Generic structures

Wiesław Kubiś

Institute of Mathematics, Czech Academy of Sciences
and
Cardinal Stefan Wyszyński University in Warsaw, Poland

47th Winter School in Abstract Analysis
Hejnice, 26.01–2.02.2019
1 Preliminaries

2 Generic objects

3 Fraïssé categories

4 Fraïssé theory

5 More examples
A *category* \mathcal{K} consists of

- a class of objects $\text{Obj}(\mathcal{K})$,
Categories

A *category* \mathcal{K} consists of

- a class of objects $\text{Obj}(\mathcal{K})$,

- a class of arrows $\bigcup_{A,B \in \text{Obj}(\mathcal{K})} \mathcal{K}(A,B)$, where $f \in \mathcal{K}(A,B)$ means A is the *domain* of f and B is the *codomain* of f,
A category \mathcal{K} consists of

- a class of objects $\text{Obj}(\mathcal{K})$,
- a class of arrows $\bigcup_{A,B\in\text{Obj}(\mathcal{K})} \mathcal{K}(A, B)$, where $f \in \mathcal{K}(A, B)$ means A is the domain of f and B is the codomain of f,
- a partial associative composition operation \circ defined on arrows, where $f \circ g$ is defined \iff the domain of g coincides with the domain of f.

Furthermore, for each $A \in \text{Obj}(\mathcal{K})$ there is an identity $\text{id}_A \in \mathcal{K}(A, A)$ satisfying $\text{id}_A \circ g = g$ and $f \circ \text{id}_A = f$ for $f \in \mathcal{K}(A, X)$, $g \in \mathcal{K}(Y, A)$, $X, Y \in \text{Obj}(\mathcal{K})$.

W.Kubiš (http://www.math.cas.cz/kubis/)
A *category* \(\mathbb{K} \) consists of

- a class of objects \(\text{Obj}(\mathbb{K}) \),
- a class of arrows \(\bigcup_{A,B \in \text{Obj}(\mathbb{K})} \mathbb{K}(A, B) \), where \(f \in \mathbb{K}(A, B) \) means \(A \) is the *domain* of \(f \) and \(B \) is the *codomain* of \(f \),
- a partial associative composition operation \(\circ \) defined on arrows, where \(f \circ g \) is defined \(\iff \) the domain of \(g \) coincides with the domain of \(f \).

Furthermore, for each \(A \in \text{Obj}(\mathbb{K}) \) there is an *identity* \(\text{id}_A \in \mathbb{K}(A, A) \) satisfying \(\text{id}_A \circ g = g \) and \(f \circ \text{id}_A = f \) for \(f \in \mathbb{K}(A, X) \), \(g \in \mathbb{K}(Y, A) \), \(X, Y \in \text{Obj}(\mathbb{K}) \).
Definition

A sequence in \mathcal{K} is a functor \bar{x} from ω into \mathcal{K}.

Definition

Let \bar{x} be a sequence in \mathcal{K}. The colimit of \bar{x} is a pair $\langle X, \{x_\infty^n\}_{n \in \mathbb{N}} \rangle$ with $x_\infty^n : X_n \to X$ satisfying:

1. $x_\infty^n = x_\infty^m \circ x_m^n$ for every $n < m$.

2. If $\langle Y, \{y_\infty^n\}_{n \in \mathbb{N}} \rangle$ with $y_\infty^n : X_n \to Y$ satisfies $y_\infty^n = y_\infty^m \circ y_m^n$ for every $n < m$ then there is a unique arrow $f : X \to Y$ satisfying $f \circ x_\infty^n = y_\infty^n$ for every $n \in \mathbb{N}$.

Definition

A sequence in \mathcal{K} is a functor \vec{x} from ω into \mathcal{K}.

$$X_0 \xrightarrow{x_0^1} X_1 \xrightarrow{x_1^2} X_2 \xrightarrow{x_2^3} \ldots$$
Definition

A sequence in \mathcal{K} is a functor \vec{x} from ω into \mathcal{K}.

\[
\begin{array}{cccc}
X_0 & \xrightarrow{x_0^1} & X_1 & \xrightarrow{x_1^2} & X_2 & \xrightarrow{x_2^3} & \cdots
\end{array}
\]

Definition

Let \vec{x} be a sequence in \mathcal{K}. The colimit of \vec{x} is a pair $\langle X, \{x_n^\infty\}_{n \in \mathbb{N}} \rangle$ with $x_n^\infty : X_n \to X$ satisfying:

1. $x_n^\infty = x_m^\infty \circ x_n^m$ for every $n < m$.
2. If $\langle Y, \{y_n^\infty\}_{n \in \mathbb{N}} \rangle$ with $y_n^\infty : X_n \to Y$ satisfies $y_n^\infty = y_m^\infty \circ y_n^m$ for every $n < m$ then there is a unique arrow $f : X \to Y$ satisfying $f \circ x_n^\infty = y_n^\infty$ for every $n \in \mathbb{N}$.
The Banach-Mazur game

Definition

The Banach-Mazur game $BM(K)$ played on K is described as follows.

There are two players: Eve and Odd.

Eve starts by choosing $A_0 \in \text{Obj}(K)$.

Then Odd chooses $A_1 \in \text{Obj}(K)$ together with a K-arrow $a_{01} : A_0 \to A_1$.

More generally, after Odd's move finishing with an object A_{2k-1}, Eve chooses $A_{2k} \in \text{Obj}(K)$ together with a K-arrow $a_{2k-1,2k} : A_{2k-1} \to A_{2k}$.

Next, Odd chooses $A_{2k+1} \in \text{Obj}(K)$ together with a K-arrow $a_{2k+1,2k+2} : A_{2k+1} \to A_{2k+2}$. And so on...

The result of a play is a sequence $\vec{a} : A_0 \xrightarrow{a_{01}} A_1 \xrightarrow{a_{2k-1,2k}} A_{2k} \xrightarrow{a_{2k+1,2k+2}} A_{2k+2} \cdots$.
The Banach-Mazur game

Definition

The Banach-Mazur game $\text{BM}(\mathfrak{K})$ played on \mathfrak{K} is described as follows. There are two players: Eve and Odd. Eve starts by choosing $A_0 \in \text{Obj}(\mathfrak{K})$.
The Banach-Mazur game

Definition

The Banach-Mazur game $\text{BM}(\mathcal{K})$ played on \mathcal{K} is described as follows. There are two players: Eve and Odd. Eve starts by choosing $A_0 \in \text{Obj}(\mathcal{K})$. Then Odd chooses $A_1 \in \text{Obj}(\mathcal{K})$ together with a \mathcal{K}-arrow $a_0^1 : A_0 \to A_1$. And so on...
The Banach-Mazur game

Definition

The **Banach-Mazur game** BM(\(\mathcal{K}\)) played on \(\mathcal{K}\) is described as follows. There are two players: Eve and Odd. Eve starts by choosing \(A_0 \in \text{Obj}(\mathcal{K})\). Then Odd chooses \(A_1 \in \text{Obj}(\mathcal{K})\) together with a \(\mathcal{K}\)-arrow \(a_0^1 : A_0 \to A_1\). More generally, after Odd’s move finishing with an object \(A_{2k-1}\), Eve chooses \(A_{2k} \in \text{Obj}(\mathcal{K})\) together with a \(\mathcal{K}\)-arrow \(a_{2k-1}^{2k} : A_{2k-1} \to A_{2k}\).
The Banach-Mazur game

Definition

The Banach-Mazur game \(\text{BM}(\mathcal{K}) \) played on \(\mathcal{K} \) is described as follows. There are two players: \(\text{Eve} \) and \(\text{Odd} \).

Eve starts by choosing \(A_0 \in \text{Obj}(\mathcal{K}) \).

Then Odd chooses \(A_1 \in \text{Obj}(\mathcal{K}) \) together with a \(\mathcal{K} \)-arrow \(a_0^1 : A_0 \to A_1 \).

More generally, after Odd’s move finishing with an object \(A_{2k-1} \), Eve chooses \(A_{2k} \in \text{Obj}(\mathcal{K}) \) together with a \(\mathcal{K} \)-arrow \(a_{2k-1}^{2k} : A_{2k-1} \to A_{2k} \).

Next, Odd chooses \(A_{2k+1} \in \text{Obj}(\mathcal{K}) \) together with a \(\mathcal{K} \)-arrow \(a_{2k+1}^{2k+1} : A_{2k} \to A_{2k+1} \). And so on...
The Banach-Mazur game

Definition

The Banach-Mazur game $\text{BM}(\mathcal{K})$ played on \mathcal{K} is described as follows. There are two players: *Eve* and *Odd*. Eve starts by choosing $A_0 \in \text{Obj}(\mathcal{K})$. Then Odd chooses $A_1 \in \text{Obj}(\mathcal{K})$ together with a \mathcal{K}-arrow $a_0 : A_0 \to A_1$. More generally, after Odd’s move finishing with an object A_{2k-1}, Eve chooses $A_{2k} \in \text{Obj}(\mathcal{K})$ together with a \mathcal{K}-arrow $a_{2k} : A_{2k-1} \to A_{2k}$. Next, Odd chooses $A_{2k+1} \in \text{Obj}(\mathcal{K})$ together with a \mathcal{K}-arrow $a_{2k+1} : A_{2k} \to A_{2k+1}$. And so on...

The result of a play is a sequence \vec{a}:

$$A_0 \xrightarrow{a_0} A_1 \xrightarrow{} \cdots \xrightarrow{} A_{2k-1} \xrightarrow{a_{2k}} A_{2k} \xrightarrow{} \cdots$$
Generic objects

General assumption: \(K \subseteq L \).

Definition
We say that \(U \in \text{Obj}(L) \) is \(K \)-generic if Odd has a strategy in the Banach-Mazur game \(BM(K) \) such that the colimit of the resulting sequence \(\vec{a} \) is always isomorphic to \(U \), no matter how Eve plays.

Proposition
A \(K \)-generic object, if exists, is unique up to isomorphism.

Proof.
The rules for Eve and Odd are the same.
Generic objects

General assumption: \(\mathcal{K} \subseteq \mathcal{L} \).

Definition

We say that \(U \in \text{Obj}(\mathcal{L}) \) is \(\mathcal{K} \)-generic if Odd has a strategy in the Banach-Mazur game \(\text{BM}(\mathcal{K}) \) such that the colimit of the resulting sequence \(\vec{a} \) is always isomorphic to \(U \), no matter how Eve plays.

Proposition

A \(\mathcal{K} \)-generic object, if exists, is unique up to isomorphism.

Proof.

The rules for Eve and Odd are the same.
Generic objects

General assumption: $\mathcal{K} \subseteq \mathcal{L}$.

Definition

We say that $U \in \text{Obj}(\mathcal{L})$ is \mathcal{K}-generic if Odd has a strategy in the Banach-Mazur game $\text{BM}(\mathcal{K})$ such that the colimit of the resulting sequence \vec{a} is always isomorphic to U, no matter how Eve plays.

Proposition

A \mathcal{K}-generic object, if exists, is unique up to isomorphism.
Generic objects

General assumption: \(k \subseteq l \).

Definition

We say that \(U \in \text{Obj}(L) \) is \(k \)-generic if Odd has a strategy in the Banach-Mazur game \(\text{BM}(k) \) such that the colimit of the resulting sequence \(\tilde{a} \) is always isomorphic to \(U \), no matter how Eve plays.

Proposition

A \(k \)-generic object, if exists, is unique up to isomorphism.

Proof.

The rules for Eve and Odd are the same.
Example

Let \mathcal{K} be the category of all finite linearly ordered sets with embeddings. Then $\langle \mathbb{Q}, < \rangle$ is \mathcal{K}-generic.

Example

Let \mathcal{K} be the category of all finite graphs with embeddings. Then the Rado graph $R = \langle \mathbb{N}, E_R \rangle$ is \mathcal{K}-generic, where $k < n$ are adjacent if and only if the kth digit in the binary expansion of n is one.

Example

Let \mathcal{K} be the category of all finite acyclic graphs with embeddings. Then the countable everywhere infinitely branching tree is \mathcal{K}-generic.
Example

Let \mathcal{K} be the category of all finite linearly ordered sets with embeddings. Then $\langle \mathbb{Q}, < \rangle$ is \mathcal{K}-generic.

Example

Let \mathcal{K} be the category of all finite graphs with embeddings. Then the Rado graph $R = \langle \mathbb{N}, E_R \rangle$ is \mathcal{K}-generic, where $k < n$ are adjacent if and only if the kth digit in the binary expansion of n is one.
Example
Let \mathcal{K} be the category of all finite linearly ordered sets with embeddings. Then $\langle \mathbb{Q}, < \rangle$ is \mathcal{K}-generic.

Example
Let \mathcal{K} be the category of all finite graphs with embeddings. Then the Rado graph $R = \langle \mathbb{N}, E_R \rangle$ is \mathcal{K}-generic, where $k < n$ are adjacent if and only if the kth digit in the binary expansion of n is one.

Example
Let \mathcal{K} be the category of all finite acyclic graphs with embeddings. Then the countable everywhere infinitely branching tree is \mathcal{K}-generic.
Theorem (Urysohn, 1927)

There exists a unique Polish metric space U with the following property:

(E) For every finite metric spaces $A \subseteq B$, every isometric embedding $e: A \to U$ can be extended to an isometric embedding $f: B \to U$.
Theorem (Urysohn, 1927)

There exists a unique Polish metric space \mathbb{U} with the following property:

(E) For every finite metric spaces $A \subseteq B$, every isometric embedding $e : A \rightarrow \mathbb{U}$ can be extended to an isometric embedding $f : B \rightarrow \mathbb{U}$.

Furthermore:

- Every separable metric space embeds into \mathbb{U}.
- Every isometry between finite subsets of \mathbb{U} extends to a bijective isometry of \mathbb{U}.
Theorem (Urysohn, 1927)

There exists a unique Polish metric space \mathbb{U} with the following property:

(E) For every finite metric spaces $A \subseteq B$, every isometric embedding $e : A \to \mathbb{U}$ can be extended to an isometric embedding $f : B \to \mathbb{U}$.

Furthermore:

- Every separable metric space embeds into \mathbb{U}.
- Every isometry between finite subsets of \mathbb{U} extends to a bijective isometry of \mathbb{U}.

Theorem

Let \mathcal{M}_{fin} be the category of finite metric spaces with isometric embeddings.

Then the Urysohn space \mathbb{U} is \mathcal{M}_{fin}-generic.
The amalgamation property

Definition

We say that K has amalgamations at $Z \in \text{Obj}(K)$ if for every K-arrows $f: Z \to X$, $g: Z \to Y$ there exist K-arrows $f': X \to W$, $g': Y \to W$ such that $f' \circ f = g' \circ g$.

We say that K has the amalgamation property (AP) if it has amalgamations at every $Z \in \text{Obj}(K)$.
Definition

We say that \mathcal{K} has amalgamations at $Z \in \text{Obj}(\mathcal{K})$ if for every \mathcal{K}-arrows $f : Z \to X$, $g : Z \to Y$ there exist \mathcal{K}-arrows $f' : X \to W$, $g' : Y \to W$ such that $f' \circ f = g' \circ g$.

\[\begin{array}{ccc}
Y & \xrightarrow{g} & W \\
\uparrow{g} & & \uparrow{f'} \\
Z & \xrightarrow{f} & X \\
\end{array} \]
The amalgamation property

Definition

We say that \mathcal{R} has **amalgamations at** $Z \in \text{Obj}(\mathcal{R})$ if for every \mathcal{R}-arrows $f : Z \to X$, $g : Z \to Y$ there exist \mathcal{R}-arrows $f' : X \to W$, $g' : Y \to W$ such that $f' \circ f = g' \circ g$.

We say that \mathcal{R} has the **amalgamation property (AP)** if it has amalgamations at every $Z \in \text{Obj}(\mathcal{R})$.

\[
\begin{array}{ccc}
Y & \xrightarrow{g} & W \\
\uparrow{g} & & \uparrow{f'} \\
Z & \xrightarrow{f} & X
\end{array}
\]
Theorem (Universality)

Assume K has the AP and U is K-generic. Then for every $X = \lim \vec{x}$, where \vec{x} is a sequence in K, there exists an arrow

$$e : X \to U.$$
Theorem (Universality)

Assume \mathcal{K} has the AP and U is \mathcal{K}-generic. Then for every $X = \lim \vec{x}$, where \vec{x} is a sequence in \mathcal{K}, there exists an arrow

$$e : X \to U.$$

Example

Let \mathcal{K} be the category of all finite linear graphs with embeddings. Then $\langle \mathbb{Z}, E \rangle$ is \mathcal{K}-generic, where $xEy \iff |x - y| = 1$. On the other hand, $\langle \mathbb{Z}, E \rangle \oplus \langle \mathbb{Z}, E \rangle \nleftrightarrow \langle \mathbb{Z}, E \rangle$.
Fraïssé sequences

Definition

A Fraïssé sequence in \mathcal{K} is a sequence $\vec{u}: \omega \to \mathcal{K}$ satisfying the following conditions:

1. For every $A \in \text{Obj}(\mathcal{K})$ there is n such that $\mathcal{K}(A, U_n) \neq \emptyset$.
2. For every $n \in \omega$, for every \mathcal{K}-arrow $f: U_n \to Y$ there are $m > n$ and a \mathcal{K}-arrow $g: Y \to U_m$ such that $g \circ f = u_{mn}$.
A Fraïssé sequence in \mathcal{K} is a sequence $\vec{u}: \omega \to \mathcal{K}$ satisfying the following conditions:

- For every $A \in \text{Obj}(\mathcal{K})$ there is n such that $\mathcal{K}(A, U_n) \neq \emptyset$.
Fraïssé sequences

Definition

A Fraïssé sequence in \mathcal{K} is a sequence $\vec{u} : \omega \to \mathcal{K}$ satisfying the following conditions:

- For every $A \in \text{Obj}(\mathcal{K})$ there is n such that $\mathcal{K}(A, U_n) \neq \emptyset$.
- For every $n \in \omega$, for every \mathcal{K}-arrow $f : U_n \to Y$ there are $m > n$ and a \mathcal{K}-arrow $g : Y \to U_m$ such that $g \circ f = u^m_n$.
A Fraïssé sequence in \mathcal{K} is a sequence $\vec{u} : \omega \to \mathcal{K}$ satisfying the following conditions:

- For every $A \in \text{Obj}(\mathcal{K})$ there is n such that $\mathcal{K}(A, U_n) \neq \emptyset$.
- For every $n \in \omega$, for every \mathcal{K}-arrow $f : U_n \to Y$ there are $m > n$ and a \mathcal{K}-arrow $g : Y \to U_m$ such that $g \circ f = u_n^m$.

Diagram:

$$
\begin{array}{ccccccc}
U_0 & \longrightarrow & \cdots & \longrightarrow & U_n & \longrightarrow & u_n^m & \longrightarrow & U_m & \longrightarrow & \cdots \\
& & & & f & & g & & \\
& & Y & & & & \\
\end{array}
$$
Theorem 1

Let \bar{u} be a Fraïssé sequence in \mathfrak{H} and let $U = \lim \bar{u}$. Then U is \mathfrak{H}-generic.
Theorem 1

Let \vec{u} be a Fraïssé sequence in \mathcal{K} and let $U = \lim \vec{u}$. Then U is \mathcal{K}-generic.

Proof.

\[\cdots \rightarrow U_{n_0} \rightarrow U_{n_1} \rightarrow U_{n_2} \rightarrow \cdots \]

\[A_0 \rightarrow A_2 \rightarrow A_4 \rightarrow A_6 \]
Fraïssé categories

Definition

A Fraïssé category is a countable category \mathcal{K} satisfying:

1. For every $X, Y \in \text{Obj}(\mathcal{K})$ there is $U \in \text{Obj}(\mathcal{K})$ such that $\mathcal{K}(X, U) \neq \emptyset \neq \mathcal{K}(Y, U)$.

W.Kubiš (http://www.math.cas.cz/kubis/)
A Fraïssé category is a countable category \(\mathcal{K} \) satisfying:

1. For every \(X, Y \in \text{Obj}(\mathcal{K}) \) there is \(U \in \text{Obj}(\mathcal{K}) \) such that
 \[\mathcal{K}(X, U) \neq \emptyset \neq \mathcal{K}(Y, U). \]

2. \(\mathcal{K} \) has the amalgamation property.
Theorem 2

Assume $\mathcal{R} \subseteq \mathcal{L}$ is such that every sequence in \mathcal{R} converges in \mathcal{L} and \mathcal{R} is a Fraïssé category. Then there exists a \mathcal{R}-generic object in \mathcal{L}.
Theorem 2

Assume $\mathcal{K} \subseteq \mathcal{L}$ is such that every sequence in \mathcal{K} converges in \mathcal{L} and \mathcal{K} is a Fraïssé category. Then there exists a \mathcal{K}-generic object in \mathcal{L}.

Proof.

Let \mathcal{P} be the poset of all finite sequences in \mathcal{K}, i.e., covariant functors from some $n \in \omega$ into \mathcal{K}. The ordering is end-extension.
Theorem 2
Assume $\mathcal{K} \subseteq \mathcal{L}$ is such that every sequence in \mathcal{K} converges in \mathcal{L} and \mathcal{K} is a Fraïssé category. Then there exists a \mathcal{K}-generic object in \mathcal{L}.

Proof.
Let \mathbb{P} be the poset of all finite sequences in \mathcal{K}, i.e., covariant functors from some $n \in \omega$ into \mathcal{K}. The ordering is end-extension.

Let

$$\mathcal{D} = \{D_{n,f}: n \in \omega, f \in \mathcal{K}\} \cup \{E_{n,A}: n \in \omega, X \in \text{Obj}(\mathcal{K})\},$$

where

$$D_{n,f} = \{\vec{x} \in \mathbb{P}: X_n = \text{dom}(f) \implies (\exists m > n)(\exists g) g \circ f = x^n_m\},$$

$$E_{n,A} = \{\vec{x} \in \mathbb{P}: (\exists m \geq n) \mathcal{K}(A, X_m) \neq \emptyset\}.$$
Theorem 2

Assume $\mathcal{R} \subseteq \mathcal{L}$ is such that every sequence in \mathcal{R} converges in \mathcal{L} and \mathcal{R} is a Fraïssé category. Then there exists a \mathcal{R}-generic object in \mathcal{L}.

Proof.

Let \mathbb{P} be the poset of all finite sequences in \mathcal{R}, i.e., covariant functors from some $n \in \omega$ into \mathcal{R}. The ordering is end-extension. Let

$$\mathcal{D} = \{ D_{n,f} : n \in \omega, f \in \mathcal{R} \} \cup \{ E_{n,A} : n \in \omega, X \in \text{Obj}(\mathcal{R}) \},$$

where

$$D_{n,f} = \{ \bar{x} \in \mathbb{P} : X_n = \text{dom}(f) \implies (\exists m > n)(\exists g) g \circ f = x^m_n \},$$

$$E_{n,A} = \{ \bar{x} \in \mathbb{P} : (\exists m \geq n) \mathcal{R}(A, X_m) \neq \emptyset \}.$$

Let \bar{u} be the sequence coming from a \mathcal{D}-generic filter/ideal. Then \bar{u} is Fraïssé, therefore $U = \lim \bar{u}$ is \mathcal{R}-generic.
Definition

A **Fraïssé class** is a class of finite models of a fixed countable language satisfying:

(H) For every $A \in \mathcal{F}$, every model isomorphic to a submodel of A is in \mathcal{F}.

(JEP) Every two models from \mathcal{F} embed into a single model from \mathcal{F}.

(AP) \mathcal{F} has the amalgamation property for embeddings.

(CMT) \mathcal{F} has countably many isomorphic types.
Theorem (Fraïssé, 1954)

Let \mathcal{F} be a Fraïssé class. Then there exists a unique, up to isomorphism, countable model U such that

1. \mathcal{F} consists of all isomorphic types of finite submodels of U,
2. every isomorphism of finite submodels of U extends to an automorphism of U (in other words, U is ultra-homogeneous).

Conversely, if U is a countable homogeneous model then the class of all models isomorphic to finite submodels of U is Fraïssé.
Theorem (Fraïssé, 1954)

Let \mathcal{F} be a Fraïssé class. Then there exists a unique, up to isomorphism, countable model U such that

1. \mathcal{F} consists of all isomorphic types of finite submodels of U,

2. every isomorphism of finite submodels of U extends to an automorphism of U (in other words, U is ultra-homogeneous).

Conversely, if U is a countable homogeneous model then the class of all models isomorphic to finite submodels of U is Fraïssé.
Theorem (Fraïssé, 1954)

Let \(\mathcal{F} \) be a Fraïssé class. Then there exists a unique, up to isomorphism, countable model \(U \) such that

1. \(\mathcal{F} \) consists of all isomorphic types of finite submodels of \(U \),
2. every isomorphism of finite submodels of \(U \) extends to an automorphism of \(U \) (in other words, \(U \) is ultra-homogeneous).
Theorem (Fraïssé, 1954)

Let \mathcal{F} be a Fraïssé class. Then there exists a unique, up to isomorphism, countable model U such that

1. \mathcal{F} consists of all isomorphic types of finite submodels of U,
2. every isomorphism of finite submodels of U extends to an automorphism of U (in other words, U is ultra-homogeneous).

Conversely, if U is a countable homogeneous model then the class of all models isomorphic to finite submodels of U is Fraïssé.
More examples
The Cantor set

Fix a compact 0-dimensional space K. Define the category K as follows. The objects are continuous mappings $f: K \to S$ with S finite. An arrow from $f: K \to S$ to $g: K \to T$ is a surjection $p: T \to S$ satisfying $p \circ g = f$.

W.Kubiš (http://www.math.cas.cz/kubis/)
The Cantor set

Fix a compact 0-dimensional space K. Define the category \mathfrak{K}_K as follows.
The Cantor set

Fix a compact 0-dimensional space K. Define the category \mathcal{K}_K as follows.
The objects are continuous mappings $f : K \to S$ with S finite.
Fix a compact 0-dimensional space K. Define the category \mathcal{K}_K as follows.
The objects are continuous mappings $f: K \to S$ with S finite.
An arrow from $f: K \to S$ to $g: K \to T$ is a surjection $p: T \to S$
satisfying $p \circ g = f$.
Fix a compact 0-dimensional space K. Define the category \mathcal{K}_K as follows.

The objects are continuous mappings $f : K \to S$ with S finite. An arrow from $f : K \to S$ to $g : K \to T$ is a surjection $p : T \to S$ satisfying $p \circ g = f$.

![Diagram](image-url)
Let \mathcal{L}_K be the category whose objects are continuous mappings $f : K \to X$ with X metrizable compact 0-dimensional.
Let \mathcal{L}_K be the category whose objects are continuous mappings $f: K \to X$ with X metrizable compact 0-dimensional. An \mathcal{L}_K-arrow from $f: K \to X$ to $g: K \to Y$ is a continuous surjection $p: Y \to X$ satisfying $p \circ g = f$.
Let \mathcal{L}_K be the category whose objects are continuous mappings $f: K \to X$ with X metrizable compact 0-dimensional. An \mathcal{L}_K-arrow from $f: K \to X$ to $g: K \to Y$ is a continuous surjection $p: Y \to X$ satisfying $p \circ g = f$.
Theorem (Bielas, Walczyńska, K.)

Let 2^ω denote the Cantor set. A continuous mapping $\eta: K \to 2^\omega$ is K-generic \iff η is a topological embedding and $\eta[K]$ is nowhere dense in 2^ω.

Corollary (Knaster & Reichbach 1953)

Let $h: A \to B$ be a homeomorphism between closed nowhere dense subsets of 2^ω. Then there exists a homeomorphism $H: 2^\omega \to 2^\omega$ such that $H \upharpoonright A = h$.
Theorem (Bielas, Walczyńska, K.)

Let 2^ω denote the Cantor set. A continuous mapping $\eta: K \to 2^\omega$ is \mathbb{K}-generic \iff η is a topological embedding and $\eta[K]$ is nowhere dense in 2^ω.

Corollary (Knaster & Reichbach 1953)

Let $h: A \to B$ be a homeomorphism between closed nowhere dense subsets of 2^ω. Then there exists a homeomorphism $H: 2^\omega \to 2^\omega$ such that

$$H \upharpoonright A = h.$$
The Gurarii space

Theorem (Gurarii 1966)

There exists a separable Banach space G with the following property.

(G) For every $\varepsilon > 0$, for every finite-dimensional normed spaces $E \subseteq F$, for every linear isometric embedding $e: E \to G$ there exists a linear ε-isometric embedding $f: F \to G$ such that $f \upharpoonright E = e$.

Theorem (Lusky 1976)

Among separable spaces, property (G) determines the space G uniquely up to linear isometries.

The Gurarii space

Theorem (Gurarii 1966)

There exists a separable Banach space \mathbb{G} with the following property.

(G) For every $\varepsilon > 0$, for every finite-dimensional normed spaces $E \subseteq F$, for every linear isometric embedding $e : E \to \mathbb{G}$ there exists a linear ε-isometric embedding $f : F \to \mathbb{G}$ such that $f \upharpoonright E = e$.

Theorem (Lusky 1976)

Among separable spaces, property (G) determines the space \mathbb{G} uniquely up to linear isometries.
The Gurarii space

Theorem (Gurarii 1966)

There exists a separable Banach space G with the following property.

(G) For every $\varepsilon > 0$, for every finite-dimensional normed spaces $E \subseteq F$, for every linear isometric embedding $e : E \to G$ there exists a linear ε-isometric embedding $f : F \to G$ such that $f \restriction E = e$.

Theorem (Lusky 1976)

Among separable spaces, property (G) determines the space G uniquely up to linear isometries.

Theorem

The Gurarii space G is generic over the category \mathcal{B}_{fd} of finite-dimensional normed spaces with linear isometric embeddings.
Theorem

The Gurarii space G is generic over the category \mathcal{B}_{fd} of finite-dimensional normed spaces with linear isometric embeddings.

Key Lemma (Solecki & K.)

Let X, Y be finite-dimensional normed spaces, let $f : X \to Y$ be an ε-isometry with $0 < \varepsilon < 1$. Then there exist a finite-dimensional normed space Z and isometric embeddings $i : X \to Z$, $j : Y \to Z$ such that

$$\|i - j \circ f\| \leq \varepsilon.$$
Let \(\mathcal{I} \) be the category of all continuous surjections from the unit interval \([0, 1]\) onto itself.
Let \mathcal{I} be the category of all continuous surjections from the unit interval $[0, 1]$ onto itself.
Let \mathcal{C} be the category of all chainable continua.
The pseudo-arc

Let \mathcal{I} be the category of all continuous surjections from the unit interval $[0, 1]$ onto itself.
Let \mathcal{C} be the category of all chainable continua.

Theorem

The pseudo-arc is \mathcal{I}-generic.