Products of γ-sets

Magdalena Włodecka

Cardinal Stefan Wyszyński University in Warsaw, Poland

Winter School 2019

(joint work with P. Szewczak)
The space of continuous functions

\(X = \) a subset of \(\mathbb{R} \)

\(C(X) := \{ f : X \to \mathbb{R} : f \text{ is continuous} \}, \text{w.r.t pointwise conv. topology} \)
The space of continuous functions

\(X = \) a subset of \(\mathbb{R} \)

\(C(X) := \{ f : X \to \mathbb{R} : f \text{ is continuous}\} \), w.r.t pointwise conv. topology

\(C(X) \) is first-countable \(\iff \) \(X \) is countable
The space of continuous functions

$X = \text{a subset of } \mathbb{R}$

$C(X) := \{ f : X \to \mathbb{R} : f \text{ is continuous}\}, \text{w.r.t pointwise conv. topology}$

$C(X)$ is first-countable $\iff X$ is countable

A space E is a Fréchet-Urysohn space if, for every point $q \in E$ and every subset $A \subseteq E$ such that $q \in \overline{A}$, there is $\{q_n : n \in \mathbb{N}\} \subseteq A$ such that $\lim_{n \to \infty} q_n = q$.

$q \in \overline{A} \iff A \ni q_n \longrightarrow q$
The space of continuous functions

\(X = \) a subset of \(\mathbb{R} \)

\(C(X) := \{ f : X \to \mathbb{R} : f \text{ is continuous} \} \), w.r.t pointwise conv. topology

\[C(X) \text{ is first-countable} \iff X \text{ is countable} \]

A space \(E \) is a Fréchet-Urysohn space if, for every point \(q \in E \) and every subset \(A \subseteq E \) such that \(q \in \overline{A} \), there is \(\{ q_n : n \in \mathbb{N} \} \subseteq A \) such that \(\lim_{n \to \infty} q_n = q \).

\[q \in \overline{A} \iff A \ni q_n \to q \]

first-countable \(\implies \) Fréchet-Urysohn
The space of continuous functions

\[X = \text{a subset of } \mathbb{R} \]

\[C(X) := \{ f : X \to \mathbb{R} : f \text{ is continuous} \} , \text{w.r.t pointwise conv. topology} \]

\[C(X) \text{ is first-countable } \iff X \text{ is countable} \]

A space \(E \) is a Fréchet-Urysohn space if, for every point \(q \in E \) and every subset \(A \subseteq E \) such that \(q \in \overline{A} \), there is \(\{q_n : n \in \mathbb{N}\} \subseteq A \) such that \(\lim_{n \to \infty} q_n = q \).

\[q \in \overline{A} \implies A \ni q_n \to q \]

\begin{align*}
\text{first-countable} & \implies \text{Fréchet-Urysohn} \\
C(X) \text{ is Fréchet-Urysohn} & \iff X \text{ is ???}
\end{align*}
γ-sets

An infinite open cover \mathcal{U} of a space X such that $X \notin \mathcal{U}$ is:

- **ω-cover**, if for every finite $F \subseteq X$, there is $U \in \mathcal{U}$ such that $F \subseteq U$,

- **γ-cover**, if for every $x \in X$, a set $\{U \in \mathcal{U} : x \notin U\}$ is finite.

γ-set = every ω-cover has a γ-subcover.

Theorem 1 (Gerlits–Nagy)

$C(X)$ is Fréchet-Urysohn $\iff X$ is γ.

Is there an uncountable γ-set?
γ-sets

An infinite open cover \mathcal{U} of a space X such that $X \notin \mathcal{U}$ is:

- **ω-cover**, if for every finite $F \subseteq X$, there is $U \in \mathcal{U}$ such that $F \subseteq U$,

- **γ-cover**, if for every $x \in X$, a set $\{U \in \mathcal{U} : x \notin U\}$ is finite.

Theorem 1 (Gerlits–Nagy)

$C(X)$ is Fréchet-Urysohn $\iff X$ is γ-set.

Is there an uncountable γ-set?
An infinite open cover \mathcal{U} of a space X such that $X \notin \mathcal{U}$ is:

- **ω-cover**, if for every finite $F \subseteq X$, there is $U \in \mathcal{U}$ such that $F \subseteq U$,
- **γ-cover**, if for every $x \in X$, a set $\{U \in \mathcal{U} : x \notin U\}$ is finite.

γ-set = every ω-cover has a γ-subcover
γ-sets

An infinite open cover \mathcal{U} of a space X such that $X \not\in \mathcal{U}$ is:

- **ω-cover**, if for every finite $F \subseteq X$, there is $U \in \mathcal{U}$ such that $F \subseteq U$,
- **γ-cover**, if for every $x \in X$, a set $\{U \in \mathcal{U} : x \not\in U\}$ is finite.

γ-set = every ω-cover has a γ-subcover

Theorem 1 (Gerlits–Nagy)

$C(X)$ is Fréchet-Urysohn $\iff X$ is γ
An infinite open cover \mathcal{U} of a space X such that $X \notin \mathcal{U}$ is:

- **ω-cover**, if for every finite $F \subseteq X$, there is $U \in \mathcal{U}$ such that $F \subseteq U$,

- **γ-cover**, if for every $x \in X$, a set $\{U \in \mathcal{U} : x \notin U\}$ is finite.

γ-set = every ω-cover has a γ-subcover

Theorem 1 (Gerlits–Nagy)

$C(X)$ is Fréchet-Urysohn \iff X is γ

Is there an uncountable γ-set?
The space $P(\mathbb{N})$

$P(\mathbb{N}) \sim \{0, 1\}^\mathbb{N} \sim \text{Cantor set} \subseteq \mathbb{R}$
The space $P(\mathbb{N})$

$P(\mathbb{N}) \simeq \{0, 1\}^\mathbb{N} \simeq \text{Cantor set} \subseteq \mathbb{R}$

$P(\mathbb{N}) = [\mathbb{N}]^\infty \cup \text{Fin}$
The space $P(\mathbb{N})$

\[P(\mathbb{N}) \simeq \mathbb{R} \]

\[P(\mathbb{N}) = [\mathbb{N}]^\infty \cup \text{Fin} \]

\[\mathbb{N}^\mathbb{N} \supseteq [\mathbb{N}]^\infty \subseteq P(\mathbb{N}) \]
The space $P(\mathbb{N})$

$P(\mathbb{N}) \approx \{0, 1\}^\mathbb{N} \approx \text{Cantor set} \subseteq \mathbb{R}$

$P(\mathbb{N}) = [\mathbb{N}]^\infty \cup \text{Fin}$

$\mathbb{N}^\mathbb{N} \supseteq [\mathbb{N}]^\infty \subseteq P(\mathbb{N})$

b is a pseudointersection of $A \subseteq [\mathbb{N}]^\infty$, if $|b \setminus a| < \omega$ for $a \in A$. ($b \subseteq^* a$)
The space $\mathcal{P}(\mathbb{N})$

$\mathcal{P}(\mathbb{N}) \simeq \{0, 1\}^\mathbb{N} \simeq \text{Cantor set} \subseteq \mathbb{R}$

$\mathcal{P}(\mathbb{N}) = [\mathbb{N}]^\infty \cup \text{Fin}$

$\mathbb{N}^\mathbb{N} \supseteq [\mathbb{N}]^\infty \subseteq \mathcal{P}(\mathbb{N})$

b is a pseudointersection of $A \subseteq [\mathbb{N}]^\infty$, if $|b \setminus a| < \omega$ for $a \in A$. ($b \subseteq^* a$)

$[\mathbb{N}]^\infty \supseteq A$ is centered, if for every $n \in \mathbb{N}$ and $a_1, \ldots, a_n \in A$, we have $|\bigcap_{i=1}^n a_i| = \omega$.
The space $P(\mathbb{N})$

$P(\mathbb{N}) \simeq \{0, 1\}^\mathbb{N} \simeq \text{Cantor set} \subseteq \mathbb{R}$

$P(\mathbb{N}) = [\mathbb{N}]^\infty \cup \text{Fin}$

$\mathbb{N}^\mathbb{N} \supseteq [\mathbb{N}]^\infty \subseteq P(\mathbb{N})$

b is a pseudointersection of $A \subseteq [\mathbb{N}]^\infty$, if $|b \setminus a| < \omega$ for $a \in A$. ($b \subseteq^* a$)

$[\mathbb{N}]^\infty \supseteq A$ is centered, if for every $n \in \mathbb{N}$ and $a_1, \ldots, a_n \in A$, we have $|\bigcap_{i=1}^n a_i| = \omega$.

p – the minimal cardinality of a centered family in $[\mathbb{N}]^\infty$ with no pseudointersection
\(\gamma \)-sets

\(\wp \) – the minimal cardinality of a centered family in \([\mathbb{N}]^\infty\) with no pseudointersection

Theorem 2 (Recław)

\(X \) is \(\gamma \) \(\iff \) \(\forall \varphi : X \xrightarrow{\text{cont.}} [\mathbb{N}]^\infty \) with a centered image, \(\varphi[X] \) has a pseudointersection
\(\gamma\)-sets

\(\rho\) – the minimal cardinality of a centered family in \([\mathbb{N}]^\infty\) with no pseudointersection

Theorem 2 (Recław)

\[X \text{ is } \gamma \iff \forall \varphi : X \xrightarrow{\text{cont.}} [\mathbb{N}]^\infty \text{ with a centered image, } \varphi[X] \text{ has a pseudointersection} \]

Corollary 3

- \(|X| < \rho \iff X \text{ is } \gamma\)
- There is \(X \subseteq [\mathbb{N}]^\infty\), of cardinality \(\rho\), which is not \(\gamma\)
γ-sets

p – the minimal cardinality of a centered family in $[\mathbb{N}]^\infty$ with no pseudointersection

<table>
<thead>
<tr>
<th>Theorem 2 (Recław)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X is $\gamma \iff \forall \varphi : X \xrightarrow{\text{cont.}} [\mathbb{N}]^\infty$ with a centered image, $\varphi[X]$ has a pseudointersection</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Corollary 3</th>
</tr>
</thead>
</table>
| • $|X| < p \implies X$ is γ
| • There is $X \subseteq [\mathbb{N}]^\infty$, of cardinality p, which is not γ |

<table>
<thead>
<tr>
<th>Corollary 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\omega_1 < p \implies$ there exists an uncountable γ-set</td>
</tr>
</tbody>
</table>
γ-sets

\(p \) – the minimal cardinality of a centered family in \([\mathbb{N}]^\infty\) with no pseudointersection

Theorem 2 (Recław)

\[X \text{ is } \gamma \iff \forall \, \varphi : X \xrightarrow{\text{cont.}} [\mathbb{N}]^\infty \text{ with a centered image, } \varphi[X] \text{ has a pseudointersection} \]

Corollary 3

- \(|X| < p \implies X \text{ is } \gamma \)
- *There is } X \subseteq [\mathbb{N}]^\infty, \text{ of cardinality } p, \text{ which is not } \gamma*

Corollary 4

\(\omega_1 < p \implies \text{there exists an uncountable } \gamma\text{-set} \)

Is there a \(\gamma\text{-set of cardinality } \geq p \)?
Tower in $[\mathbb{N}]^\infty$

$[\mathbb{N}]^\infty \supseteq T = \{x_\alpha : \alpha < \kappa\}$ is a tower, if $x_\beta \subseteq^* x_\alpha$ for $\alpha < \beta$
Tower in $[\mathbb{N}]^\infty$

$[\mathbb{N}]^\infty \supseteq T = \{ x_\alpha : \alpha < \kappa \}$ is a tower, if $x_\beta \subseteq^* x_\alpha$ for $\alpha < \beta$

Let $f, g \in [\mathbb{N}]^\infty$. Then $f \leq^* g$, if $f(n) \leq g(n)$ for almost all n.
Tower in $[\mathbb{N}]^\infty$

$[\mathbb{N}]^\infty \supseteq T = \{x_\alpha : \alpha < \kappa\}$ is a tower, if $x_\beta \subseteq^* x_\alpha$ for $\alpha < \beta$

Let $f, g \in [\mathbb{N}]^\infty$. Then $f \leq^* g$, if $f(n) \leq g(n)$ for almost all n.

$[\mathbb{N}]^\infty \supseteq A$ is bounded, if there exists $b \in [\mathbb{N}]^\infty$ such that $a \leq^* b$ for all $a \in A$.
Tower in $[\mathbb{N}]^\infty$

$[\mathbb{N}]^\infty \supseteq T = \{ x_\alpha : \alpha < \kappa \}$ is a tower, if $x_\beta \subseteq^* x_\alpha$ for $\alpha < \beta$

Let $f, g \in [\mathbb{N}]^\infty$. Then $f \leq^* g$, if $f(n) \leq g(n)$ for almost all n.

$[\mathbb{N}]^\infty \supseteq A$ is bounded, if there exists $b \in [\mathbb{N}]^\infty$ such that $a \leq^* b$ for all $a \in A$.

A set A is unbounded, if it is not bounded.
Tower in $[\mathbb{N}]^\infty$

$[\mathbb{N}]^\infty \supseteq T = \{x_\alpha : \alpha < \kappa\}$ is a tower, if $x_\beta \subseteq^* x_\alpha$ for $\alpha < \beta$.

Let $f, g \in [\mathbb{N}]^\infty$. Then $f \leq^* g$, if $f(n) \leq g(n)$ for almost all n.

$[\mathbb{N}]^\infty \supseteq A$ is bounded, if there exists $b \in [\mathbb{N}]^\infty$ such that $a \leq^* b$ for all $a \in A$.

A set A is unbounded, if it is not bounded.

p – the minimal cardinality of a centered family in $[\mathbb{N}]^\infty$ with no pseudointersection.

b – the minimal cardinality of an unbounded set.
Tower in $[\mathbb{N}]^\infty$

$[\mathbb{N}]^\infty \supseteq T = \{x_\alpha : \alpha < \kappa\}$ is a tower, if $x_\beta \subseteq^* x_\alpha$ for $\alpha < \beta$

Let $f, g \in [\mathbb{N}]^\infty$. Then $f \leq^* g$, if $f(n) \leq g(n)$ for almost all n.

$[\mathbb{N}]^\infty \supseteq A$ is bounded, if there exists $b \in [\mathbb{N}]^\infty$ such that $a \leq^* b$ for all $a \in A$.

A set A is unbounded, if it is not bounded.

p – the minimal cardinality of a centered family in $[\mathbb{N}]^\infty$ with no pseudointersection

b – the minimal cardinality of an unbounded set

$\omega < p \leq b \leq c$
Unbounded tower

\[[\mathbb{N}]^\infty \supseteq T = \{ x_\alpha : \alpha < b \} \text{ is an unbounded tower, if } T \text{ is a tower and } T \text{ is unbounded} \]
Unbounded tower

\([\mathbb{N}]^\infty \supseteq T = \{x_\alpha : \alpha < b\}\) is an unbounded tower, if \(T\) is a tower and \(T\) is unbounded

\(T = \) an unbounded tower
Unbounded tower

\[\mathbb{N}^\infty \supseteq T = \{ x_\alpha : \alpha < b \} \text{ is an unbounded tower, if } T \text{ is a tower and } T \text{ is unbounded} \]

\[T = \text{an unbounded tower} \]

Lemma 5

\[T \text{ exists} \iff p = b \]
Unbounded tower

\[\big[\mathbb{N}\big]^{\infty} \supseteq T = \{ x_\alpha : \alpha < b \} \text{ is an unbounded tower, if } T \text{ is a tower and } T \text{ is unbounded} \]

\[T = \text{an unbounded tower} \]

Lemma 5

\[T \text{ exists} \iff p = b \]

Theorem 6 (Tsaban)

\[T \cup \text{Fin} \text{ is a } \gamma\text{-set} \]
Products of γ-sets

Theorem 7 (Miller, Tsaban, Zdomskyy)

Assuming CH, there are γ-sets X and Y such that $X \times Y$ is not Menger space.
Products of γ-sets

<table>
<thead>
<tr>
<th>Theorem 7 (Miller, Tsaban, Zdomskyy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assuming CH, there are γ-sets X and Y such that $X \times Y$ is not Menger space.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem 8 (Szewczak, MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(T \cup \text{Fin}) \sqcup (\tilde{T} \cup \text{Fin})$ is γ</td>
</tr>
</tbody>
</table>
Products of γ-sets

Theorem 7 (Miller, Tsaban, Zdomskyy)

Assuming CH, there are γ-sets X and Y such that $X \times Y$ is not Menger space.

Theorem 8 (Szewczak, MW)

$$(T \cup \text{Fin}) \sqcup (\tilde{T} \cup \text{Fin}) \text{ is } \gamma$$

Corollary 9 (Szewczak, MW)

$$(T \cup \text{Fin}) \times (\tilde{T} \cup \text{Fin}) \text{ is } \gamma$$
Products of γ-sets

\[\kappa := \min \{|X| : X \text{ is not productively } \gamma \} \]
Products of γ-sets

$$\kappa := \min\{|X| : X \text{ is not productively } \gamma\}$$

Theorem 10 (Szewczak, MW)

Let $\kappa = b$ and $Y \subseteq P(\mathbb{N})$ be a γ-set. Then $(T \cup \text{Fin}) \cup Y$ is γ.

Corollary 11 (Szewczak, MW)

Let $\kappa = b$. Then $T \cup \text{Fin}$ is productively γ.
Products of γ-sets

$\kappa := \min\{|X| : X \text{ is not productively } \gamma\}$

Theorem 10 (Szewczak, MW)

Let $\kappa = b$ and $Y \subseteq \mathcal{P}(\mathbb{N})$ be a γ-set. Then $(T \cup \text{Fin}) \sqcup Y$ is γ.

Corollary 11 (Szewczak, MW)

Let $\kappa = b$. Then $T \cup \text{Fin}$ is productively γ.
Products of γ-sets

$\kappa := \min\{|X| : X \text{ is not productively } \gamma\}$

Theorem 10 (Szewczak, MW)

Let $\kappa = b$ and $Y \subseteq P(\mathbb{N})$ be a γ-set. Then $(T \cup \text{Fin}) \cup Y$ is γ.

Corollary 11 (Szewczak, MW)

Let $\kappa = b$. Then $T \cup \text{Fin}$ is productively γ.
Countably γ

countably γ-set = every countable ω-cover has a γ-subcover
countably γ-set = every countable ω-cover has a γ-subcover

Theorem 12 (Szewczak, MW)

\[\text{Let } \lambda < b. \text{ Then } \bigcup_{\beta < \lambda}(T_\beta \cup \text{Fin}) \text{ is countably } \gamma. \]
Countably γ

countably γ-set = every countable ω-cover has a γ-subcover

Theorem 12 (Szewczak, MW)

Let $\lambda < b$. Then $\bigsqcup_{\beta < \lambda} (T_\beta \cup \text{Fin})$ is countably γ.

Corollary 13 (Szewczak, MW)

Let $\omega_1 < b$. Then $X = \bigsqcup_{\beta < \omega_1} (T_\beta \cup \text{Fin})$ is countably γ, X is not γ, $|X| = p$ and X is a metrizable space.
countably γ-set = every countable ω-cover has a γ-subcover

Theorem 12 (Szewczak, MW)

Let $\lambda < b$. Then $\bigcup_{\beta < \lambda} (T_\beta \cup \text{Fin})$ is countably γ.

Corollary 13 (Szewczak, MW)

Let $\omega_1 < b$. Then $X = \bigcup_{\beta < \omega_1} (T_\beta \cup \text{Fin})$ is countably γ, X is not γ, $|X| = p$ and X is a metrizable space.

Corollary 14 (Szewczak, MW)

Let $\lambda < b$. Then $\bigcup_{\beta < \lambda} (T_\beta \cup \text{Fin})$ is γ.