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Reported new results in my talk are based on two joint works
1) Arkady Leiderman, Sidney Morris, Mikhail Tkachenko,
”The Separable Quotient Problem for Topological Groups”
(to appear in Israel J. Math.),
2) Arkady Leiderman, Mikhail Tkachenko,
”Quotients of Free Topological Groups”.

For any notions which are not explicitly defined in the talk I advise
to consult the monograph of A. Arhangel’skii and M. Tkachenko,
”Topological Groups and Related Structures”, Chapter 7,
and our recent survey paper (Open Access)
3) Arkady Leiderman and Sidney Morris,
”Separability of topological groups: a survey with open
problems”, Axioms, 2019, doi:10.3390/axioms8010003.
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1. Quotient mappings

All topological spaces and topological groups are assumed to be
Hausdorff and all topological spaces are assumed to be infinite.

Assume ϕ : X → Y is a mapping between two topological spaces
X and Y such that
1) ϕ is surjective, 2) ϕ is continuous, and
3) for U ⊆ Y , ϕ−1(U) is open in X implies that U is open in Y .
In this case the mapping ϕ is called a quotient mapping, and we
say that Y is a quotient of X .

3 / 39



For instance, if F is a closed subspace of a regular topological
space X then a mapping which is the identity on X \ F and
collapses F to a point is a quotient mapping from X onto a
Hausdorff space X/F .

Every closed mapping and every open mapping between
topological spaces is a quotient mapping.

If ϕ : G → H is a quotient continuous homomorphism from a
topological group G onto a topological group H, then ϕ is an
open mapping.
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The majority of topological properties are not preserved by
quotient mappings. For instance,

A quotient space of a metric space need not be a Hausdorff
space;

A quotient space of a separable metric space need not have a
countable base.
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2. The Separable Quotient Problem for Banach Spaces

Let us begin with a famous unsolved problem in Banach space
theory. The Separable Quotient Problem for Banach Spaces has its
roots in the 1930s and is due to Stefan Banach and Stanis law
Mazur.

Problem 2.1

Does every infinite-dimensional Banach space have a quotient
Banach space which is separable and infinite-dimensional?
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In the literature many special cases of the Separable Quotient
Problem for Banach Spaces have been proved, for instance:

Some partial positive results

Every infinite-dimensional reflexive Banach space has a
separable infinite-dimensional quotient Banach space
(A. Pe lczyński, 1964).

Every Banach space C (K ), where K is a compact space, has
a separable infinite-dimensional quotient Banach space (H.
Rosenthal, 1969; E. Lacey, 1972).

Every Banach dual of any infinite-dimensional Banach space,
E ∗, has a separable infinite-dimensional quotient Banach
space (S. Argyros, P. Dodos, V. Kanellopoulos, 2008).

However the general Problem 2.1. for Banach spaces remains
unsolved.
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Turning to locally convex spaces one can state the analogous
problems.

Problem 2.2. (Separable Quotient Problem for Locally Convex
Spaces)

Does every infinite-dimensional locally convex space have a
quotient locally convex space which is separable and
infinite-dimensional?

Problem 2.3. (Separable Metrizable Quotient Problem for Locally
Convex Spaces)

Does every infinite-dimensional locally convex space have a
quotient locally convex space which is separable and metrizable
and infinite-dimensional?

8 / 39



Every infinite-dimensional Fréchet space which is
non-normable has the separable metrizable topological vector
space Rω as a quotient space (M. Eidelheit, 1936).
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Efimov spaces and Cp(X )

Note that there are many other partial positive solutions in the
literature to Problems 2.2, 2.3. In particular, recently positive
partial results were obtain for Cp(X ) spaces (J. Ka̧kol, S. Saxon,
T. Banakh, W. Sliwa). Cp(X ) denotes the space C (X ) endowed
with the topology of pointwise convergence.

Theorem 2.4. (Jerzy Ka̧kol, Wieslaw Sliwa, 2018)

Assume there is an infinite compact K such that Cp(K ) does not
have a quotient LCS which is infinite-dimensional and separable.
Then K is an Efimov space, i.e. K contains neither a non-trivial
convergent sequence, nor a copy of βN.

It is not known whether Efimov compact space exists in ZFC.
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Theorem 2.5. (Taras Banakh, Jerzy Ka̧kol, Wieslaw Sliwa, 2018)

Under � there exists an Efimov compact space K such that Cp(K )
does have a quotient LCS which is infinite-dimensional, metrizable
(and separable).
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However J. Ka̧kol, S. Saxon and A. Todd (2014) answered
Problem 2.2 for locally convex spaces in the negative.
Recall that a barrel in a topological vector space is a convex,
balanced, absorbing and closed set. A Hausdorff topological vector
space E is called barrelled if every barrel in E is a neighborhood of
the zero element.

Theorem 2.6.

There exists an infinite-dimensional barrelled locally convex space
without any quotient space which is an infinite-dimensional
separable locally convex space.
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3. A formulation of the Separable Quotient Problem
(SQP) for Topological Groups

An abstract group is called simple if it has no proper non-trivial
normal subgroups.
A topological group G is said to be topologically simple if it has no
proper non-trivial closed normal subgroups.

Every topologically simple group is either totally disconnected or
connected.
In every topological space the empty set and the one-point sets are
connected; in a totally disconnected space these are the only
connected subsets.
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Problem 3.1. Infinite SQP for Topological Groups.

Does every non-totally disconnected topological group have a
quotient group which is an infinite separable topological group?

Problem 3.2. Infinite Metrizable SQP for Topological Groups.

Does every non-totally disconnected topological group have a
quotient group which is an infinite metrizable separable topological
group?
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Answers

Our answers for Problems 3.1, 3.2.
For topological groups which are closely related to compact
groups: Yes.
In a more general setting: No.

One might also reasonably ask: If the topological group G has a
quotient group which is infinite and separable, does G necessarily
have a quotient group which is infinite, separable and metrizable?
Our answer: No.
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Theorem 3.3.

Every infinite σ-compact locally compact group has a quotient
group which is an infinite separable metrizable group.

Corollary 3.4.

Every infinite compact group has a quotient group which is an
infinite separable metrizable group.
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Problem 3.5. Separable Quotient Problem for Locally Compact
Groups.

Does every non-totally disconnected locally compact group have a
separable quotient group which is
(i) non-trivial (not just the identity element);
(ii) infinite;
(iii) metrizable;
(iv) infinite metrizable?

Answer for Problem 3.5.
If in addition G is abelian then: Yes for all items;
In general: Unknown.
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4. σ-compact groups, Lindelöf Σ-groups and
pseudocompact groups

Recall that the class of Lindelöf Σ-groups contains all σ-compact
and all separable metrizable topological groups, and is closed with
respect to countable products, closed subgroups and continuous
homomorphic images.

Theorem 4.1.

Let G be an infinite Lindelöf Σ-group. Then G has an infinite
quotient group with a countable network (hence the quotient
group is hereditarily separable).

Corollary 4.2.

Let G be an infinite σ-compact topological group. Then G has an
infinite quotient group with a countable network.
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However, we find an example of a countable (therefore σ-compact
group) precompact abelian group H such that every quotient
group of H is either trivial or non-metrizable.

Example 4.3.

For a given prime number p, denote by Cp the quasicyclic p-group

{z ∈ T : zp
n

= 1 for some n ∈ N}

considered as a subgroup of the group T. Clearly Cp is a countable
infinite abelian group. Let τ be the Bohr topology of Cp, i.e. the
maximal precompact topological group topology of Cp. We claim
that the group H = (Cp, τ) is as required.
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A topological space X is called pseudocompact if any continuous
real-valued function defined on X is bounded. The next result
strengthens Theorem 3.4. (for infinite compact groups).

Theorem 4.3.

Every infinite pseudocompact topological group G has a quotient
group which is infinite separable compact and metrizable.
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Negative answer for precompact groups

Theorem 4.4.

There exists an uncountable zero-dimensional dense subgroup G of
the compact abelian group Tc such that every countable subgroup
of G is closed and every uncountable subgroup of G is dense in G .
Hence every quotient group of G is either trivial or non-separable.
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5. Definition of the free topological groups

Let X be a Tychonoff space. A topological group F(X ) is called
the (Markov) free topological group over X if F(X ) satisfies the
following conditions:

(i) there is a continuous embedding γ : X → F(X ) such that
γ(X ) algebraically generates F(X );

(ii) if f : X → G is a continuous mapping to a topological group
G , then there exists a continuous homomorphism
f̄ : F(X )→ G such that f = f̄ ◦ γ.
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Let X be a Tychonoff space. An abelian topological group A(X ) is
called the (Markov) free abelian topological group over X if A(X )
satisfies the following conditions:

(i) there is a continuous embedding γ : X → A(X ) such that
γ(X ) algebraically generates A(X );

(ii) if f : X → G is a continuous mapping to an abelian
topological group G , then there exists a continuous
homomorphism f̄ : A(X )→ G such that f = f̄ ◦ γ.
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The free topological groups F(X ), A(X ) always exist and are
unique up to isomorphism. In what follows we will identify X with
its homeomorphic copy γ(X ).
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Known facts

1 F(X ) and A(X ) are separable if and only if X is separable;

2 F(X ) and A(X ) are metrizable if and only if F(X ) and A(X )
are discrete if and only if X is discrete;

3 F(X ) and A(X ) are σ-compact if and only if X is σ-compact;

4 F(X ) and A(X ) are not locally compact or pseudocompact for
any infinite X ;

5 A(X ) is a natural quotient group of F(X );

6 For every X there is a quotient mapping from A(X ) onto the
group of integers Z.
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6. Free topological groups which admit second countable
quotient groups

A space X is called ω-bounded if the closure of every countable
subset of X is compact. Clearly, every compact space is
ω-bounded, while every ω-bounded space is countably compact.

Theorem 6.1.

Let X be a non-scattered Tychonoff space. If X has one of the
following properties (a) or (b), then both A(X ) and F (X ) admit
an open continuous homomorphism onto the circle group T :

(a) X is normal and countably compact;

(b) X is ω-bounded.
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Theorem 6.2.

Let X be an ω-bounded Tychonoff space. Then the following
conditions are equivalent:

(a) Every metrizable quotient group of F (X ) is discrete and
finitely generated.

(b) Every metrizable quotient group of F (X ) is finitely generated.

(c) Every metrizable quotient group of F (X ) is countable.

(d) X is scattered.
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Corollary 6.3.

Let X be either the compact space of ordinals [0, α] with the order
topology or the one-point compactification of an arbitrary discrete
space. Then every metrizable quotient group of F (X ) or A(X ) is
discrete and finitely generated.

It turns out that the free topological groups on
non-pseudocompact zero-dimensional spaces do have non-trivial
metrizable quotient groups:

Theorem 6.4.

Let X be a non-pseudocompact zero-dimensional space. Then the
groups F (X ) and A(X ) admit an open continuous homomorphism
onto the (countably infinite separable metrizable) discrete group
A(Z).
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7. Free topological groups which admit quotient groups
with a countable network

Theorem 7.1.

Let X be a locally compact or pseudocompact space. Then the
groups A(X ) and F (X ) admit an open continuous homomorphism
onto A(S), where S is an infinite compact subspace of the closed
unit interval [0, 1], hence A(S) has a countable network.

Theorem 7.2.

Let X be a Lindelöf Σ-space (in particular, σ-compact space).
Then the groups A(X ) and F (X ) admit an open continuous
homomorphism onto A(Y ), where infinite Y has a countable
network, hence A(Y ) also has a countable network.
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8. Free topological groups with countable quotient groups

Theorem 8.1.

Let X be a Tychonoff space satisfying the following conditions:

(1) the closure of every countable subset of X is countable and
compact;

(2) every countable compact subset of X is a retract of X .

Then every separable quotient group of F (X ) is countable.

Corollary 8.2.

Let X be either the space of ordinals [0, α) with the order topology
or the one-point compactification of an arbitrary discrete space.
Then every separable quotient group of F (X ) or A(X ) is countable.
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9. Open problems

Problem 9.1.

Does there exist an open continuous homomorphism of A(X ) onto
A(S), where X is an arbitrary Tychonoff space and S is an infinite
subspace of the closed unit interval [0, 1]?

An even more particular question is open.

Problem 9.2.

Does there exist an open continuous homomorphism of A(X ) onto
A(Y ), where X is an arbitrary Lindelöf space and Y is an infinite
space which has a countable network?
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10. Sketch of some proofs

R-quotient mappings

A continuous onto mapping ϕ : X → Y is said to be R-quotient if
for every real-valued function f on Y , the composition f ◦ ϕ is
continuous iff f is continuous. Clearly, every quotient mapping is
R-quotient, but the converse is false.

R-quotient topology

Let ϕ : X → Y be a continuous onto mapping, where the space Y
is Tychonoff. Then Y admits the finest topology, say, τ such that
the mapping ϕ : X → (Y , τ) is R-quotient. The topology τ of Y is
initial with respect to the family of real-valued functions f on Y
such that the composition f ◦ ϕ is continuous. The space (Y , τ) is
also Tychonoff and τ is finer than the original topology of Y , but
the mapping ϕ : X → (Y , τ) remains continuous.
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Theoerem 10.1.

Let ϕ : X → Y be a continuous onto mapping of Tychonoff spaces
and ϕ∗ : F (X )→ F (Y ) be an extension of ϕ to a continuous
homomorphism of the free topological groups on X and Y ,
respectively. Then ϕ∗ is open iff the mapping ϕ is R-quotient. The
same conclusion remains valid for free abelian topological groups.
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Proof of Theorem 7.1 for pseudocompact spaces

Let X be an infinite pseudocompact space. Take a countably
infinite family of nonempty open sets {Un : n ∈ ω} in X such that
the closures of all Un are disjoint and for every n ∈ ω, pick a point
xn ∈ Un. For each n ∈ ω, there is a continuous function
fn : X → [0, 1

2n ] such that fn(xn) = 1
2n and fn(X \ Un) = 0. Then

the function f : X → [0, 1] defined by the rule f (x) =
∑

n∈ω fn(x),
for x ∈ X , is continuous. Evidently, S = f (X ) is infinite and
pseudocompact as a continuous image of the pseudocompact
space X . Therefore, S is a compact subset of [0, 1] and f is an
R-quotient mapping of X onto S . According to Theorem 10.1 the
mapping f extends to an open continuous homomorphism of A(X )
onto A(S).
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Proof of Theorem 7.2 for σ-compact spaces

Let X =
⋃

n∈ω Cn, where each Cn is a compact subset of X . Take
any continuous mapping f from X to the closed unit interval [0, 1]
such that the image f (X ) is infinite. Let τ be a topology on f (X )
such that the mapping f : X → (f (X ), τ) is R-quotient. Clearly, τ
is finer than the topology of f (X ) inherited from [0, 1] and the
space Y = (f (X ), τ) is Tychonoff. For every n ∈ ω, consider the
compact subspace Kn = f (Cn) of Y . Then Kn admits a continuous
one-to-one mapping to [0, 1], so Kn is a separable metrizable
space. Since Y =

⋃
n∈ω Kn, the space Y has a countable network.

Extend f to a continuous onto homomorphism h : A(X )→ A(Y ).
It follows from Theorem 10.1 that the homomorphism h is open.
Also, the group A(Y ) has a countable network.
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A classical theorem of Pelczynski and Semadeni states that for a
compact space X , the following conditions are equivalent:

(i) there is no continuous mapping of X onto the segment [0, 1];

(ii) X is scattered.

It is worth noting that the proof of the implication (i)⇒ (ii)
presented in the book of Semadeni relies heavily on the facts that
a compact Hausdorff space is normal and that a compact scattered
space X satisfies dimX = 0.
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Let us recall that a space X is feebly compact if every infinite
family of nonempty open sets in X has a cluster point. It is a
well-known fact that in the class of Tychonoff spaces, feeble
compactness and pseudocompactness coincide.

Theorem 10.2

Let X be a regular, feebly compact, non-scattered space. Then X
contains a closed subspace K which admits a continuous mapping
onto the Cantor set C.
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Sketch of the proof

Let P =
⋃

n∈ω 2n be the usual binary tree of height ω, where
2 = {0, 1}. Denote by Y a nonempty closed subset of X without
isolated points. We can define by induction on n a family
{Uf : f ∈ P} of nonempty open subsets of X satisfying the
following conditions for all f ∈ P:

(i) Uf ∩ Y 6= ∅;
(ii) the sets Uf _0 and Uf _1 are disjoint;

(iii) Uf _0 ∪ Uf _1 ⊂ Uf .

We claim that the set K =
⋂

n∈ω
⋃

f ∈2n Uf is as required.
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Identifying the Cantor set C with 2ω, one defines a mapping
p : K → C by letting p(x) = h for each x ∈

⋂
n∈ω Uh�n , where

h ∈ 2ω. Clearly (ii) implies that for every x ∈ K , there exists a
unique element h ∈ 2ω with x ∈

⋂
n∈ω Uh�n. Since X is feebly

compact, it follows from (iii) that the set
⋂

n∈ω Uh�n is nonempty
for each h ∈ 2ω. Hence p(K ) = C. We omit a straightforward
verification of the continuity of p which follows from (ii) and (iii).
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Thank you!

40 / 39


