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The space of continuous functions
X = a subset of R

C(X ) := {f : X → R : f is continuous},w.r.t pointwise conv.
topology

C(X ) is first-countable ⇐⇒ X is countable

A space E is a Fréchet-Urysohn space if, for every point q ∈ E and
every subset A ⊆ E such that q ∈ A, there is {qn : n ∈ N} ⊆ A
such that limn→∞ qn = q.

q ∈ A =⇒ A 3 qn −→ q

first-countable =⇒ Fréchet-Urysohn

C(X ) is Fréchet-Urysohn ⇐⇒ X is ???
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γ-sets

An infinite open cover U of a space X such that X 6∈ U is:
• ω-cover, if for every finite F⊆X , there is U ∈ U such that

F ⊆ U,

• γ-cover, if for every x ∈ X , a set {U ∈ U : x 6∈ U} is finite.

γ-set = every ω-cover has a γ-subcover

Theorem 1 (Gerlits–Nagy)

C(X ) is Fréchet-Urysohn⇐⇒ X is γ

Is there an uncountable γ-set?
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The space P(N)

P(N) ' {0, 1}N ' Cantor set ⊆ R

P(N) = [N]∞ ∪ Fin

NN ⊇ [N]∞ ⊆ P(N)

b is a pseudointersection of A ⊆ [N]∞, if |b \ a| < ω for a ∈ A.
(b ⊆∗ a)

[N]∞ ⊇ A is centered, if for every n ∈ N and a1, ..., an ∈ A, we
have |

⋂n
i=1 ai | = ω.

p – the minimal cardinality of a centered family in [N]∞ with no
pseudointersection
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γ-sets
p – the minimal cardinality of a centered family in [N]∞ with no
pseudointersection

Theorem 2 (Recław)

X is γ ⇐⇒ ∀ ϕ : X
cont.−−→ [N]∞ with a centered image, ϕ[X ] has a

pseudointersection

Corollary 3

• |X | < p =⇒ X is γ
• There is X ⊆ [N]∞, of cardinality p, which is not γ

Corollary 4

ω1 < p =⇒ there exists an uncountable γ-set

Is there a γ-set of cardinality > p?
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Tower in [N]∞

[N]∞ ⊇ T = {xα : α < κ} is a tower, if xβ ⊆∗ xα for α < β

Let f , g ∈ [N]∞. Then f 6∗ g , if f (n) 6 g(n) for almost all n.

[N]∞ ⊇ A is bounded, if there exists b ∈ [N]∞ such that a 6∗ b for
all a ∈ A.

A set A is unbounded, if it is not bounded.

p – the minimal cardinality of a centered family in [N]∞ with no
pseudointersection

b – the minimal cardinality of an unbounded set

ω < p 6 b 6 c
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T = an unbounded tower

Lemma 5

T exists ⇐⇒ p = b

Theorem 6 (Tsaban)

T ∪ Fin is a γ-set
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Theorem 7 (Miller, Tsaban, Zdomskyy)

Assuming CH, there are γ-sets X and Y such that X × Y is not
Menger space.

Theorem 8 (Szewczak, MW)

(T ∪ Fin) t (T̃ ∪ Fin) is γ

Corollary 9 (Szewczak, MW)

(T ∪ Fin)× (T̃ ∪ Fin) is γ



Products of γ-sets

Theorem 7 (Miller, Tsaban, Zdomskyy)

Assuming CH, there are γ-sets X and Y such that X × Y is not
Menger space.

Theorem 8 (Szewczak, MW)

(T ∪ Fin) t (T̃ ∪ Fin) is γ

Corollary 9 (Szewczak, MW)

(T ∪ Fin)× (T̃ ∪ Fin) is γ



Products of γ-sets

Theorem 7 (Miller, Tsaban, Zdomskyy)

Assuming CH, there are γ-sets X and Y such that X × Y is not
Menger space.

Theorem 8 (Szewczak, MW)

(T ∪ Fin) t (T̃ ∪ Fin) is γ

Corollary 9 (Szewczak, MW)

(T ∪ Fin)× (T̃ ∪ Fin) is γ



Products of γ-sets

κ := min{|X | : X is not productively γ}

Theorem 10 (Szewczak, MW)

Let κ = b and Y ⊆ P(N) be a γ-set. Then (T ∪ Fin) t Y is γ.

Corollary 11 (Szewczak, MW)
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Countably γ

countably γ-set = every countable ω-cover has a γ-subcover

Theorem 12 (Szewczak, MW)

Let λ < b. Then
⊔
β<λ(Tβ ∪ Fin) is countably γ.

Corollary 13 (Szewczak, MW)

Let ω1 < b. Then X =
⊔
β<ω1

(Tβ ∪ Fin) is countably γ, X is not
γ, |X | = p and X is a metrizable space.

Corollary 14 (Szewczak, MW)

Let λ < b. Then
⋃
β<λ(Tβ ∪ Fin) is γ.



Countably γ

countably γ-set = every countable ω-cover has a γ-subcover

Theorem 12 (Szewczak, MW)

Let λ < b. Then
⊔
β<λ(Tβ ∪ Fin) is countably γ.

Corollary 13 (Szewczak, MW)

Let ω1 < b. Then X =
⊔
β<ω1

(Tβ ∪ Fin) is countably γ, X is not
γ, |X | = p and X is a metrizable space.

Corollary 14 (Szewczak, MW)

Let λ < b. Then
⋃
β<λ(Tβ ∪ Fin) is γ.



Countably γ

countably γ-set = every countable ω-cover has a γ-subcover

Theorem 12 (Szewczak, MW)

Let λ < b. Then
⊔
β<λ(Tβ ∪ Fin) is countably γ.

Corollary 13 (Szewczak, MW)

Let ω1 < b. Then X =
⊔
β<ω1

(Tβ ∪ Fin) is countably γ, X is not
γ, |X | = p and X is a metrizable space.

Corollary 14 (Szewczak, MW)

Let λ < b. Then
⋃
β<λ(Tβ ∪ Fin) is γ.



Countably γ

countably γ-set = every countable ω-cover has a γ-subcover

Theorem 12 (Szewczak, MW)

Let λ < b. Then
⊔
β<λ(Tβ ∪ Fin) is countably γ.

Corollary 13 (Szewczak, MW)

Let ω1 < b. Then X =
⊔
β<ω1

(Tβ ∪ Fin) is countably γ, X is not
γ, |X | = p and X is a metrizable space.

Corollary 14 (Szewczak, MW)

Let λ < b. Then
⋃
β<λ(Tβ ∪ Fin) is γ.


