On *n*-fold sum of a non-flat continuum

Eliza Jabłońska (joint work with Taras Banakh and Wojciech Jabłoński)

> Institute of Mathematics Pedagogical University of Cracow

Hejnice, Jan 26 - Feb 2, 2018

A function $f: \mathbb{R}^N \to \mathbb{R}$ is called an *additive functional* if

$$f(x+y) = f(x) + f(y)$$
 for all $x, y \in \mathbb{R}^N$.

Fact (folklore)

An additive functional $f: \mathbb{R}^N \to \mathbb{R}$ upper bounded on a non-empty open set $T \subset \mathbb{R}^N$ is continuous.

For $n \in \mathbb{N}$ and $T \subset X$ denote by $T^{+n} := \underbrace{T + \cdots + T}_{n}$ n-fold sum of T.

Theorem (folklore)

An additive functional $f: \mathbb{R}^N \to \mathbb{R}$ upper bounded on a set $T \subset \mathbb{R}^N$ with

$$(S_n) \qquad \qquad \operatorname{int} T^{+n} \neq \emptyset$$

for some $n \in \mathbb{N}$ is continuous.

Steinhaus Theorem (1920)

For every sets $A, B \subset \mathbb{R}^N$ of positive Lebesgue measure $\operatorname{int}(A + B) \neq \emptyset$.

Pettis-Piccard Theorem (1939, 1951)

Let X be a topological group. For every non-meager sets $A, B \subset X$ with the Baire property $\operatorname{int}(A+B) \neq \emptyset$.

- ▶ Sets of positive Lebesgue measure in \mathbb{R}^N ;
- non-meager sets with the Baire property in a topological group;
- ▶ the Cantor ternary set C in \mathbb{R}

have the property (S_2) .

[•] H. Steinhaus, Sur les distances des points des ensembles de mesure positive, Fund. Math. 1 (1920), 99-104.

S. Piccard, Sur les ensembles de distances des ensembles de points d'un espace Euclidien, Mem. Univ. Neuchâtel, vol. 13, Secrétariat Univ., Neuchâtel, 1939.

[•] B.J. Pettis, Remarks on a theorem of E. J. McShane, Proc. Amer. Math. Soc. 2 (1951), 166-171.

Theorem (Jabłoński, 1999)

If $U \subset \mathbb{R}^N$ is a non-empty open set and $f: U \to \mathbb{R}$ is a continuous non-affine function, then

$$\operatorname{int}(\operatorname{Gr} f + \operatorname{Gr} f) \neq \emptyset;$$

i.e. Gr $f \subset \mathbb{R}^{N+1}$ has the property (S_2) .

There are also sets satisfying (S_{n+1}) but not (S_n) ; e.g. Let $T \subset \mathbb{R}^3$ be given by $T := T_x \cup T_y \cup T_z$, where

$$T_{\times} := [0, 1] \times \{0\} \times \{0\},\ T_{y} := \{0\} \times [0, 1] \times \{0\},\ T_{z} := \{0\} \times \{0\} \times [0, 1].$$

Then $\lambda_3(T+T)=0$ and int $(T+T+T)\neq\emptyset$.

• W. Jabłoński, *On a class of sets connected with a convex function*, Abh. Math. Semin. Univ. Hamburg 69 (1999), 205–210.

Theorem (Banakh-Bartoszewicz-Filipczak-Szymonik, 2015)

Let $k \geqslant 2$ and $\alpha \in \left[\frac{1}{k+1}, \frac{1}{k}\right)$. For the Cantor-type set $C_{\alpha} \subset \mathbb{R}$ with self–similarity α

$$\lambda_1(C_{\alpha}^{+(k-1)}) = 0$$
 and $C_{\alpha}^{+k} = [0, k];$

i.e. C_{α} satisfies (S_k) but not (S_{k-1}) .

 T. Banakh, A. Bartoszewicz, M. Filipczak, E. Szymonik, Topological and measure properties of some self-similar sets, Topol. Methods Nonlinear Anal. 46 (2015), 1013–1028.

Theorem (Ger, 1973)

Let $I \subset \mathbb{R}$ be an interval, $n \geqslant 2$ and $\varphi : I \to \mathbb{R}^n$ be a C^1 -function such

that
$$\frac{\partial(\varphi_1,...,\varphi_n)}{\partial(x_1,...,x_n)} := \begin{vmatrix} \varphi_1'(x_1) & \dots & \varphi_1'(x_n) \\ \vdots & \ddots & \vdots \\ \varphi_n'(x_1) & \dots & \varphi_n'(x_n) \end{vmatrix} \neq 0$$
 for almost all $(x_1,...,x_n)$ in I^n .

If $Z \subset I$ is a set of positive Lebesgue measure, then

$$\lambda_n(\varphi(Z)^{+n}) > 0$$
 and $\operatorname{int} \varphi(Z)^{+2n} \neq \emptyset$

(i.e.
$$\varphi(Z) \subset \mathbb{R}^n$$
 has (S_{2n}) property).

What about a topological counterpart of Ger's result?

• R. Ger, *Thin sets and convex functions*, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 21 (1973), 413–416.

Algebraic sum of n continua in \mathbb{R}^n

Definition 1

A subset A of a real topological vector space X is called:

- flat if the affine hull of A is nowhere dense in X:
- ▶ nowhere flat if each non-empty relatively open subset $U \subset A$ is not flat in X.

If dim X = n, then a set $A \subset X$ is flat if and only if A is contained in a hyperplane.

> nowhere flatness \implies non-flatness non-flatness ≠⇒ nowhere flatness

e.g.
$$T \subset \mathbb{R}^3$$
 given by $T := T_x \cup T_y \cup T_z$, where

$$T_{\times} := [0, 1] \times \{0\} \times \{0\},$$

 $T_{y} := \{0\} \times [0, 1] \times \{0\},$

$$\mathcal{T}_z := \{0\} \times \{0\} \times [0,1], \text{ for all the proof of th$$

Example 1

Let $\varphi: \mathbb{R} \to \mathbb{R}^3$ be given by $\varphi(t) := (\cos t, \sin t, t)$ for $t \in \mathbb{R}$. Then $\varphi(\mathbb{R}) \subset \mathbb{R}^3$ is nowhere flat.

/By a continuum we understand a connected compact metrizable space./

Theorem (Banakh-J.-Jabłoński, 2018)

Let K_1, \ldots, K_n be continua in \mathbb{R}^n containing the origin of \mathbb{R}^n . Assume that each continuum K_i contains a point e_i such that the vectors e_1, \ldots, e_n are linearly independent. Then the algebraic sum $K := K_1 + \cdots + K_n$ has non-empty interior in \mathbb{R}^n and $\lambda_n(K)$ is not smaller than the volume of the parallelotope $P := [0,1] \cdot e_1 + \cdots + [0,1] \cdot e_n$.

By Theorem (with n = 2) we obtain

Proposition (Kallman-Simmons, 1985)

If K is a continuum in the plane which does not lie on a line, then $\operatorname{int}(K - K) \neq \emptyset$.

T. Banakh, E. Jabłońska, W. Jabłoński, The continuity of additive and convex functions which are upper bounded on non-flat continua in Rⁿ, Topol. Methods Nonlinear Anal. (accepted)

[•] R.R. Kallman, F.W. Simmons, A theorem on planar continua and an application to authomorphisms of the field of complex numbers, Topology Appl 20 (1985) 251–255

Corollary (Banakh-J.-Jabłoński, 2018)

For a continuum $K \subset \mathbb{R}^n$ the following conditions are equivalent:

- (1) K^{+n} has non-empty interior in \mathbb{R}^n ;
- (2) K^{+n} has positive Lebesgue measure in \mathbb{R}^n ;
- (3) K is not flat in \mathbb{R}^n ;
- (4) int $f(K) \neq \emptyset$ for any linear continuous functional $f : \mathbb{R}^n \to \mathbb{R}$, $f \neq 0$;
- (5) each additive functional $f: \mathbb{R}^n \to \mathbb{R}$ upper bounded on K is continuous;
- (6) each additive functional $f: \mathbb{R}^n \to \mathbb{R}$ bounded on K is continuous.

Problem (Banakh-J.-Jabłoński, 2018)

Is there a compact subset $K \subset \mathbb{R}^2$ such that K + K has empty interior in \mathbb{R}^2 but for any non-zero linear continuous functional $f : \mathbb{R}^2 \to \mathbb{R}$ the image f(K) has non-empty interior in \mathbb{R} ?

Collectively nowhere flat subsets in \mathbb{R}^n

Definition 2

Subsets A_1, \ldots, A_n of \mathbb{R}^n are called *collectively nowhere flat in* \mathbb{R}^n if any non-empty relatively open subsets $U_1 \subset A_1, \ldots, U_n \subset A_n$ contain points $a_1, b_1 \in U_1, \ldots, a_n, b_n \in U_n$ such that the vectors $b_1 - a_1, \ldots, b_n - a_n$ form a basis of the linear space \mathbb{R}^n .

For example, for a basis e_1, \ldots, e_n of \mathbb{R}^n with $n \ge 2$:

- ▶ the closed intervals $[0,1] \cdot e_1, \dots, [0,1] \cdot e_n$ are collectively nowhere flat:
- ▶ for each $i \in \{1, ..., n\}$ the set $[0, 1] \cdot e_i$ is flat.

Proposition (Banakh-J.-Jabłoński, 2018)

A subspace $A \subset \mathbb{R}^n$ is nowhere flat in \mathbb{R}^n if and only if the sequence of n its copies $A_1 = A, \ldots, A_n = A$ is collectively nowhere flat in \mathbb{R}^n .

Theorem (Banakh-J.-Jabłoński, 2018)

Let K_1, \ldots, K_n be collectively nowhere flat locally connected subspaces of \mathbb{R}^n . For every non-meager subsets B_1, \ldots, B_n in K_1, \ldots, K_n the algebraic sum $B_1 + \cdots + B_n$ is non-meager in \mathbb{R}^n .

Corollary (Banakh-J.-Jabłoński, 2018)

Let K be a nowhere flat locally connected subset of \mathbb{R}^n and A be a non-meager analytic subspace of K. Then A^{+n} is a non-meager analytic subset of \mathbb{R}^n and $\operatorname{int} A^{+2n} \neq \emptyset$. Moreover, $0 \in \operatorname{int} (A - A)^{+n}$.

The condition of (collective) nowhere flatness in Theorem and Corollary is essential!

Example 2

- ▶ Let *C* be the Cantor ternary set in [0, 1].
- ▶ Let $f: C \rightarrow [0,1]$ be a continuous function given by

$$f\left(\sum_{n=1}^{\infty}\frac{2x_n}{3^n}\right)=\sum_{n=1}^{\infty}\frac{x_n}{2^n}.$$

- ▶ Let $g : [0,1] \rightarrow [0,1]$ be the Cantor function, i.e. the unique monotone function extending f.
- ▶ Let Γ_f , Γ_g be the graphs of f and g, respectively.
- ▶ The set $K := \Gamma_g$ is connected but not nowhere flat in the plane \mathbb{R}^2 .
- ▶ The sets $K_1 := K$, $K_2 := K$ are not collectively nowhere flat in \mathbb{R}^2 .
- ▶ The set $A := \Gamma_g \setminus \Gamma_f$ is open (consequently non-meager and analytic) in $K = \Gamma_g$.
- ▶ A + A is meager in \mathbb{R}^2 .

A topological counterpart of Ger's Theorem:

Corollary (Banakh-J.-Jabłoński, 2018)

Let $n \in \mathbb{N}$. For any non-flat continuum $K \subset \mathbb{R}^n$ int $K^{+n} \neq \emptyset$. Moreover, if K is locally connected and nowhere flat in \mathbb{R}^n , then for any non-meager analytic subspace A of K A^{+n} is a non-meager analytic subset of \mathbb{R}^n and int $A^{+2n} \neq \emptyset$.

Corollary (Banakh-J.-Jabłoński, 2018)

Let $I \subset \mathbb{R}$ be an interval, $n \geqslant 2$ and $\varphi : I \to \mathbb{R}^n$ be a C^1 -function such that $\frac{\partial(\varphi_1, \dots, \varphi_n)}{\partial(x_1, \dots, x_n)} \neq 0$ for almost all (x_1, \dots, x_n) in I^n (then $K := \varphi(I)$ is locally connected and nowhere flat in \mathbb{R}^n).

If $Z \subset I$ is a non-meager set with the Baire property, then $\varphi(Z)^{+n}$ is a non-meager analytic set in \mathbb{R}^n and

$$\operatorname{int} \varphi(Z)^{+2n} \neq \emptyset.$$

► T. Banakh, E. Jabłońska, W. Jabłoński, The continuity of additive and convex functions which are upper bounded on non-flat continua in Rⁿ, Topol. Methods Nonlinear Anal. (accepted), arXiv:1805.01997v2 [math.GN]