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Plan of the lectures:
@ Preamble: Singular cardinals, compactness
@ Singular compactness theorem
@ Constructions of non-compact objects
e Consistency results
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It is well known that problems about infinite cardinals tend to
have a different flavour at singular cardinals and their

successors. For example:

@ The value of the continuum function at a singular strong
limit cardinal « is closely tied to its values below, but for
regular we can use the Cohen poset Add(k, A) to show this
is not the case.

@ Reflection/compactness phenomena such as stationary
reflection behave differently: for example if k is regular
then k* has a non-reflecting stationary subset, but this is
false in general for singular «.

e Consistency and independence results involving singular
cardinals and their successors tend to be harder and
involve larger cardinals than parallel results for other
cardinals.
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Why are singular cardinals different?

@ Many proofs work by “stepping up” from a cardinal k to
the successor k*, so singular cardinals present an obstacle.

@ In the absence of large cardinals, there are inner models of
V called “core models” which have L-like combinatorics
(square, diamond, GCH) and which compute the
successors of V-singulars correctly.

@ On a more positive note, the fact that a singular cardinal
is the union of fewer than « sets of size less than k powers
types of combinatorial argument that are not available at
regular cardinals. PCF theory is a salient example.
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Consistency results
Compactness is a generic term for common phenomenon: if
many small substructures of some structure enjoy a certain
property, then the whole structure enjoys the property. The
dual notion of Reflection concerns the phenomenon in which if a
structure has a certain property, then many of its small

substructures have the same property. For example:

@ (Logic) The Compactness Theorem for first order logic
asserts that if every finite subset of a first order theory T is
consistent, then T is consistent.

@ (Combinatorial set theory) A stationary subset S of a
regular uncountable cardinal k reflects if and only if there is
o < k such that cf(«) > w and S N « is stationary in «.

@ (Cardinal arithmetic) Silver’s theorem asserts that if GCH
fails at a singular strong limit cardinal k of uncountable
cofinality, then it fails for almost every p < k.
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k A-supercompact, N is a structure with [N| = A. Letj: V - M
with crit(j) = «, A < j(k) and *M C M.Then j[N] is a
substructure of j(N), jIN] € M, M [= |jIN]| = A < j(k). So for
many properties P, if N of size A has P then a substructure of
size less than k has P.
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Shelah’s singular compactness theorem is a general compactness
result about abstract notions of freeness. Here are some striking
special cases. Let A be a singular cardinal:

e If Gis an abelian group, |G| = A and every subgroup H < G
with |[H| < Ais free, then G is free.

o If X is a family of countable sets, |X| = A and every
subfamily Y C X with [Y| < A has a transversal, then X has

a transversal.

These are both true for A measurable, both false for (eg)

A = X;.
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A quick review:

@ If (G, +) is an abelian group, then we can view it as a
Z-module (a module is like a VS, only scalars are an
arbitrary ring) in the obvious way. G is free if it has a basis,
that is to say a linearly independent generating set.
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@ If (G, +) is an abelian group, then we can view it as a
Z-module (a module is like a VS, only scalars are an
arbitrary ring) in the obvious way. G is free if it has a basis,
that is to say a linearly independent generating set.

o A transversal for a family of non-empty sets is a 1-1 choice

function.
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I'll be a bit informal in the discussion. You can deduce the
minimal axioms that make everything work from the proofs.
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The setting for the Singular Compactness theorem is axiomatic.

I'll be a bit informal in the discussion. You can deduce the
minimal axioms that make everything work from the proofs.

We have a structure M and a reasonable notion of substructure
(in my examples substructures would be respectively
subgroups of an abelian group, or subsets of a family of
non-empty countable sets). We’ll work inside a “universe”
consisting of substructures of M.

@ There’s a substructure 0 which is minimal under inclusion.

@ For any two substructures A, B there is a unique minimal
substructure A + B which contains A U B.

@ The union of a continuous chain of substructures is a
substructure.
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We also have a notion of freeness for structures (in my
examples the free structures are respectively free abelian
groups, and families of sets which have a transversal). Notice
that in each case freeness has a witness (respectively a basis and
a a transversal).
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We also have a notion of freeness for structures (in my
examples the free structures are respectively free abelian
groups, and families of sets which have a transversal). Notice
that in each case freeness has a witness (respectively a basis and
a a transversal).

The crucial idea is to relativise the notion of freeness, that is to
introduce a notion “B is free over A” where A is a substructure
of B. The intention is that the free structures should be the ones
which are free over 0. Typically the definition of B’s being free
over A will imply that any witness for A extends to a witness
for B.
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quotient group is a free abelian group.
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In our examples:

@ When A is a subgroup of B, then B is free over A iff the
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Games I

The proof

Games II

quotient group is a free abelian group.

@ When A, B are non-empty families of countable sets and
A C B, then B is free over A iff B \ A has a transversal (say

Q) which takes values outside |J A.
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To prove the Singular Compactness theorem, we need some
properties of the relation “B is free over A”. For brevity, we
follow Shelah and write “B/A is free” for this relation.

o A/Ais free. If B/A is free and C/B is free then C/A is free.

@ If A is a limit ordinal and (A;);< is an increasing and
continuous chain such that A;,1/A; is free, then
Ui<a Ai/Ao is free.

Note: It’s often true (and is true in our two running examples)
that if C/A is free, then B/A for all B intermediate between A
and C. But we don’t need this.
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Outline of proof of Singular Compactness. Assume M is a
structure of singular cardinality A such that all (or just many)

substructures are free.

@ Assuming that good player wins certain games, show that

M is free.

@ Show that good player wins the games. This will involve
adding some assumptions on the relation “B/A is free”.
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Recall that we fixed a structure M. I decribe two games where
the moves are substructures of M.

G1(x):

Let « be an infinite cardinal with k < |M].
I Ag Aq

II By B1

The rules are that By = 0, A; and (for i > 0) B; have size k,

By € Ap € By C and B,,41/By, is free for all n. The first player to
violate the rules loses, if the rules are followed forever then II
wins.
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Let k < u < |M| and let B, B’ be structures where B’ has size u
and B’/B is free.

I G Cy
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GZ(KI H,B,B/)5
Let k < u < |M| and let B, B’ be structures where B’ has size u
and B’/B is free.

I G G

I Do

The rules are that C;, D; are structures of size k and that

Co € Dg C Cy..... The first player to violate these rules loses,
and if the rules are never violated then Il wins iff B’ + D, is
free over B+ D, where D, = J,- o, Dn = U, 1< o Cn-
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Now we can prove a version of the Singular Compactness
theorem. We assume that:
@ M is a structure of size A, A is singular with cf(A) = u < A.

o II wins G1(k) played on substructures of M for all large
K <A

e Il wins Ga(k, i, B, B') for all large k < p < A and all
relevant B, B’.

We fix (A;);<, a sequence of cardinals which is increasing,
continuous and cofinal in A with 1 < Ay.
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Now we can prove a version of the Singular Compactness
theorem. We assume that:

@ M is a structure of size A, A is singular with cf(A) = u < A.

o II wins G1(k) played on substructures of M for all large
K <A

e Il wins Ga(k, i, B, B') for all large k < p < A and all
relevant B, B’.

We fix (A;);<, a sequence of cardinals which is increasing,
continuous and cofinal in A with 1 < Ay.

We also fix 0; which is winning for Il in G;(A;) when i < pis not
a limit ordinal, and ;(B, B’) which is winning in
G2(Mi,Aig1,B,B’) foralli < pand all relevant B, B’.
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where:
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@ Column i is increasing for all i < p. As a consequence,

Unew Al = U, =, Bi- We will denote this structure by Bi,,.
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@ The “n" A-row” (Al);- u is increasing and continuous for

all n < w. As a consequence, the sequence (B',);—, is
increasing and continuous with union M.

@ For non-limit i, column i is a run of the game G (A;) where
player 11 is playing the structures B, according to the
winning strategy o;. As a consequence, B; 1/ B; is free for
alln < w.

i+1

n+1

there is a run of the game G, (A;, A4 1, B!, B

I Biia

in columni+ 1,
i+1 )
n+1

e For every i < pand every pair B!, B

1
n+1
II Dy D"

where Il is playing according to the winning strategy
Ti(Bit1, Bi'Y ). As a consequence, (BL'Y + Bi,)/(Bi1 4+ Bi,)
is free.
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We define D,.;., = Bi;"! + B.,. The key points are that:

e Dy = BY, is free over zero.

@ By construction, D ,.i4,+1 is free over D ,.iyy.
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Why is this enough? I'll describe a continuous increasing chain
of length w - 1, whose union is M and which has its first entry
free over 0 and each successor entry free over the previous one.
We define D,.;., = Bi;"! + B.,. The key points are that:

e Dy = BY, is free over zero.
@ By construction, D ,.i4,+1 is free over D ,.iyy.
@ Foreachi< y,
. _pi+l  pi _ pi+l _ pi+l | pit2 _ ,
Uj<w Dw.itn = By +By, = B = B + By = D (i41)-

e For each limitj < p, Ui jyecw Daw-itn = B, = D ;.
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be continuously increasing, and we need every column
(including limit columns) to be constructed according to
strategies for the game G,. It is here that A being singular (in
particular u < Ag) will be crucial.

We will build the matrix of sets row by row.

@ The first two rows are easy: B =0 for all i, and (Af))z-<H is
any increasing and continuous chain of substructures with
|Afl = A; and Ui<uA10 =M.
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How do we do it? The main issue is that we need the A-rows to
be continuously increasing, and we need every column
(including limit columns) to be constructed according to
strategies for the game G,. It is here that A being singular (in
particular u < Ag) will be crucial.

We will build the matrix of sets row by row.

@ The first two rows are easy: B6 =0 forall i, and (Af))z-<H is
any increasing and continuous chain of substructures with
|A6| =A;and | Aé =M.

@ The “B-rows” with positive subscripts are also easy: for
non-limit i we compute B!, | from Aj,... A}, and the
strategy oj, for limit i let B, ; = Al

i<p
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@ To construct the “A-rows” with positive subscripts:
Assume we constructed A}, for m < n and B;, for
m < n+ 1. Fix i. For each successive pair B.F L B;ﬂl of

entries in column i 4 1 with m < n, consider the partial run

I 1 By
I D™ LD,
of the game G2 (A;, Ait1, B;,;”, B;ﬁl ), where player Il is

playing according to the winning strategy T;(B:?, B;ﬁl).
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@ To construct the “A-rows” with positive subscripts:
Assume we constructed Aj, for m < n and Bj, for
m < n + 1. Fix i. For each successive pair B}, L B;ﬂl of
entries in column i 4 1 with m < n, consider the partial run
I mt1 By
I D" LD,
of the game G2 (A;, Ait1, B;,;”, B;ﬁl ), where player II is
playing according to the winning strategy (B, Blmﬂl).

Define an auxiliary set qu 41 such that B; e C; Y

ICl1l =Ai,and D", € C ; forallm < n.
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@ (Crucial point) For each 7, enumerate Cil 41 in order type A
Define A; 11 to be the least substructure such that

CL .1 C AL forallj <i, and the first \; many points in the

enumeration of C, 4q arein Al fori<j<p.

n+1
@ Since p < Ag < A;, we see that IAL 11| = Ai. The other key

points are that B;H - C;H - A;H, and that (A;Jrl)i<u is

continuous and increasing with i.
This concludes the proof. As we see shortly, we will need A to
be a limit cardinal to see that we can win G1 (k) for k < A. We
needed A singular to do the “looking ahead to all subsequent
columns” in the main construction.
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How to win the relevant games? To win game one, add an
assumption about the “free over” relation:

@ If (Aj)i+ is an increasing and continuous chain of
structures of size k such that | J;_ .+ Ai/Ay is free, then there
is a club set C C k* such that 0 € C and Aj/A; is free for
i,j e Cwithi<j.

Key idea for the first game: If all (many) substructures of size
k* are free (that is free over 0) then II has a winning strategy for
G1(k). It’s important that A is a limit cardinal, since we want to
win for unboundedly many k < A.
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We appeal to the well-known Gale-Stewart theorem on the
determinacy of open games. The game is closed for player II, so
if IT does not win then I wins with some strategy o.

We fix some large regular 0 and build a continuous increasing
chain (M;);< + of elementary substructures of Hg such that:
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We appeal to the well-known Gale-Stewart theorem on the
determinacy of open games. The game is closed for player II, so
if IT does not win then I wins with some strategy o.
We fix some large regular 0 and build a continuous increasing
chain (M;);< + of elementary substructures of Hg such that:

e M, o € M.

e k+1CM;, M| =«foralli< k™.

@ (M;:i<j)e€ M forallj <«
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Let Mo = U;— «+ M, so that by hypothesis M., N M is free. By
our added assumption about “free over”, we can find (taking
the first w points of an appropriate club) a strictly increasing
w-sequence (B, ) of structures of size k such that By =0,

B, = My, N M for increasing «, < k*, and B,,;1/By, is free for
all n.

25/50



Some special cases
Axioms

Games I

The proof

Games II

Preamble

Singular compactness
Constructing non-compact objects
Consistency results

Let Mo = U;— «+ M, so that by hypothesis M., N M is free. By
our added assumption about “free over”, we can find (taking
the first w points of an appropriate club) a strictly increasing
w-sequence (B, ) of structures of size k such that By =0,

B, = My, N M for increasing «, < k*, and B,,;1/By, is free for
all n.

Now we build a run of the game where player II plays the B,,’s
and player I responds using o.

25/50



Some special cases
Axioms

Games I

The proof

Games II

Preamble

Singular compactness
Constructing non-compact objects
Consistency results

Let Mo = U;— «+ M, so that by hypothesis M., N M is free. By
our added assumption about “free over”, we can find (taking
the first w points of an appropriate club) a strictly increasing
w-sequence (B, ) of structures of size k such that By =0,

B, = My, N M for increasing «, < k*, and B,,;1/By, is free for
all n.

Now we build a run of the game where player II plays the B,,’s
and player I responds using o.

I o(By) o(Bo, B1)

II By By
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This is a legitimate run of the game because o, M and the
models M, for 0 < i < n are all elements of M, ,,. So

o(Bo,...By) € Mg,,,, and hence easily o(By,...B;) C B,11.
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This is a legitimate run of the game because o, M and the
models M, for 0 < i < n are all elements of M, ,,. So
o(Bo,...By) € Mg,,,, and hence easily o(By,...B;) C B,11.

We generated a run of the game where the wrong player wins,
so player II must win the game.

Remark: It was an overkill to assume that all substructures of
M with size kT are free.
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that in many cases (including my two running examples) we
don’t need any assumption about the ambient structure M to
prove that player II wins G,.
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Adding more axioms about freeness, Shelah proved a result
about G; parallel to the one I proved for G;. But it turns out
that in many cases (including my two running examples) we
don’t need any assumption about the ambient structure M to
prove that player II wins G,.

Abelian groups: Let X be a set of coset representatives for a
basis of B’/B. After I plays C,, II finds X, C X of size k such
that every element of C,, N B’ is congruent mod B to something
in span(Xj), and then lets D,, = C,, + span(X,,). Now check
X\ U, Xn gives coset representatives for a basis of
(B"+Dy)/(B+ Dy).
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Transversals: Let g be a transversal of B’ \ B which does not
take any value in |J B. After I plays C,, II finds D,, O C, such
that |D,| = kand g(x) € UC, = x € D,, this is possible
because g is 1-1. Now check that ¢ ' B’ \ (BU D, ) does not take
any value in |J D .
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In this part we describe some techniques for constructing
“non-compact” objects, that is objects whose properties are
different from those of its small substructures.

Focus on existence of transversals for families of sets.
Notation:

PT(A, k): For every family of size A consisting of sets of size less
than «, if very subfamily of size less than A has a transversal
then the whole family has a transversal.

NPT (A, x): Not PT(A, k).

By the compactness theorem for first order logic, PT(A, w)
holds for all A.
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Let p and T be regular cardinals with p < T, and let
S C tNcof(n). A ladder system on S is a sequence (xs)scs such
that x5 is cofinal in & with order type p.
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Let p and T be regular cardinals with p < T, and let
S C tNcof(n). A ladder system on S is a sequence (xs)scs such
that x5 is cofinal in & with order type p.

Ify,d € Swithy < 8, xy, Nxs is bounded in y.

If S is a stationary subset of w1, then a ladder system on S will
be a witness to NPT (w1, w1).

By Fodor, there is no transversal. An easy diagonalisation
shows that every countable subset has a transversal.

30/50



Preamble
Singular compactness Non-reflecting stationary sets
Constructing non-compact objects PCF
Consistency results

For 1 regular and uncountable, a non-reflecting stationary subset
(NRSS) of Tis S C T such that S is stationary, and S Ny is
non-stationary for all y € TN cof(> w).
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Proof by induction on y. If y =y + 1 then nothing to do unless
Yo € S, in which case apply IH for & < v and then use
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For 1 regular and uncountable, a non-reflecting stationary subset
(NRSS) of Tis S C T such that S is stationary, and S Ny is
non-stationary for all y € TN cof(> w).

Key fact: If S is a NRSS of T, and (x5)scs is a ladder system then
for all Y < T we can choose disjoint tails of x5 for 6 € SNy.

Proof by induction on y. If y =y + 1 then nothing to do unless
Yo € S, in which case apply IH for & < v and then use

sup(xs Nxy,) < d to ensure disjointness from x,,,. If y limit then
choose a cofinal continuous sequence (y;) withy; ¢ S, apply IH
to each block S N [y;, viy+1) making sure that tails start above ;.

Remark: By same argument, if S C w; is non-stationary then a
ladder system on S has disjoint tails, in particular it has a
transversal.
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Proof: Let (A;)i<« be countable sets witnessing NPT («, ). Let

(x5)ses be aladder system on S, enumerate x5 as x5 (i) for i < .

Define Bs ;= ({8} x A;) U{xs(i)}, and claim that (B@/i)5€5,i<,<
exemplify NPT (A, Np).

32/50



Preamble
Singular compactness Non-reflecting stationary sets
Constructing non-compact objects PCF
Consistency results

(Milner-Shelah) If k < A regular and there is S C A N cof(k) a
NRSS of A, then NPT (k, wq) implies NPT (A, wq).

Proof: Let (A;)i<« be countable sets witnessing NPT («, ). Let

(x5)ses be aladder system on S, enumerate x5 as x5 (i) for i < .

Define Bs ;= ({8} x A;) U{xs(i)}, and claim that (B@/i)5€5,i<,<
exemplify NPT (A, Np).

If f transversal, for each b there is i such that f(Bs ;) = x5, < 9,
impossible by Fodor.

32/50



Preamble
Singular compactness Non-reflecting stationary sets
Constructing non-compact objects PCF
Consistency results

(Milner-Shelah) If k < A regular and there is S C A N cof(k) a
NRSS of A, then NPT (k, wq) implies NPT (A, wq).

Proof: Let (A;)i<« be countable sets witnessing NPT («, ). Let

(x5)ses be aladder system on S, enumerate x5 as x5 (i) for i < .

Define Bs ;= ({8} x A;) U{xs(i)}, and claim that (B@/i)5€5,i<,<
exemplify NPT (A, Np).

If f transversal, for each b there is i such that f(Bs ;) = x5, < 9,
impossible by Fodor. Fix y < A, choose (j5)scsny such that if
ys =1{x5(i) : js <1< k}then (y5)scsny are disjoint.

32/50



Preamble
Singular compactness Non-reflecting stationary sets
Constructing non-compact objects PCF
Consistency results
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Proof: Let (A;)i<« be countable sets witnessing NPT («, ). Let

(x5)ses be aladder system on S, enumerate x5 as x5 (i) for i < .

Define Bs ;= ({8} x A;) U{xs(i)}, and claim that (B@/i)5€5,i<,<
exemplify NPT (A, Np).

If f transversal, for each b there is i such that f(Bs ;) = x5, < 9,
impossible by Fodor. Fix y < A, choose (j5)scsny such that if
ys =1{x5(i) : js <1<k} then (y5)scsny are disjoint. Take
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(Milner-Shelah) If k < A regular and there is S C A N cof(k) a
NRSS of A, then NPT (k, wq) implies NPT (A, wq).

Proof: Let (A;)i<« be countable sets witnessing NPT («, ). Let

(x5)ses be aladder system on S, enumerate x5 as x5 (i) for i < .

Define Bs ;= ({8} x A;) U{xs(i)}, and claim that (Bg,i)5€5,i<,<
exemplify NPT (A, Np).

If f transversal, for each b there is i such that f(Bs ;) = x5, < 9,
impossible by Fodor. Fix y < A, choose (j5)scsny such that if
ys =1{x5(i) : js <1<k} then (y5)scsny are disjoint. Take
transversal s of (A;);<j;.- Now map Bs; to (8, hs(A;)) fori <js
and x5(i) for js <i < k, get transversal of (Bsi)scsny,i<«-

32/50



Non-reflecting stationary sets
PCF

For any regular k, k™ N cof(k) is NRSS of k™. Since we know
NPT (X1, X1), deduce NPT(X,,X;) forl < n < w.
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For any regular k, k™ N cof(k) is NRSS of k. Since we know
NPT (X, ¥X;), deduce NPT (X,,X;) for1l <n < w.

But Magidor showed that modulo large cardinals (w
supercompact cardinals) that consistently every stationary
subset of N, 1 reflects.



Magidor and Shelah used PCF to show that NPT (¥, 1, N1).
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Quick review of PCF for X,. Let <* denote eventual
domination:
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Magidor and Shelah used PCF to show that NPT (X, 1, ¥X1).

Quick review of PCF for X,. Let <* denote eventual
domination:

@ There exist unbounded A C w, and a sequence (fx) x<x
which is increasing and cofinal in (] [,,c4 Xy, <*).
Adjusting A and f’s we may assume that 0 ¢ A and

foé xn/ xn+1)

w+1
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Magidor and Shelah used PCF to show that NPT (X, 1, ¥X1).

Quick review of PCF for X,. Let <* denote eventual
domination:

@ There exist unbounded A C w, and a sequence (fx) x<x
which is increasing and cofinal in (] [,,c4 Xy, <*).
Adjusting A and f’s we may assume that 0 ¢ A and
foé Nn/ xn+1)

@ Let @ < N1 be alimit ordinal. An exact upper bound for
(fp)p<a is § € [ [,,ca Ny such that
hellean:h<*gh={he]],caNu:3IB <ah<*fpl
If an eub exists it is unique mod finite.

w+1
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o If cf(x) > w and « is a point where an eub g exists with
cf(g(n)) > w for all n, then cf(g(n)) = cf(x) for all large n.
Such o are called good. « is good iff there are I C «
unbounded and m < w such that (fg (1))g¢ is strict
increasing for m < n < w.
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o If cf(x) > w and « is a point where an eub g exists with
cf(g(n)) > w for all n, then cf(g(n)) = cf(x) for all large n.
Such o are called good. « is good iff there are I C «
unbounded and m < w such that (fg (1))g¢ is strict
increasing for m < n < w.

@ There are stationarily many good points in each
uncountable cofinality.
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Let T be the stationary set of good points of cofinality X;. PCF
theory gives structural information about T Ny for y < Ny,
with wy < cf(y):

e Ifyis good, then almost all points in y N cof(wq) arein T.

@ If v is ungood, then almost all points in y N cof(w;) are not
inT.
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Let T be the stationary set of good points of cofinality X;. PCF
theory gives structural information about T Ny for y < Ny,
with wq < cf(y):

e Ifyis good, then almost all points in y N cof(wq) arein T.

@ If v is ungood, then almost all points in y N cof(w;) are not
inT.

For the experts: If v is good, fix I and n witnessing this: all « of
cofinality w; such that I is unbounded in « are good. If 7y is
ungood, it is in the Bad or Ugly cases of Shelah’s trichotomy: in
either case the witnessing objects witness ungoodness almost
everywhere below.
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Viewed as sets of ordered pairs, the fy's form an almost disjoint
family of countable subsets of A x X,. To emphasise that we
are thinking of them as sets, we write Ay = {(m, f«(m)) : m € A}.
Ordering A by first entries, we have a notion of “tail of A,”.
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Viewed as sets of ordered pairs, the fy's form an almost disjoint
family of countable subsets of A x X,. To emphasise that we
are thinking of them as sets, we write Ay = {(m, f«(m)) : m € A}.
Ordering A by first entries, we have a notion of “tail of A,”.

Trivial remark: X x Y is disjoint from Z x W iff X is disjoint
from Z or Y is disjoint from W.
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Viewed as sets of ordered pairs, the f«’s form an almost disjoint
family of countable subsets of A x X,. To emphasise that we
are thinking of them as sets, we write Ay = {(m, f«(m)) : m € A}.
Ordering A by first entries, we have a notion of “tail of A,”.

Trivial remark: X x Y is disjoint from Z x W iff X is disjoint
from Z or Y is disjoint from W.

Idea of proof: Construct a witness to NPT(N, 11, N) and then
“step down” to get a witness to NPT (X, 41, NX1).
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Key claim: for all y < N1 there exist (By, D) for x € TNy
such that:

@ B, isatail of Ay.
@ D, is club in & with ot(Dy) = w;.

@ The sets B, x Dy are pairwise disjoint.
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Key claim: for all y < N1 there exist (By, D) for x € TNy
such that:

@ B, isatail of Ay.
@ D, is club in & with ot(Dy) = w;.

@ The sets B, x Dy are pairwise disjoint.

Assuming key claim, we fix E, club in « for each & € T and
claim that {Ay X E4 : o € T} exemplify NPT(k™, Xp).
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Key claim: for all y < N1 there exist (By, D) for x € TNy
such that:

@ B, isatail of Ay.
@ D, is club in & with ot(Dy) = w;.

@ The sets B, x Dy are pairwise disjoint.

Assuming key claim, we fix E, club in « for each & € T and
claim that {Ay X E4 : o € T} exemplify NPT(k™, X;). There is
no transversal of the whole system (freeze 1st coordinate on a
stationary set, then apply Fodor on 2nd coordinate).
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Key claim: for all y < N1 there exist (By, D) for x € TNy
such that:

@ B, isatail of Ay.
@ D, is club in & with ot(Dy) = w;.

@ The sets B, x Dy are pairwise disjoint.

Assuming key claim, we fix E, club in « for each & € T and
claim that {Ay X E4 : o € T} exemplify NPT(k™, X;). There is
no transversal of the whole system (freeze 1st coordinate on a
stationary set, then apply Fodor on 2nd coordinate). For

Y < N+1 apply the key claim and see that

By X (D NEy) € Ay % Eq, these subsets are nonempty and
pairwise disjoint.
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(Sketchy) Proof of key claim:

ladder system on a NRSS.

Show it by induction on v, similar to disjointifying tails of a

Dae
40/50



Preamble
Singular compactness Non-reflecting stationary sets
Constructing non-compact objects PCF
Consistency results

(Sketchy) Proof of key claim:
Show it by induction on v, similar to disjointifying tails of a
ladder system on a NRSS.

Easy case 1: v =y + 1. Apply IH to yo, and thenif yp € T
choose D, and replace Dy ’s below by tails disjoint from D.,.
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(Sketchy) Proof of key claim:
Show it by induction on v, similar to disjointifying tails of a
ladder system on a NRSS.

Easy case 1: v =y + 1. Apply IH to yo, and thenif yp € T
choose D, and replace Dy ’s below by tails disjoint from D.,.

Easy case 2: There exist y; ¢ T increasing continuous and
cofinal in y. Use v;’s to cut y into blocks, apply IH in each
block, then replace D for « € [y;, vit1) by tail above ;.
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Hard case: None of the above. By assumption vy is good and
increasing for n > m.

cf(y) > w;. FixI C vy cofinal and m such that (fx (1)) xer is
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Hard case: None of the above. By assumption vy is good and
cf(y) > wi. Fix I C vy cofinal and m such that (f« (1)) xes is
increasing for n > m.

C is the club of & < 7y such that I is unbounded in «:
decompose 7y into lim(C) and points which live in an interval
(8,m] where 8,1 are successive points of C.
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C is the club of o < 7y such that I is unbounded in o
decompose 7y into lim(C) and points which live in an interval
(8,m] where 8,1 are successive points of C.
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41/50



Preamble
Singular compactness Non-reflecting stationary sets
Constructing non-compact objects PCF
Consistency results

Hard case: None of the above. By assumption vy is good and
cf(y) > wi. Fix I C vy cofinal and m such that (f« (1)) xes is
increasing for n > m.

C is the club of o < 7y such that I is unbounded in o
decompose 7y into lim(C) and points which live in an interval
(8,m] where 8,1 are successive points of C.

By IH, in each such interval (§,m] choose (B, D) for
o € TN (,m], making sure that D, s are above .

For o € T N1im(C) choose Dy = C N «, so that Dy N Dg = () for
B < axunless also 3 € TN Lim(C).
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Key point: Fix x € TN lim(C) For every 3 € I N «, there is
n(B) = msuch that fg (n) < f(n) forn > n(p). As cf(x) = wy,
there is | C I N o« unbounded and n* such that n(p) =n* for

B € J. But then (by choice of I and m) fg (1) < f«(n) for all
Belnuandn > n*.
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Key point: Fix x € TN lim(C) For every 3 € I N «, there is
n(B) = msuch that fg (n) < f(n) forn > n(p). As cf(x) = wy,
there is | C I N o« unbounded and n* such that n(p) =n* for

B € J. But then (by choice of I and m) fg (1) < f«(n) for all
Belnuandn > n*.

Let n(«) be the least point of I above «. Then we can choose
m(a) > m such that for n > m(«):
° fg(n) < fu(n forall[SeIﬂoc

® fu(n) < fria(n
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Key point: Fix x € TN lim(C) For every 3 € I N «, there is
n(B) = msuch that fg (n) < f(n) forn > n(p). As cf(x) = wy,
there is | C I N o« unbounded and n* such that n(p) =n* for

B € J. But then (by choice of I and m) fg (1) < f«(n) for all
Belnuandn > n*.

Let n(«) be the least point of I above «. Then we can choose
m(a) > m such that for n > m(«):

° fg(n) < fu(n forall[SeIﬂoc
® fu(n) < fya)(n

Let Ba = {(n,fa(n)) : n > m(a)}.

42/50
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a<n(x)el<ao

Now let o, &’ € T Nlim(C) with & < «’, and note that
Forn > m(«), m(o),

fa(n) < fam(n) < fo(n)
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a<n(x)el<ao

Now let o, &’ € T Nlim(C) with & < «’, and note that
Forn > m(«), m(o),

It follows that By N Bg = 0.

foc(n) <foc(11) (11) <fo/c(n)
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So far we just proved NPT (X, 1, N2). To bring it down to
NPT(X 41, N1), we fix a ladder system S., on the countable
limit ordinals, and enumerate each Ey as e, .
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So far we just proved NPT (X, 1, N2). To bring it down to
NPT(X 41, N1), we fix a ladder system S., on the countable
limit ordinals, and enumerate each E as ey . Now define
Boy = (Sy x {a}) U (Ax X {ea,y})-

No transversal? For every « € T there is y such that B, maps
to something chosen from the second coordinate, contradiction
by Ax C A x N, and Fodor.

Transversal for {By,, : x € TN,y < NqJ?
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So far we just proved NPT (X, 1, N2). To bring it down to
NPT(X 41, N1), we fix a ladder system S., on the countable
limit ordinals, and enumerate each E as ey . Now define
Boy = (Sy x {a}) U (Ax X {ea,y})-

No transversal? For every « € T there is y such that B, maps
to something chosen from the second coordinate, contradiction
by Ax C A x N, and Fodor.

Transversal for {By, : « € TNM,y < N;}? Choose By and D
for o € T Nn such that B, x Dy’s are pairwise disjoint. Fix «. If
ex,y € D« then choose a point in By x {e«,y}. On the
non-stationary set of y such that e, ¢ Dy, choose a transversal
of corresponding S, ’s and use this to select a pointin S, x {o}

44/50



As we saw, in ZFC we can prove:

@ PT(A,X;) for singular A as a special case of Singular
Compactness
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@ NPT(X, 1, N;) by iterating the Milner-Shelah theorem
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As we saw, in ZFC we can prove:
@ PT(A, X;) for singular A as a special case of Singular
Compactness
@ NPT(X;,NX;) with a ladder system
@ NPT(X, 1, N;) by iterating the Milner-Shelah theorem
@ NPT(X,+1, 1) by PCF theory

Using these methods, we can obtain NPT (X, y+n+1) for
m,n < w.
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By contrast, Magidor and Shelah proved from large cardinals
that PT(X 2, 1, X1) is consistent. In fact they proved much
more, but this is a revealing special case.
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How is X2, | different from N, ;? The answer lies in PCFE.
Scales of length X > can have many “chaotic” points, which
are an obstacle to PCF constructions of the style we just saw.
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By contrast, Magidor and Shelah proved from large cardinals
that PT(X 2, 1, X1) is consistent. In fact they proved much
more, but this is a revealing special case.

How is X2, | different from N, ;? The answer lies in PCFE.
Scales of length X > can have many “chaotic” points, which
are an obstacle to PCF constructions of the style we just saw.

The consistency proof proceeds via a rather technical reflection
property called A(k,A), which combines stationary reflection
with some kind of second-order Downward
Lowenheim-Skolem principle.
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which we call the operations of the algebra. A subalgebra is a
nonempty set Y C X closed under all the operations.
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An algebra on a set X is a set A of functions from X<¢ to X,
which we call the operations of the algebra. A subalgebra is a
nonempty set Y C X closed under all the operations.

Given k < A with A regular, A(k, A) asserts that for every
algebra A on A with fewer than k operations, and every
stationary S C A N cof(< k), there is Y C A such that:
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An algebra on a set X is a set A of functions from X<¢ to X,
which we call the operations of the algebra. A subalgebra is a
nonempty set Y C X closed under all the operations.

Given k < A with A regular, A(k, A) asserts that for every
algebra A on A with fewer than k operations, and every
stationary S C A N cof(< k), there is Y C A such that:

@ Y is a subalgebra

@ ot(Y) is an uncountable regular cardinal less than «.

@ SN Y is stationary in sup(Y).
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As motivation, we prove that if k is A-supercompact for regular
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As motivation, we prove that if k is A-supercompact for regular
A > k. then A(k, A) holds:

Letj: V — M with crit(j) = k, A < j(k) and *M C M. Given A
and S, we go to M and let Z = j[A]. Note that Z € M by closure.
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j is continuous at points of cofinality less than k, so that j[S] is
stationary in sup(Z). Alsoj[S] C j(S)NZ,s0j(S)NZis
stationary in sup(Z).

By elementarity, get suitable subalgebra X of A.
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the consistency of A(X 2, N ,2,1).

By a hard forcing construction, Magidor and Shelah obtained
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By a hard forcing construction, Magidor and Shelah obtained
the consistency of A(X 2, N2, 7).

(V sketchy) Proof of PT (X2 1, ¥;) from A(N 2, N2, ). Let
K = Ng2, A= N2, . Suppose for contradiction that there is a
counterexample, that is a sequence (x;);<x which has no
transversal, but every initial segment has one.
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the consistency of A(X 2, N2, 7).

(V sketchy) Proof of PT (X2 1, ¥;) from A(N 2, N2, ). Let
K = Ng2, A= N2, . Suppose for contradiction that there is a
counterexample, that is a sequence (x;);<x which has no
transversal, but every initial segment has one.

Construct a stationary set S C A N cof(< k) and an algebra A
with fewer that k operations which “witness” that there is no
transversal of the A-sequence. The singular compactness
theorem for k = N> is used to keep the number of operations
strictly below «.

Apply the principle A(k, A) to reflect the stationary set and the
algebra. Produce a witness that a strict initial segment of the
A-sequence has no transversal. Contradiction.
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Dékuii!
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