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We will discuss the topological dynamics of the automorphism groups
Aut(M) of metric structures M, focused in:

(approximate) ultrahomogeneous structures.

the Extreme amenability (EA) of Aut(M), or the computation of its
universal minimal flow

The relation between the (EA) of Aut(M) and the (approximate)
Ramsey properties of Age(M) (the KPT-correspondence).

The “metric” theory for the case of Banach spaces.

The Gurarij space and the L, [0, 1]-spaces.
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@ Topological Dynamics
Extreme Amenability, Universal Minimal Flows
UMF vs EA; how to prove EA

® (Metric) Fraissé Theory
First order structures
KPT correspondence; Structural Ramsey Properties
Structural Ramsey Theorems
Metric structures
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© Fraissé Banach spaces and Fraissé Correspondence
Fraissé Banach spaces and ultrapowers

@ Approximate Ramsey Properties

® KPT correspondence for Banach spaces

WS2019

4/44



@ Gurarij space
{¢"_}, have have the (ARP)
The ARP of Finite dimensional Normed spaces
The ARP of Finite dimensional Normed spaces

@ L,-spaces
L, (sometimes) is a Fraissé space
{£3} have the (ARP)

WS2019
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Extreme Amenability, Universal Minimal Flows

Let (G, -, 1) be a topological group (that is, a group endowed with a topology
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Extreme Amenability, Universal Minimal Flows

Let (G, -, 1) be a topological group (that is, a group endowed with a topology

for which the operations (g, 4) — g - h and g +— g~! are continuous).

Given a compact space K, a flow G ~ K is an algebraic action
((g-h)-x=g-(h-x),1-x=x)suchthat (g,x) — g - xis continuous.

Definition

A topological group G is called extremely amenable (EA) when every
continuous action (flow) G ~ K on a compact K has a fixed point; that is,
thereisp € Ksuchthatg-p=pforall g € G.

EA groups are amenable (G is amenable iff every affine flow G ~ K on a
compact convex space K has a fixed point).
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Definition

A flow G ~ K is called minimal when every G-orbit is dense.
G ~ K is a universal minimal flow when for any minimal flow G ~ L there
is a continuous and onto G-mapping ¢ : K — L; thatis ¢(g - x) = g - ¢(x).
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Extreme Amenability, Universal Minimal Flows

Definition

A We consider the commutative C* -algebra of right uniformly con-

G tinuous and bounded f : G — C, and represent it as C(S(G)) © there
IS (Gelfand); any minimal flow of S(G) is G-isomorphic to M(G). B(x)-
Proposition

Universal Minimal flows exists and are unique, denoted by M (G).



Extreme Amenability, Universal Minimal Flows

Proposition

A topological group G is extremely amenable if and only if M(G) = {x}.
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Extreme Amenability, Universal Minimal Flows

Proposition

A topological group G is extremely amenable if and only if M(G) = {x}.

Question

Compute universal minimal flows.
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Extreme Amenability, Universal Minimal Flows

H The unitary group U of linear isometries of the separable infinite
dimensional Hilbert space Hl, endowed with its strong operator topology
SOT (i.e. the pointwise convergence topology) (Gromov-Milman);
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The unitary group U of linear isometries of the separable infinite
dimensional Hilbert space Hl, endowed with its strong operator topology
SOT (i.e. the pointwise convergence topology) (Gromov-Milman);

The group Aut(Q) of strictly increasing bijections of Q (with the pw.
convergence topology) is extremely amenable (V. Pestov);

The group of isometries of the Urysohn space with its pw. conv. top.
(Pestov);
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Topological Dynamics Extreme Amenability, Universal Minimal Flows

The group of linear isometries of the Lebesgue spaces L, [0, 1],
1 < p # 2 < oo, with the SOT (Giordano-Pestov);

The Automorphism group of the ordered countable atomless boolean
algebra B is extremely amenable (Kechris-Pestov-Todorcevic);

@ The Automorphism group of the ordered universal F-vector space F<>°,
FF finite field, is extremely amenable (K-P-T);

The group of linear isometries of the Gurarij space G
(Bartosova-LA-Lupini-Mbombo).
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Extreme Amenability, Universal Minimal Flows

B M(Homeo|0, 1]) = {—1, 1} (orientations of an homeomorphism
f:10,1] — [0, 1] (Pestov);
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Extreme Amenability, Universal Minimal Flows

B M(Homeo|0, 1]) = {—1, 1} (orientations of an homeomorphism
f:10,1] — [0, 1] (Pestov);
M(Aut(B)) = Canonical Linear Orderings on B (K-P-T);

M (Aut(F<°°)) = Canonical Linear Orderings on F<* (K-P-T), for any
finite field IF;

M(Aut(PP)) = P, where IP is the Poulsen simplex, the unique compact
metrizable Choquet simplex whose extreme points are dense
(B-LA-L-M).



UMF vs EA; how to prove EA

Proposition (Ben Yaacov-Melleray-Tsankov)

Suppose that G is a polish group (i.e. separable and complete metrizable
topological group). If the umf M(G) is metrizable, then there is an EA
subgroup H of G such that M(G) is the completion of G/H.
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UMF vs EA; how to prove EA

Up to now there are two ways to prove the extreme amenability of a group:

H Intrinsically by proving that G is Lévy (concentration of measure);

by representing G as the automorphims group Aut(X) of a metric Fraissé
structure X, and then using the KPT correspondence.

While the first seems a restricted approach, the second is general, as proved
by Melleray.



Topological Dynamics UMEF vs EA; how to prove EA

Aut(X) is extremely amenable

X Method

H Lévy

Q KPT

U Lévy and KPT
L,[0,1] | Lévy and KPT
B KPT

F<c KPT

G KPT

Table: Methods to prove extreme amenability

J. Lopez-Abad (UNED) Eaag WS2019 14/44



First order structures

All the previous examples are universal (metric) structures with a very strong
transitivity property.

——— TRHE LG



First order structures

All the previous examples are universal (metric) structures with a very strong
transitivity property.

Definition (Ultrahomogeneity)

A first order structure M is called ultrahomogeneous when for every finitely
generated substructure N of M and every embedding ¢ : N' — M there is an
automorphism g € Aut(M) such that g [ N = ¢.



First order structures

All the previous examples are universal (metric) structures with a very strong
transitivity property.

Definition (Ultrahomogeneity)

A first order structure M is called ultrahomogeneous when for every finitely
generated substructure " of M and every embedding ¢ : N” — M there is an
automorphism g € Aut(M) such that g [ N = ¢.

Fraissé theory tells that countable ultrahomogeneous structures are the Fraissé
limits of Fraissé classes (hereditary property, joint embedding property, and
amalgamation property).
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Proposition (Representation Theorem I)

Every closed subgroup G < Ss.,  is the automorphism group of a
ultrahomogeneous first order structure.

Permutations of N with the topology of point-
wise convergence.
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(Metric) Fraissé Theory First order structures

Proposition (Representation Theorem I)

Every closed subgroup G < So is the automorphism group of a
ultrahomogeneous first order structure.

Proof.

For suppose that G is a closed subgroup of S..; For each k € N, consider the
canonical action G ~ N¥, g - (a;)j<k = (g(aj))j<k, and let {OJ(k) }ier, be the
enumeration of the corresponding orbits. Let £ be the relational language,
{R;k) : ke N, je Ik}, each R}k) being a k-ari relational symbol. Now N is an
‘R-structure M naturally,

CIVVIPNG
(RYM = 0.

It is easy to see that M is ultrahomogeneous, and that G C Aut(M) is dense
in G, so, equal to G.

O
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KPT correspondence; Structural Ramsey Properties

Given two first order structures of the same sort A, B, let emb(A, B) be the
collection of all 1-1 morphisms 2 : A — B.
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KPT correspondence; Structural Ramsey Properties

Given two first order structures of the same sort A, B, let emb(A, B) be the
collection of all 1-1 morphisms 2 : A — B.

Definition (Structural Ramsey Property)

Let F be a class of finitely generated first order structures of the same sort.
The class F has the Structural Ramsey Property (RP) if for every A,B € F
and every r € N there is C € F such that for every coloring

¢ :emb(A, C) — rthereis o € emb(B, C) such that p o emb(A, B) is
c-monochromatic.

Theorem (Kechris-Pestov-Todorcevic)

Let M be a countable ultrahomogeneous structure. TFAE:
Aut(M) is extremely amenable;
Age(M) has the Ramsey property (RP).
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Recall that [A]* is the collection of all subsets of A of cardinality k.
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Structural Ramsey Theorems

We will use the Von Neumann notation for an integer n := {0, 1,...,n — 1}.
Recall that [A]* is the collection of all subsets of A of cardinality k.

Proposition (F. P. Ramsey)
For every k,m,r € N there is n > k such that every r-coloring

c:[n]k—>r

has a monochromatic set of the form [A}* for some A C n of cardinality m.
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(Metric) Fraissé Theory Structural Ramsey Theorems

This is equivalent to the following: Let emb(k, n) be the collection of all
injections f : k — n (so, no structure).

Proposition (RP of finite linear orderings)

For every k,m,r € N there is n > k such that every r-coloring
¢ : emb(k,n) — r has a monochromatic set of the form o o emb(k, m) for
some o € emb(m,n); consequently,

The class of finite linear orderings has the Ramsey property, and
Aut(Q, <) is extremely amenable.
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Structural Ramsey Theorems

Let £ be the set of all partitions of 7 into d-many pieces. Given a partition
Q € &™ andd < m, let (Q)? be set of all partitions P € £ coarser than Q.
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Structural Ramsey Theorems

Let £ be the set of all partitions of 7 into d-many pieces. Given a partition
Q € &™ andd < m, let (Q)? be set of all partitions P € £ coarser than Q.

Theorem (Dual Ramsey by Graham and Rothschild)

For every d, m and r there exists n such that for every coloring c : 5,’11 —r
there exists Q € EM such that ¢ | {Q)? is constant.



(Metric) Fraissé Theory Structural Ramsey Theorems

By a simple dual argument, this is equivalent to the following. Given

k,n € N, we consider P (k) and P(n) as boolean algebras, and then let
emb(k, n) be the collection of all ordered boolean embeddings

f:P(k) = P(n), i.e., such that minf({i} < minf({j}) foreveryi <j < k.
The dual Ramsey theorem can be restated as follows.
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(Metric) Fraissé Theory Structural Ramsey Theorems

By a simple dual argument, this is equivalent to the following. Given

k,n € N, we consider P (k) and P(n) as boolean algebras, and then let
emb(k, n) be the collection of all ordered boolean embeddings

f:P(k) = P(n), i.e., such that minf({i} < minf({j}) foreveryi <j < k.
The dual Ramsey theorem can be restated as follows.

Theorem (DR, Boolean version)

For every k,m and r in N there is some n € N such that every r-coloring
¢ :emb(P(k),P(n)) — r has a monochromatic set of the form
o oemb(P(k), P(m)) for some o € emb(P(m),P(n)); consequently,
The class of finite, canonically ordered, boolean algebras has the
Ramsey property, and

The automorphism group of the canonically ordered countable atomless
boolean algebra is extremely amenable.
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Metric structures

The rest of the examples are also groups of algebraic automorphisms that are
in addition isometries. First order structures are the discrete version of metric
structures M = (M, (FM)pez, (R™)rer): Roughly speaking:
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The rest of the examples are also groups of algebraic automorphisms that are
in addition isometries. First order structures are the discrete version of metric
structures M = (M, (FM)pez, (R™)rer): Roughly speaking:
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Metric structures

For more information: “Model theory for metric structures” by Ben
Yaacov-Berenstein-Henson-Usvyatsov) Metric structures are

B metric spaces,
normed spaces,
euclidean spaces,

operator spaces, etc.
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Metric structures

Definition (Approximate Ultrahomogeneity)

A metric structure M is called approximate ultrahomogeneous when for every
finitely generated substructure A\ of M and every embedding ¢ : N' — M
there is an automorphism g € Aut(M) such thatd(g [ N, ¢) < e.
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Metric structures

Definition (Approximate Ultrahomogeneity)

A metric structure M is called approximate ultrahomogeneous when for every
finitely generated substructure A\ of M and every embedding ¢ : N' — M
there is an automorphism g € Aut(M) such thatd(g [ N, ¢) < e.

Metric Fraissé theory tells that countable ultrahomogeneous structures are the
Fraissé limits of Fraissé classes (hereditary property, joint embedding
property, and near amalgamation property).
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Metric structures

H H is the Fraissé limit of all finite dimensional euclidean normed spaces;

The Gurarij space G (the unique separable ultrahomogeneous Banach
space) is the Fraissé limit of all finite dimensional normed spaces.
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Metric structures

H H is the Fraissé limit of all finite dimensional euclidean normed spaces;

The Gurarij space G (the unique separable ultrahomogeneous Banach
space) is the Fraissé limit of all finite dimensional normed spaces.

Proposition (Representation Theorem II; Melleray)

Every polish group G is the automorphism group of an approximate
ultrahomogeneous metric structure.
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Metric structures

Theorem (Melleray-Tsankov)

Let M be a metric approximately ultrahomogeneous structure. TFAE:
B Aut(M) is extremely amenable;
Age(M) has the approximate Ramsey property (ARP).

——— - TRHE B
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Metric structures

® When M is a ultrahomogeneous structure, the extreme amenability of
Aut(M) is determined by a combinatorial property of Age(M): The
Ramsey property

e S Ramsey theorem, Dual Ramsey Theorem, Graham-Leeb-

o [ Rothschild, NeSetfil...
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(although artificial).
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Metric structures

When M is a ultrahomogeneous structure, the extreme amenability of
Aut(M) is determined by a combinatorial property of Age(M): The
Ramsey property

Same when M is a metric structure.

Ultrahomogeneous structures are not so uncommon. every polish group

is the automorphism group of some Q as order, B<oo, F<®, U
(although artificial).

Several known Ramsey properties correspond to the structural Ramsey
property of Age(M) for some (approx.) ultrahomogeneous structure M



An example of metric structures:
Banach spaces
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© Fraissé Banach spaces and Fraissé Correspondence
Fraissé Banach spaces and ultrapowers

@ Approximate Ramsey Properties

® KPT correspondence for Banach spaces
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Given two Banach spaces X and Y, and 6 > 0, let Embs(X, ) be the
collection of all linear 1-1 bounded functions 7 : X — Y such that
W7, IT~H <1494,
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Definition

A collection F of finite dimensional normed spaces has the Approximate
Ramsey Property (ARP) when for every F, G € F and € > 0 there exists
H € F such that every continuous coloring ¢ of Emb(F, H) e-stabilizes in
0o Emb(F, G) for some p € Emb(G, H), that is,

osc(c | oo Emb(F,G)) < e.



Given two Banach spaces X and Y, and 6 > 0, let Embs(X, ) be the
collection of all linear 1-1 bounded functions 7 : X — Y such that
W7, IT~H <1494,

Definition

A collection F of finite dimensional normed spaces has the Approximate
Ramsey Property (ARP) when for every F, G € F and € > 0 there exists
H € F such that every continuous coloring ¢ of Emb(F, H) e-stabilizes in
0o Emb(F, G) for some p € Emb(G, H), that is,

osc(c | oo Emb(F,G)) < e.

This is a particular instance of a more general definition for metric structures.



wgskek faltg FiEE

b arp

compact arp

discrete arp

Property for Emb(X, E).
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Three examples
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@ Gurarij space
{¢"_}, have have the (ARP)
The ARP of Finite dimensional Normed spaces
The ARP of Finite dimensional Normed spaces

@ L,-spaces
L, (sometimes) is a Fraissé space
{£3} have the (ARP)
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The ARP of Finite dimensional Normed spaces

Theorem (BartoSova-LA-Lupini-Mbombo)
The following classes of f.d. normed spaces have the (ARP):
B {05 o
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The ARP of Finite dimensional Normed spaces

Theorem (BartoSova-LA-Lupini-Mbombo)

The following classes of f.d. normed spaces have the (ARP):
B {0,
The class of finite dimensional polyhedral spaces;

The class of all finite dimensional normed spaces.

There are also noncommutative analogues. **%#%* falta **** mention
M-spaces.
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The ARP of Finite dimensional Normed spaces

Theorem (B-LA-L-M)

The following groups are extremely amenable:
B Aut(G);
Aut,(P) for every extreme point p of P;

We also have
The umf of Aut (P) is the canonical action Aut(P) ~ P;
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The ARP of Finite dimensional Normed spaces



L, (sometimes) is a Fraissé space



{67} have he (ARP)



{65} e the (ARP)

Gurarij
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