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Definition

Let A,B be families of sets and
k ∈ N. We denote by Gk(A,B)
the following game played
between Alice and Bob.

In each inning n ∈ ω Alice
chooses An ∈ A and Bob
responds with Bn ⊂ An such
that |Bn| ≤ k .

We then say that Bob wins
if
⋃

n∈ω Bn ∈ B and that
Alice wins otherwise.

Definition

Let A,B be families of sets. We
denote by Gfin(A,B) the
following game played between
Alice and Bob.

In each inning n ∈ ω Alice
chooses An ∈ A and Bob
responds with Bn ⊂ An

finite.

We then say that Bob wins
if
⋃

n∈ω Bn ∈ B and that
Alice wins otherwise.
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Example

Given a space (X , τ), let

A = B = O =
{
U ⊂ τ : X =

⋃
U
}

(covering games)

Example

Given a space (X , τ) and p ∈ X , let

A = B = Ωp =
{
A ⊂ X : p ∈ A

}
(tightness games)
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Definition

A strategy for Player is a function whose input is the history of
the game up to a given Player’s turn and output is a valid
response of Player to that history.

Notation:
“Player ↑G”=“Player has a winning strategy in G”
“Player 6 ↑G”=“Player has no winning strategy in G”

Definition

Two games G1 and G2 are equivalent if

Alice ↑G1 ⇐⇒ Alice ↑G2

Bob ↑G1 ⇐⇒ Bob ↑G2
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Definition

Let A,B be families of sets. We denote by Gbnd(A,B) the
following game played between Alice and Bob. In each inning
n ∈ ω Alice chooses An ∈ A and Bob responds with Bn ⊂ An

finite. We then say that Bob wins if:

There is a k ∈ N such that |Bn| ≤ k for every n ∈ ω;⋃
n∈ω Bn ∈ B,

and that Alice wins otherwise.
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Theorem

Alice ↑Gbnd(Ωp,Ωp) if, and only if, Alice ↑Gk(Ωp,Ωp) for every
k ∈ N.

Therefore, Gbnd(Ωp,Ωp) is not equivalent to Gfin(Ωp,Ωp):

Proposition

Over Cp(R):

(a) Bob ↑Gfin(Ω0,Ω0) (D. Barman, A. Dow (2011));

(b) Alice ↑Gk(Ω0,Ω0) for every k ∈ N (M. Sakai (1988)).
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Theorem

Bob ↑Gbnd(Ωp,Ωp) if, and only if, there is an m ∈ N such that
Bob ↑Gm(Ωp,Ωp).

Therefore, Gbnd(Ωp,Ωp) is also not equivalent to Gk(Ωp,Ωp) for
any k ∈ N:

Proposition (L. Aurichi, A. Bella, R. Dias (2018))

For each k ∈ N there is a countable space Xk with only one
non-isolated point pk on which Alice ↑Gk(Ωpk ,Ωpk ) and
Bob ↑Gk+1(Ωpk ,Ωpk ).
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Proposition

Bob ↑Gbnd(O,O) over every compact space, but
Alice ↑Gk(O,O) over 2ω for every k ∈ N.
Moreover, Bob ↑Gfin(O,O) over every σ-compact space, but
Alice ↑Gbnd(O,O) over R.
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The following game is very useful to understand Gbnd(O,O):

Definition

Let k ∈ N, and A,B be families of sets. We denote by
Gk(A,B) mod 1 the following game, played between Alice and
Bob.

1 in the first inning, Alice chooses A0 ∈ A and Bob responds
with B0 ⊂ A0 finite;

2 in every inning n ∈ ω after that, Alice chooses An ∈ A and
Bob responds with Bn ⊂ An such that |Bn| ≤ k.

We then say that Bob wins if
⋃

n∈ω Bn ∈ B and that Alice wins
otherwise.
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Theorem

Over every space X ,

Alice ↑Gbnd(O,O) ⇐⇒ Alice ↑G1(O,O) mod 1.

Moreover, if X is a Hausdorff space, then

Bob ↑Gbnd(O,O) ⇐⇒ Bob ↑G1(O,O) mod 1.
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Proof uses

Theorem (L. Crone, L. Fishman, N. Hiers and S. Jackson (2018))

Let X be a space and k ∈ N. Then

Alice ↑G1(O,O) ⇐⇒ Alice ↑Gk(O,O).

Moreover, if X is a Hausdorff space, then

Bob ↑G1(O,O) ⇐⇒ Bob ↑Gk(O,O).
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Theorem

Let X be a regular space. Then Bob ↑G1(O,O) mod 1 if, and only
if, there is a compact set K ⊂ X such that, for every open set
V ⊃ K, Bob ↑G1(O,O) over X \ V .

Corollary

Let X be a regular space. Then Bob ↑Gbnd(O,O) if, and only if,
there is a compact set K ⊂ X such that, for every open set
V ⊃ K, Bob ↑G1(O,O) over X \ V .
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And we can characterize even stricter subsets of metrizable spaces:

Theorem (R. Telgársky (1975), F. Galvin (1978))

Let X be a space in which every point is a Gδ set. Then
Bob ↑G1(O,O) if, and only if, X is countable.

Corollary

Let X be a regular space in which every compact set is a Gδ set
(e.g., a metrizable space). Then Bob ↑Gbnd(O,O) if, and only if,
there is a compact set K ⊂ X and a countable set N ⊂ X such
that X = K ∪ N.
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Děkuji!
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