Crookedness and almost homogeneity in categories of compacta

Adam Bartoš
drekin@gmail.com

Faculty of Mathematics and Physics, Charles University
Institute of Mathematics, Czech Academy of Sciences

Winter School in Abstract Analysis
Section Set Theory & Topology
Hejnice, Jan 26 – Feb 2 2019

This is joint work with Wiesław Kubiś.
An inverse sequence \(\langle X_*, f_* \rangle \) of topological spaces and continuous maps, and its limit \(\langle X_\infty, f_{n,\infty} \rangle_{n \in \omega} \):

\[
X_0 \leftarrow X_1 \leftarrow X_2 \leftarrow X_3 \leftarrow \cdots X_n \leftarrow X_{n+1} \leftarrow \cdots X_\infty
\]

\(f_{1,3} \quad f_{n,\infty} \)
An *inverse sequence* $\langle X_*, f_* \rangle$ of topological spaces and continuous maps, and its *limit* $\langle X_\infty, f_n, \infty \rangle_{n \in \omega}$:

$$X_0 \leftarrow X_1 \leftarrow X_2 \leftarrow X_3 \leftarrow \cdots X_n \leftarrow X_{n+1} \leftarrow \cdots X_\infty$$

A *category of compacta* is any category \mathcal{K} whose objects are metrizable compacta and whose morphisms are continuous maps. A *sequence in \mathcal{K}* is an inverse sequence of \mathcal{K}-objects and \mathcal{K}-maps.
An inverse sequence $\langle X_*, f_* \rangle$ of topological spaces and continuous maps, and its limit $\langle X_\infty, f_n, \infty \rangle_{n \in \omega}$:

$$X_0 \xleftarrow{f_0} X_1 \xleftarrow{f_1} X_2 \xleftarrow{f_2} X_3 \xleftarrow{f_3} \cdots X_n \xleftarrow{f_n} X_{n+1} \xleftarrow{f_{n,\infty}} X_\infty$$

A category of compacta is any category \mathcal{K} whose objects are metrizable compacta and whose morphisms are continuous maps. A sequence in \mathcal{K} is an inverse sequence of \mathcal{K}-objects and \mathcal{K}-maps.

$\sigma\mathcal{K}$ denotes the category of all limits of sequences in \mathcal{K} and all limits of almost transformations between sequences in \mathcal{K}.

I denotes the category with the only object $I := [0, 1]$ and all continuous surjections.
An inverse sequence \(\langle X_\ast, f_\ast \rangle \) of topological spaces and continuous maps, and its limit \(\langle X_\infty, f_n, \infty \rangle_{n \in \omega} \):

\[
X_0 \xleftarrow{f_0} X_1 \xleftarrow{f_1} X_2 \xleftarrow{f_2} X_3 \xleftarrow{f_3} \cdots X_n \xleftarrow{f_n} X_{n+1} \xleftarrow{f_{n, \infty}} X_\infty
\]

A category of compacta is any category \(\mathcal{K} \) whose objects are metrizable compacta and whose morphisms are continuous maps. A sequence in \(\mathcal{K} \) is an inverse sequence of \(\mathcal{K} \)-objects and \(\mathcal{K} \)-maps.

\(\sigma \mathcal{K} \) denotes the category of all limits of sequences in \(\mathcal{K} \) and all limits of almost transformations between sequences in \(\mathcal{K} \).

\(\mathcal{I} \) denotes the category with the only object \(I := [0, 1] \) and all continuous surjections.
A continuum X is *arc-like* if it is the limit of a sequence in \mathcal{I}:

$$
\begin{array}{cccc}
& f_0 & f_1 & f_2 & f_3 & \cdots & X \\
\|& \leftarrow & \leftarrow & \leftarrow & \leftarrow & \cdots & \\
\end{array}
$$
Motivation

A continuum X is *arc-like* if it is the limit of a sequence in \mathcal{I}:

$$
\begin{array}{cccccc}
\mathbb{I} & f_0 & \mathbb{I} & f_1 & \mathbb{I} & f_2 & \mathbb{I} & f_3 & \cdots & X.
\end{array}
$$

So $\sigma\mathcal{I}$-objects are exactly the arc-like continua, and by [Mardešić–Segal, 1963], $\sigma\mathcal{I}$-maps are all continuous surjections.

Fact [Bing, 1951] There exists a unique hereditarily indecomposable arc-like continuum, called the *pseudo-arc*.

Fact [Irwin–Solecki, 2006] The pseudo-arc is the quotient induced by a topological model-theoretic projective Fraïssé limit.
Motivation

- A continuum X is *arc-like* if it is the limit of a sequence in \mathcal{I}:

$$
\mathbb{I} \xleftarrow{f_0} \mathbb{I} \xleftarrow{f_1} \mathbb{I} \xleftarrow{f_2} \mathbb{I} \xleftarrow{f_3} \cdots X.
$$

So $\sigma\mathcal{I}$-objects are exactly the arc-like continua, and by [Mardešić–Segal, 1963], $\sigma\mathcal{I}$-maps are all continuous surjections.

- A compact Hausdorff space is *hereditarily indecomposable* if for every subcontinua $C, D \subseteq X$ we have $C \subseteq D$ or $C \supseteq D$ or $C \cap D = \emptyset$.

Fact [Bing, 1951] There exists a unique hereditarily indecomposable arc-like continuum, called the *pseudo-arc*.

Fact [Irwin–Solecki, 2006] The pseudo-arc is the quotient induced by a topological model-theoretic projective Fraïssé limit.
- A continuum X is *arc-like* if it is the limit of a sequence in \mathcal{I}:

$$
\mathbb{I} \xleftarrow{f_0} \mathbb{I} \xleftarrow{f_1} \mathbb{I} \xleftarrow{f_2} \mathbb{I} \xleftarrow{f_3} \cdots X.
$$

So $\sigma\mathcal{I}$-objects are exactly the arc-like continua, and by [Mardešić–Segal, 1963], $\sigma\mathcal{I}$-maps are all continuous surjections.

- A compact Hausdorff space is *hereditarily indecomposable* if for every subcontinua $C, D \subseteq X$ we have $C \subseteq D$ or $C \supseteq D$ or $C \cap D = \emptyset$.

Fact [Bing, 1951]

There exists a unique hereditarily indecomposable arc-like continuum, called the *pseudo-arc*.

Fact [Irwin–Solecki, 2006]

The pseudo-arc is the quotient induced by a topological model-theoretic projective Fraïssé limit.
A continuum X is *arc-like* if it is the limit of a sequence in \mathcal{I}:

$$
\mathbb{I} \leftarrow f_0 \mathbb{I} \leftarrow f_1 \mathbb{I} \leftarrow f_2 \mathbb{I} \leftarrow f_3 \mathbb{I} \leftarrow \cdots X.
$$

So $\sigma\mathcal{I}$-objects are exactly the arc-like continua, and by [Mardešić–Segal, 1963], $\sigma\mathcal{I}$-maps are all continuous surjections.

A compact Hausdorff space is *hereditarily indecomposable* if for every subcontinua $C, D \subseteq X$ we have $C \subseteq D$ or $C \supseteq D$ or $C \cap D = \emptyset$.

Fact [Bing, 1951]

There exists a unique hereditarily indecomposable arc-like continuum, called the *pseudo-arc*.

Fact [Irwin–Solecki, 2006]

The pseudo-arc is the quotient induced by a topological model-theoretic projective *Fraïssé limit*.
Bing’s result may be reproved using the following.

Theorem

Let $\langle X_*, f_* \rangle$ be a sequence in \mathcal{I}. The following conditions are equivalent.

1. X_∞ is hereditarily indecomposable.
2. X_∞ is *crooked*.
3. The maps $f_{n,\infty}$ are *crooked*.
4. $\langle X_*, f_* \rangle$ is a *crooked sequence*.
5. $\langle X_*, f_* \rangle$ is a *Fraïssé sequence*.
6. X_∞ is *universal* and *almost projective* in $\sigma\mathcal{I}$.
7. X_∞ is *universal* and *almost homogeneous* in $\sigma\mathcal{I}$.
“When going from A to B, we first have to go from A near B, then return near A, and finally go to B.”
“When going from A to B, we first have to go from A near B, then return near A, and finally go to B.”

A map $f : \{0, 1, \ldots, m\} \rightarrow \{0, 1, \ldots, n\}$ is crooked if for every $i \leq j \leq m$ there are $i \leq j' \leq i' \leq j$ such that $|f(i) - f(i')| \leq 1$ and $|f(j) - f(j')| \leq 1$.

Fact:
For every $\varepsilon > 0$ there is an ε-crooked I-map (e.g. the maps σ_n [Lewis–Minc, 2010]).
“When going from A to B, we first have to go from A near B, then return near A, and finally go to B.”

A map $f: \{0, 1, \ldots, m\} \rightarrow \{0, 1, \ldots, n\}$ is **crooked** if for every $i \leq j \leq m$ there are $i \leq j' \leq i' \leq j$ such that $|f(i) - f(i')| \leq 1$ and $|f(j) - f(j')| \leq 1$.

A map $f: \mathbb{I} \rightarrow \mathbb{I}$ is ε-**crooked** if for every $x \leq y \in \mathbb{I}$ there are $x \leq y' \leq x' \leq y$ such that $f(x) \approx_\varepsilon f(x')$ and $f(y) \approx_\varepsilon f(y')$.

Fact For every $\varepsilon > 0$ there is an ε-crooked \mathbb{I}-map (e.g., the maps σ_n [Lewis–Minc, 2010]).
“When going from A to B, we first have to go from A near B, then return near A, and finally go to B.”

A map $f : \{0, 1, \ldots, m\} \rightarrow \{0, 1, \ldots, n\}$ is *crooked* if for every $i \leq j \leq m$ there are $i \leq j' \leq i' \leq j$ such that $|f(i) - f(i')| \leq 1$ and $|f(j) - f(j')| \leq 1$.

A map $f : \mathbb{I} \rightarrow \mathbb{I}$ is ε-*crooked* if for every $x \leq y \in \mathbb{I}$ there are $x \leq y' \leq x' \leq y$ such that $f(x) \approx_{\varepsilon} f(x')$ and $f(y) \approx_{\varepsilon} f(y')$.

Fact

For every $\varepsilon > 0$ there is an ε-crooked \mathcal{I}-map (e.g. the maps σ_n [Lewis–Minc, 2010]).
<table>
<thead>
<tr>
<th>Definition [Krasinkiewicz–Minc, 1977]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let X be a topological space.</td>
</tr>
<tr>
<td>- A quadruple $\langle A, B, U, V \rangle$ is admissible in X if A, B are disjoint closed subsets of X and U, V are their open neighborhoods.</td>
</tr>
</tbody>
</table>
Let X be a topological space.

- A quadruple $\langle A, B, U, V \rangle$ is *admissible in* X if A, B are disjoint closed subsets of X and U, V are their open neighborhoods.

- X is *crooked at* $\langle A, B, U, V \rangle$ if there are closed sets $F_0, F_1, F_2 \subseteq X$ such that $A \subseteq F_0$, $B \subseteq F_2$, $F_0 \cup F_1 \cup F_2 = X$, $F_0 \cap F_1 \subseteq V$, $F_1 \cap F_2 \subseteq U$, $F_0 \cap F_2 = \emptyset$.

Theorem [Krasinkiewicz–Minc, 1977]

A compact Hausdorff space X is hereditarily indecomposable if and only if it is crooked.
Definition [Krasinkiewicz–Minc, 1977]

Let X be a topological space.

- A quadruple $\langle A, B, U, V \rangle$ is *admissible in* X if A, B are disjoint closed subsets of X and U, V are their open neighborhoods.

- X is *crooked at* $\langle A, B, U, V \rangle$ if there are closed sets $F_0, F_1, F_2 \subseteq X$ such that $A \subseteq F_0$, $B \subseteq F_2$, $F_0 \cup F_1 \cup F_2 = X$, $F_0 \cap F_1 \subseteq V$, $F_1 \cap F_2 \subseteq U$, $F_0 \cap F_2 = \emptyset$,

- X is *crooked* if it is crooked at every admissible quadruple.
Definition [Krasinkiewicz–Minc, 1977]

Let X be a topological space.

- A quadruple $\langle A, B, U, V \rangle$ is admissible in X if A, B are disjoint closed subsets of X and U, V are their open neighborhoods.
- X is crooked at $\langle A, B, U, V \rangle$ if there are closed sets $F_0, F_1, F_2 \subseteq X$ such that $A \subseteq F_0$, $B \subseteq F_2$, $F_0 \cup F_1 \cup F_2 = X$, $F_0 \cap F_1 \subseteq V$, $F_1 \cap F_2 \subseteq U$, $F_0 \cap F_2 = \emptyset$.
- X is crooked if it is crooked at every admissible quadruple.

Theorem [Krasinkiewicz–Minc, 1977]

A compact Hausdorff space X is hereditarily indecomposable if and only if it is crooked.
Definition [Maćkowiak, 1985]

Let $f : X \to Y$ be a continuous map, $\langle A, B, U, V \rangle$ admissible in Y.

- f is \textit{crooked at} $\langle A, B, U, V \rangle$ if X is crooked at $\langle f^{-1}[A], f^{-1}[B], f^{-1}[U], f^{-1}[V] \rangle$.
- f is \textit{crooked} if it is crooked at every admissible quadruple in Y.

So crookedness of X is crookedness of id_X.

Definition [Maćkowiak, 1985]

Let $f : X \to Y$ be a continuous map, $\langle A, B, U, V \rangle$ admissible in Y.

- f is **crooked at** $\langle A, B, U, V \rangle$ if X is crooked at $\langle f^{-1}[A], f^{-1}[B], f^{-1}[U], f^{-1}[V] \rangle$.
- f is **crooked** if it is crooked at every admissible quadruple in Y.

So crookedness of X is crookedness of id_X.

Definition

Let $f : X \to \langle Y, d \rangle$ be a continuous map, $A, B \subseteq Y$ closed disjoint, and $\varepsilon > 0$.

- f is **ε-crooked at** $\langle A, B \rangle$ if it is crooked at $\langle A, B, A^\varepsilon, B^\varepsilon \rangle$.
- f is **ε-crooked** if it is ε-crooked at every closed disjoint $\langle A, B \rangle$.
Proposition

A continuous map $f: \mathbb{I} \to \langle X, d \rangle$ is ε-crooked if and only if it satisfies the classical definition: for every $x \leq y \in \mathbb{I}$ there are $x \leq y' \leq x' \leq y$ such that $f(x) \approx_{\varepsilon} f(x')$ and $f(y) \approx_{\varepsilon} f(y')$.
Proposition

A continuous map $f : \mathbb{I} \to \langle X, d \rangle$ is ε-crooked if and only if it satisfies the classical definition: for every $x \leq y \in \mathbb{I}$ there are $x \leq y' \leq x' \leq y$ such that $f(x) \approx_{\varepsilon} f(x')$ and $f(y) \approx_{\varepsilon} f(y')$.

Theorem

Let $\langle X_*, f_* \rangle$ be an inverse sequence of metrizable compacta and continuous maps. The following conditions are equivalent.

1. X_∞ is hereditarily indecomposable.
2. X_∞ is crooked.
3. The maps $f_{n,\infty}$ are crooked.
4. $\langle X_*, f_* \rangle$ is a crooked sequence, i.e. for every n and $\varepsilon > 0$ there is $m \geq n$ such that $f_{n,m}$ is ε-crooked.
Crookedness

Proposition

A continuous map \(f : \mathbb{I} \to \langle X, d \rangle \) is \(\varepsilon \)-crooked if and only if it satisfies the classical definition: for every \(x \leq y \in \mathbb{I} \) there are \(x \leq y' \leq x' \leq y \) such that \(f(x) \approx_\varepsilon f(x') \) and \(f(y) \approx_\varepsilon f(y') \).

Theorem

Let \(\langle X_\ast, f_\ast \rangle \) be an inverse sequence of metrizable compacta and continuous maps. The following conditions are equivalent.

1. \(X_\infty \) is hereditarily indecomposable.
2. \(X_\infty \) is crooked.
3. The maps \(f_{n,\infty} \) are crooked.
4. \(\langle X_\ast, f_\ast \rangle \) is a crooked sequence, i.e. for every \(n \) and \(\varepsilon > 0 \) there is \(m \geq n \) such that \(f_{n,m} \) is \(\varepsilon \)-crooked.

For Peano continua, this was essentially proved by [Brown, 1960].
Definition

A category of compacta \mathcal{K} has the *almost amalgamation property* if for every \mathcal{K}-maps $f: X \rightarrow Z$ and $g: Y \rightarrow Z$ and every $\varepsilon > 0$ there are \mathcal{K}-maps $f': W \rightarrow X$ and $g': W \rightarrow Y$ such that $f \circ f' \approx \varepsilon g \circ g'$.
Definition

A category of compacta \mathcal{K} has the *almost amalgamation property* if for every \mathcal{K}-maps $f: X \to Z$ and $g: Y \to Z$ and every $\varepsilon > 0$ there are \mathcal{K}-maps $f': W \to X$ and $g': W \to Y$ such that $f \circ f' \approx \varepsilon g \circ g'$.
Definition

A category of compacta \mathcal{K} has the *almost amalgamation property* if for every \mathcal{K}-maps $f : X \to Z$ and $g : Y \to Z$ and every $\varepsilon > 0$, there are \mathcal{K}-maps $f' : W \to X$ and $g' : W \to Y$ such that $f \circ f' \approx \varepsilon g \circ g'$.
Definition

A category of compacta \mathcal{K} has the *almost amalgamation property* if for every \mathcal{K}-maps $f: X \to Z$ and $g: Y \to Z$ and every $\varepsilon > 0$ there are \mathcal{K}-maps $f': W \to X$ and $g': W \to Y$ such that $f \circ f' \approx_\varepsilon g \circ g'$.

\[
\begin{array}{c}
\varepsilon > 0 \\
X & \approx_\varepsilon & W \\
\downarrow & \approx_\varepsilon & \\
Z & \approx_\varepsilon & W \\
Y & \approx_\varepsilon & \\
g & \approx_\varepsilon & f' \\
g' & \approx_\varepsilon & f
\end{array}
\]
Fraïssé theory – almost amalgamation property

Definition

A category of compacta \mathcal{K} has the **almost amalgamation property** if for every \mathcal{K}-maps $f: X \to Z$ and $g: Y \to Z$ and every $\varepsilon > 0$ there are \mathcal{K}-maps $f': W \to X$ and $g': W \to Y$ such that $f \circ f' \approx_\varepsilon g \circ g'$.

$$
\begin{align*}
Z & \xleftarrow{g} Y \xrightarrow{f} X \\
& \quad \approx_\varepsilon W \\
W & \xleftarrow{g'} Y \xrightarrow{f'} X
\end{align*}
$$

Fact

The interval category \mathcal{I} has the almost amalgamation property by the mountain climbing theorem.
Definition

A sequence \(\langle X_*, f_* \rangle \) in a category of compacta \(\mathcal{K} \) is

- *universal*
A sequence \(\langle X_*, f_* \rangle \) in a category of compacta \(\mathcal{K} \) is

- **universal** if for every \(\mathcal{K} \)-object \(Y \)

\[
\begin{align*}
X_0 & \xleftarrow{f_0} X_1 \xleftarrow{f_1} X_2 \xleftarrow{f_2} X_3 \xleftarrow{f_3} X_4 \xleftarrow{f_4} \cdots \\
& \quad Y
\end{align*}
\]
Definition

A sequence \(\langle X_*, f_* \rangle \) in a category of compacta \(\mathcal{K} \) is

- *universal* if for every \(\mathcal{K} \)-object \(Y \) there is a \(\mathcal{K} \)-map \(g : X_n \to Y \);

\[
\begin{array}{ccccccc}
X_0 & \leftarrow & X_1 & \leftarrow & \cdots & \leftarrow & X_n & \leftarrow & \cdots \\
\downarrow & f_0 & & f_1 & & & f_n & \downarrow \\
Y & & & & & & \end{array}
\]

- *Fraïssé* if it is both universal and almost projective.
Fraïssé theory – sequences

Definition

A sequence $\langle X_*, f_* \rangle$ in a category of compacta \mathcal{K} is

- *universal* if for every \mathcal{K}-object Y there is a \mathcal{K}-map $g : X_n \to Y$;

 ![Diagram](image)

- *almost projective*
Definition

A sequence $\langle X_*, f_* \rangle$ in a category of compacta \mathcal{K} is

- **universal** if for every \mathcal{K}-object Y there is a \mathcal{K}-map $g : X_n \to Y$;

 $$
 \begin{array}{cccccc}
 & X_0 & \leftarrow & X_1 & \leftarrow & \cdots & \leftarrow & X_n & \leftarrow & \cdots \\
 f_0 & & & f_1 & & & \cdots & & & f_n & \\
 \end{array}
 $$

- **almost projective** if for every \mathcal{K}-maps $f : X_n \to Z$, $g : Y \to Z$ and $\varepsilon > 0$

 $$
 \begin{array}{cccccc}
 & X_0 & \leftarrow & X_1 & \leftarrow & \cdots & \leftarrow & X_n & \leftarrow & \cdots \\
 f_0 & & & f_1 & & & \cdots & & & f_n & \\
 \end{array}
 $$

 $$
 \begin{array}{cccc}
 \varepsilon > 0 & \leftarrow & Z & \leftarrow & Y \\
 f & & & g \\
 \end{array}
 $$

Fraïssé theory – sequences
Fraïssé theory – sequences

Definition

A sequence \(\langle X_*, f_* \rangle \) in a category of compacta \(\mathcal{K} \) is

- **universal** if for every \(\mathcal{K} \)-object \(Y \) there is a \(\mathcal{K} \)-map \(g : X_n \to Y \);

\[
\begin{array}{ccccccccc}
X_0 & f_0 & X_1 & f_1 & \cdots & X_n & f_n & \cdots \\
& & & & & & & \\
& & & & & & & g \\
& & & & & & & \cdots \\
& & & & & & & Y \\
\end{array}
\]

- **almost projective** if for every \(\mathcal{K} \)-maps \(f : X_n \to Z, g : Y \to Z \)
 and \(\varepsilon > 0 \) there is a \(\mathcal{K} \)-map \(h : X_m \to Y \) such that
 \(f \circ f_{n,m} \approx_\varepsilon g \circ h \);

\[
\begin{array}{ccccccccc}
X_0 & f_0 & X_1 & f_1 & \cdots & X_n & f_{n,m} & X_m & \cdots \\
& & & & & & & & & & \\
& & & & & & & & & & h \\
& & \varepsilon > 0 & & & & & & & & \\
& & Z & & & & & \varepsilon & & Y \\
\end{array}
\]

Fraïssé if it is both universal and almost projective.
Fraïssé theory – sequences

Definition

A sequence $\langle X_*, f_* \rangle$ in a category of compacta \mathcal{K} is

- **universal** if for every \mathcal{K}-object Y there is a \mathcal{K}-map $g : X_n \to Y$;

 $X_0 \leftarrow X_1 \leftarrow \cdots \leftarrow X_n \leftarrow \cdots$

 $\downarrow g$

 Y

- **almost projective** if for every \mathcal{K}-maps $f : X_n \to Z$, $g : Y \to Z$ and $\varepsilon > 0$ there is a \mathcal{K}-map $h : X_m \to Y$ such that

 $f \circ f_{n,m} \approx_{\varepsilon} g \circ h$;

 $X_0 \leftarrow X_1 \leftarrow \cdots \leftarrow X_n \leftarrow X_m \leftarrow \cdots$

 $\downarrow f$

 $\varepsilon > 0$

 $Z \leftarrow Y$

- **Fraïssé** if it is both universal and almost projective.
Theorem

A category of compacta \mathcal{K} has a Fraïssé sequence if and only if it

1. is *directed*,
2. has a countable *universal family of objects*,
3. has the almost amalgamation property.
A category of compacta \mathcal{K} has a Fraïssé sequence if and only if it

1. is directed,
2. has a countable universal family of objects,
3. has the almost amalgamation property.

Hence, \mathcal{I} has a Fraïssé sequence.
Definition

Let \mathcal{K} be category of compacta and let X be a compactum. The *Banach–Mazur game* $BM_{\mathcal{K}}(X)$ is defined as follows. Eve starts with a \mathcal{K}-map $f_0 : X_0 \leftarrow X_1$, Odd responds with a \mathcal{K}-map $f_1 : X_1 \leftarrow X_2$, and so on. The outcome of the play is the sequence $\langle X_\ast, f_\ast \rangle$, and Odd wins if $X_\infty \cong X$. The space X is *generic over \mathcal{K}* if Odd has a winning strategy for $BM_{\mathcal{K}}(X)$.

Observation The generic object over \mathcal{K} is unique (if it exists).

Theorem The limit of a Fraïssé sequence in \mathcal{K} is generic over \mathcal{K}. Therefore, the *Fraïssé limit* is unique.
Definition

Let \mathcal{K} be category of compacta and let X be a compactum. The *Banach–Mazur game* $\text{BM}_{\mathcal{K}}(X)$ is defined as follows. Eve starts with a \mathcal{K}-map $f_0 : X_0 \leftarrow X_1$, Odd responds with a \mathcal{K}-map $f_1 : X_1 \leftarrow X_2$, and so on. The outcome of the play is the sequence $\langle X_*, f_* \rangle$, and Odd wins if $X_\infty \cong X$. The space X is *generic over \mathcal{K}* if Odd has a winning strategy for $\text{BM}_{\mathcal{K}}(X)$.

Observation

The generic object over \mathcal{K} is unique (if it exists).
Fraïssé theory – games and uniqueness

Definition

Let \mathcal{K} be category of compacta and let X be a compactum. The *Banach–Mazur game* $BM_\mathcal{K}(X)$ is defined as follows. Eve starts with a \mathcal{K}-map $f_0 : X_0 \leftarrow X_1$, Odd responds with a \mathcal{K}-map $f_1 : X_1 \leftarrow X_2$, and so on. The outcome of the play is the sequence $\langle X_*, f_* \rangle$, and Odd wins if $X_\infty \cong X$. The space X is *generic over \mathcal{K}* if Odd has a winning strategy for $BM_\mathcal{K}(X)$.

Observation

The generic object over \mathcal{K} is unique (if it exists).

Theorem

The limit of a Fraïssé sequence in \mathcal{K} is generic over \mathcal{K}. Therefore, the *Fraïssé limit* is unique.
Definition

Let $\mathcal{K} \subseteq \mathcal{L}$ be categories of compacta. An \mathcal{L}-object X is

- universal in $\langle \mathcal{K}, \mathcal{L} \rangle$
Fraïssé theory – large objects

Definition

Let $\mathcal{K} \subseteq \mathcal{L}$ be categories of compacta. An \mathcal{L}-object X is

- *universal in* $\langle \mathcal{K}, \mathcal{L} \rangle$ if for every \mathcal{K}-object Y there is an \mathcal{L}-map $f : X \to Y$;
Definition

Let $\mathcal{K} \subseteq \mathcal{L}$ be categories of compacta. An \mathcal{L}-object X is

- *universal in* $\langle \mathcal{K}, \mathcal{L} \rangle$ if for every \mathcal{K}-object Y there is an \mathcal{L}-map $f: X \to Y$;

- *almost projective in* $\langle \mathcal{K}, \mathcal{L} \rangle$
Definition

Let $\mathcal{K} \subseteq \mathcal{L}$ be categories of compacta. An \mathcal{L}-object X is

- **universal in** $\langle \mathcal{K}, \mathcal{L} \rangle$ if for every \mathcal{K}-object Y there is an \mathcal{L}-map $f : X \to Y$;

- **almost projective in** $\langle \mathcal{K}, \mathcal{L} \rangle$ if for every \mathcal{L}-map $f : X \to Z$, \mathcal{K}-map $g : Y \to Z$, and $\varepsilon > 0$

\[f \approx \varepsilon \circ g \circ h \]

We say just "in \mathcal{L}" instead of "in $\langle \mathcal{L}, \mathcal{L} \rangle$".
Definition

Let $\mathcal{K} \subseteq \mathcal{L}$ be categories of compacta. An \mathcal{L}-object X is

- **universal in** $\langle \mathcal{K}, \mathcal{L} \rangle$ if for every \mathcal{K}-object Y there is an \mathcal{L}-map $f: X \to Y$;

- **almost projective in** $\langle \mathcal{K}, \mathcal{L} \rangle$ if for every \mathcal{L}-map $f: X \to Z$, \mathcal{K}-map $g: Y \to Z$, and $\varepsilon > 0$ there is an \mathcal{L}-map $h: X \to Y$ such that $f \approx_{\varepsilon} g \circ h$;

We say just "in \mathcal{L}" instead of "in $\langle \mathcal{L}, \mathcal{L} \rangle$".
Definition

Let $\mathcal{K} \subseteq \mathcal{L}$ be categories of compacta. An \mathcal{L}-object X is

- *universal in* $\langle \mathcal{K}, \mathcal{L} \rangle$ if for every \mathcal{K}-object Y there is an \mathcal{L}-map $f : X \to Y$;
- *almost projective in* $\langle \mathcal{K}, \mathcal{L} \rangle$ if for every \mathcal{L}-map $f : X \to Z$, \mathcal{K}-map $g : Y \to Z$, and $\varepsilon > 0$ there is an \mathcal{L}-map $h : X \to Y$ such that $f \approx_\varepsilon g \circ h$;
- *almost homogeneous in* $\langle \mathcal{K}, \mathcal{L} \rangle$
Fraïssé theory – large objects

Definition

Let $\mathcal{K} \subseteq \mathcal{L}$ be categories of compacta. An \mathcal{L}-object X is

- **universal in** $\langle \mathcal{K}, \mathcal{L} \rangle$ if for every \mathcal{K}-object Y there is an \mathcal{L}-map $f : X \rightarrow Y$;

- **almost projective in** $\langle \mathcal{K}, \mathcal{L} \rangle$ if for every \mathcal{L}-map $f : X \rightarrow Z$, \mathcal{K}-map $g : Y \rightarrow Z$, and $\varepsilon > 0$ there is an \mathcal{L}-map $h : X \rightarrow Y$ such that $f \approx \varepsilon g \circ h$;

- **almost homogeneous in** $\langle \mathcal{K}, \mathcal{L} \rangle$ if for every \mathcal{L}-maps $f, g : X \rightarrow Y$ to a \mathcal{K}-object and every $\varepsilon > 0$

We say just "in \mathcal{L}" instead of "in $\langle \mathcal{L}, \mathcal{L} \rangle$".
Definition

Let $\mathcal{K} \subseteq \mathcal{L}$ be categories of compacta. An \mathcal{L}-object X is

- **universal in** $\langle \mathcal{K}, \mathcal{L} \rangle$ if for every \mathcal{K}-object Y there is an \mathcal{L}-map $f: X \to Y$;

- **almost projective in** $\langle \mathcal{K}, \mathcal{L} \rangle$ if for every \mathcal{L}-map $f: X \to Z$, \mathcal{K}-map $g: Y \to Z$, and $\varepsilon > 0$ there is an \mathcal{L}-map $h: X \to Y$ such that $f \approx_{\varepsilon} g \circ h$;

- **almost homogeneous in** $\langle \mathcal{K}, \mathcal{L} \rangle$ if for every \mathcal{L}-maps $f, g: X \to Y$ to a \mathcal{K}-object and every $\varepsilon > 0$ there is an \mathcal{L}-automorphism $h: X \to X$ such that $f \approx_{\varepsilon} g \circ h$.

We say just “in \mathcal{L}” instead of “in $\langle \mathcal{L}, \mathcal{L} \rangle$.”
Definition

Let $\mathcal{K} \subseteq \mathcal{L}$ be categories of compacta. An \mathcal{L}-object X is

- **universal in** $\langle \mathcal{K}, \mathcal{L} \rangle$ if for every \mathcal{K}-object Y there is an \mathcal{L}-map $f : X \to Y$;

- **almost projective in** $\langle \mathcal{K}, \mathcal{L} \rangle$ if for every \mathcal{L}-map $f : X \to Z$, \mathcal{K}-map $g : Y \to Z$, and $\varepsilon > 0$ there is an \mathcal{L}-map $h : X \to Y$ such that $f \approx \varepsilon g \circ h$;

- **almost homogeneous in** $\langle \mathcal{K}, \mathcal{L} \rangle$ if for every \mathcal{L}-maps $f, g : X \to Y$ to a \mathcal{K}-object and every $\varepsilon > 0$ there is an \mathcal{L}-automorphism $h : X \to X$ such that $f \approx \varepsilon g \circ h$.

We say just “in \mathcal{L}” instead of “in $\langle \mathcal{L}, \mathcal{L} \rangle$”.
Definition
Let $\mathcal{K} \subseteq \mathcal{L}$ be categories of compacta. We consider the following condition for $\langle \mathcal{K}, \mathcal{L} \rangle$.

Fact
It follows from the result [Mardešić–Segal, 1963] that $\langle I, \sigma I \rangle$ satisfies (F).
Definition

Let $\mathcal{K} \subseteq \mathcal{L}$ be categories of compacta. We consider the following condition for $\langle \mathcal{K}, \mathcal{L} \rangle$.

(F) For every sequence $\langle X_*, f_* \rangle$ in \mathcal{K}, every \mathcal{L}-map $g : X_\infty \to Y$ to a \mathcal{K}-object Y, and every $\varepsilon > 0$

\[X_0 \xleftarrow{f_0} X_1 \xleftarrow{f_1} X_2 \xleftarrow{f_2} X_3 \xleftarrow{f_3} \cdots X_\infty \]

\[Y \xleftarrow{g} \]
Fraïssé theory – condition (F)

Definition

Let $\mathcal{K} \subseteq \mathcal{L}$ be categories of compacta. We consider the following condition for $\langle \mathcal{K}, \mathcal{L} \rangle$.

(F) For every sequence $\langle X_*, f_* \rangle$ in \mathcal{K}, every \mathcal{L}-map $g : X_\infty \to Y$ to a \mathcal{K}-object Y, and every $\varepsilon > 0$ there is a \mathcal{K}-map $g' : X_n \to Y$ such that $g \simeq_{\varepsilon} g' \circ f_{n,\infty}$.

\[
\begin{array}{cccccc}
X_0 & \xleftarrow{f_0} & X_1 & \xleftarrow{f_1} & \cdots & \xleftarrow{f_{n,\infty}} & X_\infty \\
\downarrow{g'} & & \downarrow{\simeq_{\varepsilon}} & & \downarrow{g} & & \\
Y & & & & & & \\
\end{array}
\]
Definition

Let $\mathcal{K} \subseteq \mathcal{L}$ be categories of compacta. We consider the following condition for $\langle \mathcal{K}, \mathcal{L} \rangle$.

(F) For every sequence $\langle X_*, f_* \rangle$ in \mathcal{K}, every \mathcal{L}-map $g : X_\infty \to Y$ to a \mathcal{K}-object Y, and every $\varepsilon > 0$ there is a \mathcal{K}-map $g' : X_n \to Y$ such that $g \approx_\varepsilon g' \circ f_{n,\infty}$.

\[
\begin{array}{ccccccc}
X_0 & \leftarrow & X_1 & \leftarrow & \cdots & \leftarrow & X_n & \leftarrow & X_\infty \\
\downarrow^{f_0} & & \downarrow^{f_1} & & \cdots & & \downarrow^{f_{n,\infty}} & & \downarrow^{g'} \\
Y & \approx_\varepsilon & Y & & \approx_\varepsilon & & Y & & Y \\
g' & & g & & & & & & \\
\end{array}
\]

Fact

It follows from the result [Mardešić–Segal, 1963] that $\langle \mathcal{I}, \sigma \mathcal{I} \rangle$ satisfies (F).
Theorem

Let \mathcal{K} be a category of compacta such that all \mathcal{K}-maps are surjections, and $\langle \mathcal{K}, \sigma \mathcal{K} \rangle$ satisfies (F). Then the following conditions are equivalent.

1. $\langle X^*, f^* \rangle$ is a Fraïssé sequence in \mathcal{K}.
2. X^∞ is universal and almost projective in $\langle \mathcal{K}, \sigma \mathcal{K} \rangle$.
3. X^∞ is universal and almost homogeneous in $\langle \mathcal{K}, \sigma \mathcal{K} \rangle$.
4. X^∞ is universal and almost projective in $\sigma \mathcal{K}$.
5. X^∞ is universal and almost homogeneous in $\sigma \mathcal{K}$.

Hence, there is a unique Fraïssé limit in σI satisfying all the conditions.
Theorem

Let \mathcal{K} be a category of compacta such that all \mathcal{K}-maps are surjections, and $\langle \mathcal{K}, \sigma\mathcal{K} \rangle$ satisfies (F). Then the following conditions are equivalent.

1. $\langle X_*, f_* \rangle$ is a Fraïssé sequence in \mathcal{K}.

2. X_∞ is universal and almost projective in $\langle \mathcal{K}, \sigma\mathcal{K} \rangle$.

3. X_∞ is universal and almost homogeneous in $\langle \mathcal{K}, \sigma\mathcal{K} \rangle$.

4. X_∞ is universal and almost projective in $\sigma\mathcal{K}$.

5. X_∞ is universal and almost homogeneous in $\sigma\mathcal{K}$.

Hence, there is a unique Fraïssé limit in $\sigma\mathcal{I}$ satisfying all the conditions.
Fraïssé theory

Theorem

Let \mathcal{K} be a category of compacta such that all \mathcal{K}-maps are surjections, and $\langle \mathcal{K}, \sigma \mathcal{K} \rangle$ satisfies (F). Then the following conditions are equivalent.

1. $\langle X_\ast, f_\ast \rangle$ is a Fraïssé sequence in \mathcal{K}.
2. X_∞ is universal and almost projective in $\langle \mathcal{K}, \sigma \mathcal{K} \rangle$.

Hence, there is a unique Fraïssé limit in σI satisfying all the conditions.
Theorem

Let \mathcal{K} be a category of compacta such that all \mathcal{K}-maps are surjections, and $\langle \mathcal{K}, \sigma \mathcal{K} \rangle$ satisfies (F). Then the following conditions are equivalent.

1. $\langle X_*, f_* \rangle$ is a Fraïssé sequence in \mathcal{K}.
2. X_∞ is universal and almost projective in $\langle \mathcal{K}, \sigma \mathcal{K} \rangle$.
3. X_∞ is universal and almost homogeneous in $\langle \mathcal{K}, \sigma \mathcal{K} \rangle$.

Hence, there is a unique Fraïssé limit in σI satisfying all the conditions.
Theorem

Let \mathcal{K} be a category of compacta such that all \mathcal{K}-maps are surjections, and $\langle \mathcal{K}, \sigma\mathcal{K} \rangle$ satisfies (F). Then the following conditions are equivalent.

1. $\langle X_*, f_* \rangle$ is a Fraïssé sequence in \mathcal{K}.
2. X_∞ is universal and almost projective in $\langle \mathcal{K}, \sigma\mathcal{K} \rangle$.
3. X_∞ is universal and almost homogeneous in $\langle \mathcal{K}, \sigma\mathcal{K} \rangle$.
4. X_∞ is universal and almost projective in $\sigma\mathcal{K}$.
5. X_∞ is universal and almost homogeneous in $\sigma\mathcal{K}$.

Hence, there is a unique Fraïssé limit in $\sigma\mathcal{I}$ satisfying all the conditions.
Theorem

Let \mathcal{K} be a category of compacta such that all \mathcal{K}-maps are surjections, and $\langle \mathcal{K}, \sigma \mathcal{K} \rangle$ satisfies (F). Then the following conditions are equivalent.

1. $\langle X_*, f_* \rangle$ is a Fraïssé sequence in \mathcal{K}.
2. X_∞ is universal and almost projective in $\langle \mathcal{K}, \sigma \mathcal{K} \rangle$.
3. X_∞ is universal and almost homogeneous in $\langle \mathcal{K}, \sigma \mathcal{K} \rangle$.
4. X_∞ is universal and almost projective in $\sigma \mathcal{K}$.
5. X_∞ is universal and almost homogeneous in $\sigma \mathcal{K}$.

Hence, there is a unique Fraïssé limit in $\sigma \mathcal{I}$ satisfying all the conditions.
There is a Fraïssé sequence in \mathcal{I}, and its limit is the unique universal and almost homogeneous object in $\sigma \mathcal{I}$. Since there is an ε-crooked \mathcal{I}-map for every $\varepsilon > 0$, it follows that any Fraïssé sequence in \mathcal{I} is crooked, and so its limit is hereditarily indecomposable. By the result of Bing, the Fraïssé limit of $\sigma \mathcal{I}$ is the pseudo-arc.
There is a Fraïssé sequence in \mathcal{I}, and its limit is the unique universal and almost homogeneous object in $\sigma\mathcal{I}$.

Since there is an ε-crooked \mathcal{I}-map for every $\varepsilon > 0$, it follows that any Fraïssé sequence in \mathcal{I} is crooked, and so its limit is hereditarily indecomposable.
There is a Fraïssé sequence in \mathcal{I}, and its limit is the unique universal and almost homogeneous object in $\sigma\mathcal{I}$.

Since there is an ε-crooked \mathcal{I}-map for every $\varepsilon > 0$, it follows that any Fraïssé sequence in \mathcal{I} is crooked, and so its limit is hereditarily indecomposable.

By the result of Bing, the Fraïssé limit of $\sigma\mathcal{I}$ is the pseudo-arc.
For every \mathcal{I}-map g and every $\epsilon > 0$ there is $\delta > 0$ such that for every δ-crooked \mathcal{I}-map f there is an \mathcal{I}-map h such that $f \approx_\epsilon g \circ h$.

\[\begin{array}{c} \mathcal{I} \\ \epsilon \\
\end{array} \xleftarrow{f} \xrightarrow{\approx_\epsilon} \mathcal{I} \xleftarrow{g} \xrightarrow{\epsilon} \mathcal{I} \xleftarrow{h} \]
The pseudo-arc

Theorem

For every I-map g and every $\varepsilon > 0$ there is $\delta > 0$ such that for every δ-crooked I-map f there is an I-map h such that $f \approx_{\varepsilon} g \circ h$.

Corollary

- The almost amalgamation property of I follows from the fact that there is an ε-crooked I-map for every $\varepsilon > 0$.
The pseudo-arc

Theorem

For every \mathcal{I}-map g and every $\varepsilon > 0$ there is $\delta > 0$ such that for every δ-crooked \mathcal{I}-map f there is an \mathcal{I}-map h such that $f \approx_\varepsilon g \circ h$.

Corollary

- The almost amalgamation property of \mathcal{I} follows from the fact that there is an ε-crooked \mathcal{I}-map for every $\varepsilon > 0$.
- Every crooked sequence in \mathcal{I} is almost projective, and hence Fraïssé. Therefore, there is a unique hereditarily indecomposable arc-like continuum.
Theorem

Let $\langle X_\ast, f_\ast \rangle$ be a sequence in \mathcal{I}. The following conditions are equivalent.

1. X_∞ is hereditarily indecomposable.
2. X_∞ is crooked.
3. The maps $f_{n,\infty}$ are crooked.
4. $\langle X_\ast, f_\ast \rangle$ is a crooked sequence.
5. $\langle X_\ast, f_\ast \rangle$ is a Fraïssé sequence.
6. X_∞ is universal and almost projective in $\sigma \mathcal{I}$.
7. X_∞ is universal and almost homogeneous in $\sigma \mathcal{I}$.

Thank you for your attention.
Conclusion

Theorem

Let $\langle X_, f_* \rangle$ be a sequence in \mathcal{I}. The following conditions are equivalent.

1. X_∞ is hereditarily indecomposable.
2. X_∞ is crooked.
3. The maps $f_{n,\infty}$ are crooked.
4. $\langle X_*, f_* \rangle$ is a crooked sequence.
5. $\langle X_*, f_* \rangle$ is a Fraïssé sequence.
6. X_∞ is universal and almost projective in $\sigma\mathcal{I}$.
7. X_∞ is universal and almost homogeneous in $\sigma\mathcal{I}$.

Thank you for your attention.