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Additive properties

Objects: X ⊆ 2ω

Adding sets: X + Y = {x+ y : x ∈ X, y ∈ Y }

(addition coordinatewise modulo 2)

Measure on 2ω: The usual product measure

Metric on 2ω: d(x, y) = 2−n(x,y)

Definitions

N ∗ N -additive: X +N ∈ N for each N ∈ N

M∗ M-additive: X +M ∈M for each M ∈M

E∗ E-additive: X + E ∈ E for each E ∈ E

SN strongly null: X +M 6= 2ω for each M ∈M
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Inclusions

N ∗

M∗

E∗

SN

Theorem (Shelah 1995)

N ∗ =⇒ M∗

Theorem (Corollary to Pawlikowski 1995)

E∗ =⇒ SN
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Inclusions

N ∗

(T′)

M∗

E∗

⇓

SN

Nowik, Weiss 2002:

Definition (Don’t read it!)

X is (T′) if: ∃g ∈ ωω ∀f ∈ ω↑ω ∃I ∈ [ω]ω ∃〈Hn : n ∈ I〉
1 ∀n ∈ I Hn ⊆ 2[f(n),f(n+1)),

2 ∀n ∈ I |Hn| 6 g(n),

3 X ⊆ {x ∈ 2ω : ∀∞n ∈ I x�[f(n), f(n+ 1)) ∈ Hn}.

Theorem

N ∗ =⇒ (T′) =⇒ M∗

Question

E∗ ⇐⇒ (T′)???
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Onďrej Zindulka EveryM-additive set is E-additive



H-null sets

Theorem (Galvin–Mycielski–Solovay)

X is SN if, and only if:
For any sequence εn > 0 there is a cover {Un} of X such that diamUn < εn.

Consequently:

dimH X = 0

dimH f(X) = 0 for all uniformly continuous f

Definition

X is H-null
def≡ dimH f(X) = 0 for all uniformly continuous f .

Theorem

The following are equivalent:

X is SN
X is H-null

Hg(X) = 0 for each Haudorff function g
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Upper Hausdorff dimension

Definition (Upper Hausdorff dimension)

dimH X = inf{s > 0 : Hs(X) = 0} = sup{s > 0 : Hs(X) =∞}

Upper Hausdorff measure:

Hs0(X) = supδ>0 inf
{∑n

i=1(dEn)s : d(Ei) 6 δ, X ⊆ E1 ∪ · · · ∪ En︸ ︷︷ ︸
finite covers!

}

Hs(X) = inf
{∑∞

n=1H
s
0(Xi) : X ⊆ X1 ∪X2 ∪ . . .

}
(Method I)

Elementary facts:

If X is σ-compact, then dimH X = dimH X

If Y ⊇ X is complete, then

dimH X = inf{dimH K : X ⊆ K ⊆ Y, K σ-compact}

Onďrej Zindulka EveryM-additive set is E-additive



Upper Hausdorff dimension

Definition (Upper Hausdorff dimension)

dimH X = inf{s > 0 : Hs(X) = 0} = sup{s > 0 : Hs(X) =∞}

Upper Hausdorff measure:

Hs0(X) = supδ>0 inf
{∑n

i=1(dEn)s : d(Ei) 6 δ, X ⊆ E1 ∪ · · · ∪ En︸ ︷︷ ︸
finite covers!

}

Hs(X) = inf
{∑∞

n=1H
s
0(Xi) : X ⊆ X1 ∪X2 ∪ . . .

}
(Method I)

Elementary facts:

If X is σ-compact, then dimH X = dimH X

If Y ⊇ X is complete, then

dimH X = inf{dimH K : X ⊆ K ⊆ Y, K σ-compact}
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H-null sets
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H-null sets and products

Theorem

The following are equivalent:

X is H-null

∀E ∈ E H1
(X × E) = 0

∀E ∈ E ∃K ⊇ X σ-compact H1
(X × E) = 0
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Want proof?

A courtesy of Mr. Harris c©ScienceCartoonsPlus.com
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H-null sets and products

Lemma

The following are equivalent:

Hh(X) = 0 for each Hausdorff function h

H1
(X × E) = 0 for each E ∈ E

⇓ Assume X is H-null

E ∈ E =⇒ Pg(E) = 0 for some g ≺ 1 [g(r) grows faster than r]

There is h such that gh > 1

Howroyd formula: H1
(X ×E) 6 Hgh(X ×E) 6 Hh(X) · Pg(E) = 0

⇑ Assume X is not H-null

There is h such that Hh(X) > 0

There is g ≺ 1 such that gh 6 1

Find E ∈ E such that HgE) > 0

Marstrand formula: H1
(X×E) > Hgh(X×E) > Hh(X)·Hg(E) > 0
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Onďrej Zindulka EveryM-additive set is E-additive



Strongly additive properties

Definition

X is strongly M-additive (M]) if

∀M ∈M ∃K ⊇ X σ-compact K +M ∈M

X is strongly E-additive (E])

∀N ∈ N ∃K ⊇ X σ-compact K +N ∈ N

X is strongly strongly null (SN ]) if

∀M ∈M ∃K ⊇ X σ-compact K +M 6= 2ω

Theorem

H-null ⇐⇒ M∗ ⇐⇒ M] ⇐⇒ E] ⇐⇒ SN ]
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H-null =⇒ E] =⇒ SN ] =⇒M] =⇒M∗ =⇒ H-null

Lemma

H-null =⇒ E]

Proof.

Fix E ∈ E .

There is K ⊇ X σ-compact such that H1(K × E) = 0

(x, y) 7→ x+ y is Lipschitz

Thus H1
(K + E) = 0, i.e. K + E ∈ E .
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H-null =⇒ E] =⇒ SN ] =⇒M] =⇒M∗ =⇒ H-null

Lemma

E] =⇒ SN ]

Proof.

Fix M ∈M.

Pawlikowski 1995: There is E ∈ E such that
K + E ∈ N =⇒ K +M 6= 2ω

There is K ⊇ X σ-compact such that K + E ∈ E ⊆ N
Thus K +M 6= 2ω
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H-null =⇒ E] =⇒ SN ] =⇒M] =⇒M∗ =⇒ H-null

Lemma

SN ] =⇒M]

Lemma

M] =⇒M∗
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H-null =⇒ E] =⇒ SN ] =⇒M] =⇒M∗ =⇒ H-null

Lemma

M∗ =⇒ H-null

Theorem (Shelah 1995 Don’t read it!)

If X ⊆ 2ω is meager-additive, then:

∀f ∈ ω↑ω ∃g ∈ ωω ∃y ∈ 2ω ∀x ∈ X ∃m ∈ ω ∀n > m ∃k ∈ ω
g(n) 6 f(k) < g(n+ 1) & x�

[
f(k), f(k + 1)

)
= y�

[
f(k), f(k + 1)

)
Proof – vague outline.

Fix h ∈ H.

Understand the condition: The balls

B(y, 2−f(k+1)) + p, n ∈ ω, g(n) 6 k < g(n+ 1), p ∈ 2f(k)

form the right cover of X.

Define properly f .

Calculate Hausdorff sums.
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Onďrej Zindulka EveryM-additive set is E-additive



Consequences

Corollary

M∗ ⇐⇒ H-null

If X is M∗ and f : 2ω → 2ω, then f(X) is M∗.

Corollary

M∗ =⇒ E∗

N ∗ =⇒ (T′) =⇒M∗ =⇒ E∗ =⇒ SN

Corollary

(CH) E∗ ; (T′)
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M∗ versus E∗

M∗ versus E∗

M∗: H1
(X × E) = 0 for all E ∈ E

E∗ : H1
(X + E) = 0 for all E ∈ E

Question

E∗ ⇐⇒M∗ ???
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The line

T :

{
2ω → [0, 1]

x 7→ 1
2

∑
2−nx(n)

Proposition

X is H-null ⇐⇒ T (X) is H-null

(Weiss 2009) X is M∗ ⇐⇒ T (X) is M∗

Theorem (X ⊆ R)

H-null ⇐⇒M∗ ⇐⇒M] =⇒ E] =⇒ E∗
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Products

Theorem

H-null × H-null is H-null

H-null × H-null is H-null [Strengthens Scheepers’ Theorem]

Corollary

X,Y ⊆ R are M∗ =⇒ X × Y is M∗

X ⊆ Rn is M∗ ⇐⇒ all projections of X are M∗
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Packing dimensions

Hausdorff dimension dimH X . . .H-null

Upper Hausdorff dimension dimH X . . .H-null

Directed lower packing dimension dim−−→P X . . . P−→-null

Upper packing dimension dimP X . . .P-null

dimP X > dim−−→P X > dimH X > dimH X

Theorem

P-null =⇒ P−→-null =⇒ H-null =⇒ H-null

m m m m
N ∗ =⇒ (T′) =⇒ M∗ =⇒ SN
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Topologically null sets

Definition

X is topologically H-null
def≡ dimH f(X) for each continuous f .

Theorem

topologically H-null ⇐⇒ Rothberger property

topologically H-null ⇐⇒ Gerlits–Nagy property

topologically P-null ⇐= strong γ-set

but consistently topologically P-null ; strong γ-set
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Onďrej Zindulka EveryM-additive set is E-additive
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