)$ we have

\[\mu(s(f)(E) > \alpha) = m_\mu(\{a \in E_B : t_f(a) > \alpha\}). \]

Proof. Just different notation:

\[
\begin{align*}
\mu(s(f)(E) > \alpha) &= \inf \left\{ \mu(a) : a \in E_B, \text{outsup}_{X \setminus a} s(f)(E) \leq \alpha \right\} = \\
&= \inf \{\mu(a) : a \in E_B, t_f(a) \leq \alpha\} = m_\mu(\{a \in E_B : t_f(a) > \alpha\}).
\end{align*}
\]
How far is the new concept from the old one?

Topological space X, Borel subsets E_B, monotone measure $\mu : E_B \to [0, +\infty]$

- A new underlying set E_B.
- A new induced monotone measure $m_\mu : 2^{E_B} \to [0, +\infty]$

$$m_\mu(F') := \inf\{\mu(a) : a \in E_B \setminus F\}.$$

- A new induced function $t_f : E_B \to [0, +\infty]$

$$t_f(a) := \text{outsupt}_{x \setminus a} s(f)(E).$$

Proposition

Let (X, E, s) be a sub-Borel size space. Then for every $f \in \mathcal{B}(X)$ we have

$$\mu(s(f)(E) > \alpha) = m_\mu(\{a \in E_B : t_f(a) > \alpha\}).$$

Proof. Just different notation:

$$\mu(s(f)(E) > \alpha) = \inf \left\{ \mu(a) : a \in E_B, \ \text{outsupt}_{x \setminus a} s(f)(E) \leq \alpha \right\} =$$

$$= \inf \{\mu(a) : a \in E_B, \ t_f(a) \leq \alpha\} = m_\mu(\{a \in E_B : t_f(a) > \alpha\}).$$
How far is the new concept from the old one?

Topological space X, Borel subsets E_B, monotone measure $\mu : E_B \rightarrow [0, +\infty]$

- A new underlying set E_B.
- A new induced monotone measure $m_\mu : 2^{E_B} \rightarrow [0, +\infty]$

$$m_\mu(F) := \inf\{\mu(a) : a \in E_B \setminus F\}.$$

- A new induced function $t_f : E_B \rightarrow [0, +\infty]$

$$t_f(a) := \operatorname{outsup}_{X \setminus a} s(f)(E).$$

Proposition

Let (X, E, s) be a sub-Borel size space. Then for every $f \in B(X)$ we have

$$\mu(s(f)(E) > \alpha) = m_\mu(\{a \in E_B : t_f(a) > \alpha\}).$$

Proof. Just different notation:

$$\mu(s(f)(E) > \alpha) = \inf \left\{\mu(a) : a \in E_B, \ \operatorname{outsup}_{X \setminus a} s(f)(E) \leq \alpha\right\} =$$

$$= \inf \{\mu(a) : a \in E_B, \ t_f(a) \leq \alpha\} = m_\mu(\{a \in E_B : t_f(a) > \alpha\}).$$
How good is the induced measure?

\[m_\mu(F) := \inf \{ \mu(a) : a \in E_B \setminus F \}. \]

Proposition

Let \(X \) be a topological space and \(\mu \) be a monotone measure on \(E_B \).

(a) \(m_\mu \) is superadditive.

(b) \(m_\mu(\bigcap A) = \inf \{ m_\mu(A) : A \in \mathcal{A} \} \) for any \(\mathcal{A} \subseteq 2^{E_B} \).

(c) \(m_\mu \) is upper semicontinuous.
How good is the induced measure?

\[m_\mu(F) := \inf\{\mu(a) : a \in E_B \setminus F\}. \]

Lemma

Let \(X \) be a topological space and \(\mu \) be a monotone measure on \(E_B \).

(a) If \(\mu(a) = 0 \) and \(a \not\in F \) then \(m_\mu(F) = 0 \).

(b) If \(\emptyset \not\in F \) then \(m_\mu(F) = 0 \).

(c) If \(a \neq \emptyset \) then \(m_\mu(\{a\}) = 0 \).

(d) If \(|N_\mu| > 1 \) then \(m_\mu(\emptyset) = 0 \).

(e) \(m_\mu(F) = 0 \) if and only if for any \(\varepsilon > 0 \) there is \(a \not\in F \) such that \(\mu(a) < \varepsilon \).

(f) \(m_\mu(E_B) = \mu(X) \).

(g) \(\mu(a) = m_\mu(E_B \setminus \{a\}) \).

(h) \(m_\mu(F) = \inf\{m_\mu(E_B \setminus \{a\}) : F \subseteq E_B \setminus \{a\}\} \).
What are properties of the induced function?

\[t_f(a) := \operatorname{outsup}_{X \setminus a} s(f)(E). \]

Proposition

Let \((X, \mathcal{E}, s)\) be a sub-Borel size space, then for every \(f \in \mathcal{B}(X)\) we have

(a) \(t_f(\emptyset) = \sup_{E \in \mathcal{E}} s(f)(E) \) and \(t_f(X) = 0\).

(b) \(t_f\) is anti-monotone, i.e., \(t_f(a_2) \leq t_f(a_1)\) whenever \(a_1 \subseteq a_2\).

(c) If \(a_1, a_2 \in \mathcal{E}_B\) then \(t_f(a_1 \cap a_2) \leq C_s(t_f(a_1) + t_f(a_2))\).
What is next?

Question
What are properties of the smallest \(\sigma \)-algebra on \(E_B \) such that all \(t_f \) are measurable?

Question
Which topologies on \(E_B \) do make \(t_f \) Borel on \(E_B \)?

Question
Are there other transformation methods?
Question
What are properties of the smallest σ-algebra on E_B such that all t_f are measurable?

Question
Which topologies on E_B do make t_f Borel on E_B?

Question
Are there other transformation methods?
What is next?

Question
What are properties of the smallest σ-algebra on E_B such that all t_f are measurable?

Question
Which topologies on E_B do make t_f Borel on E_B?

Question
Are there other transformation methods?
Thanks for Your attention!