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Locally presentable categories are precisely those categories which can
be axiomatized by limit sentences in an infinitary first-order logic.

They include varieties and quasivarieties of algebras.



Definition

Let X = lim
←
{Xi, πi,j}I . A map f : X → A is said to depend on a

(down-directed) set J ⊂ I if there exists a map
g : lim

←
{pri(Xi), πi,j}J → A in C such that f = g pJ .

Task

Let C be generated by a space A. We are looking for a cardinal λ such
that every map from lim

←
{Xi, πi,j}I into A depends on some J ⊂ I with

|J | < λ.

Such a least cardinal λ is denoted by coord(C, A).

Special task

When discrete ordered index sets I are used only, notations coordd(C, A)
are used.
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Theorem

Let X = lim
←
{Xi, πi,j}I and f : X → A, J be a down-directed subset of I.

Then f depends on J iff f depends on J regarding X as a subspace of∏
I Xi and the factorized map extends in C onto prJ(X).

Theorem

coord(C, A) ≤ λ iff for any family {Xi}I ⊂ C, any closed subset
X ⊂

∏
I Xi and any map f : X → A, the map f depends on some J ⊂ I

with |J | < λ and the factorized map can be extended to a continuous map
prJ(X)→ A.

Theorem

coordd(C, A) ≤ λ iff for any family {Xi}I ⊂ C and any map
f :

∏
I Xi → A, the map f factorizes in C via a subproduct

∏
J Xi for

some J ⊂ I with |J | < λ.
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Let mC be the least cardinal κ such that a discrete space of cardinality
κ does not belong to C. In fact,
mC = min{κ; there exists X ∈ C that is not pseudo-κ-compact}

The cardinal mC is measurable or equals to ∞.
Always coord(C, A) ≥ coordd(C, A) ≥ mC
If C is simple and mC <∞ then coordd(C) <∞.

mC > ω

If m0 < mC <∞ then coordd(C, A) = mC provided ψ(∆A) < mC .
Thus coordd(RealComp) = m1.
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The cardinal mC is measurable or equals to ∞.
Always coord(C, A) ≥ coordd(C, A) ≥ mC
If C is simple and mC <∞ then coordd(C) <∞.

Theorem (N.Noble, M.Ulmer 1972)

Let κ be a regular cardinal. If
∏
I Xi is pseudo-κ-compact then every

continuous f :
∏
I Xi → A depends on less than κ coordinates for any A

with ψ(∆A) < κ.
If all Xi are completely regular and

∏
I Xi is not pseudo-κ-compact,

where cof(κ) > ω, then there exists a continuous real-valued function on
the product not depending on less than κ coordinates

mC > ω

If m0 < mC <∞ then coordd(C, A) = mC provided ψ(∆A) < mC .
Thus coordd(RealComp) = m1.
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Definition

A regular cardinal κ is said to be λ-strongly compact for ω < λ ≤ κ if
every κ-complete filter on any set has an extension to λ-complete
ultrafilter.

Every λ-strongly compact cardinal is µ-strongly compact for any
infinite µ ≤ m(λ).

Every λ-strongly compact cardinal is measurable and the first
uncountable measurable cardinal m1 may be ω1-strongly compact.

If κ is a λ-strongly compact cardinal then υλ(µ) ∩ Uµ 6= ∅ for every µ
with cof(µ) ≥ κ.

In particular, if m1 is ω1-strongly compact then υ(µ) ∩ Uµ 6= ∅ for
every µ with cof(µ) ≥ m1 (clearly, υ(µ) ∩ Uµ = ∅ if cof(µ) < m1).
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General limits, realcompact spaces

Theorem

Let µ-strongly compact cardinals exist and κ be the smallest one. Let A
be such a space that every µ-complete ultrafilter on any set D converges
in a reflection rA(D) of D in A-compact spaces. Then
coord(C(A), A) ≤ max(κ, χ(A)+).

Theorem (Realcompact spaces)

If ω1-strongly compact cardinals exists and λ is the smallest one then for
C composed of realcompact spaces and containing N one has
m1 ≤ coord(C) ≤ λ.

Corollary

If m1 is ω1-strongly compact then for C composed of realcompact spaces
and containing N one has coord(C) = m1.
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Proof

Theorem

Let µ-strongly compact cardinals exist and κ be the smallest one. Let A
be such a space that every µ-complete ultrafilter on any set D converges
in a reflection rA(D) of D in A-compact spaces, and let χ(A) < κ. Then
coord(C(A), A) ≤ κ.



Proof

Theorem

Let µ-strongly compact cardinals exist and κ be the smallest one. Let A
be such a space that every µ-complete ultrafilter on any set D converges
in a reflection rA(D) of D in A-compact spaces, and let χ(A) < κ. Then
coord(C(A), A) ≤ κ.

1. Let f : X → A,X is a closed subspace of AI , does not depend on
less than κ coordinates. Then for every J ∈ [I]<κ the following sets are
nonempty:

CJ = {x ∈ X; there is y ∈ X such that prJ(x) = prJ(y), f(x) 6= f(y)} .

The sets CJ form a base of a κ-complete filter F in the set X. By our
assumption, F can be extended to a µ-complete ultrafilter on the set X
and it has an accumulation point ξ in the space X.



Proof

Theorem

Let µ-strongly compact cardinals exist and κ be the smallest one. Let A
be such a space that every µ-complete ultrafilter on any set D converges
in a reflection rA(D) of D in A-compact spaces, and let χ(A) < κ. Then
coord(C(A), A) ≤ κ.

2. Now f depends on some J0 ∈ [I]<κ and f = fJprJ for any
J ∈ J = {J ∈ [I]<κ, J ⊃ J0}. Assume no such fJ is continuous and
denote

CJ = {x ∈ X; fJ is not continuous at prJ(x)} .

Again, the sets CJ form a base of a κ-complete filter F in the set X
extendible to a µ-complete ultrafilter on the set X and, thus, having an
accumulation point in X.



Proof

Theorem

Let µ-strongly compact cardinals exist and κ be the smallest one. Let A
be such a space that every µ-complete ultrafilter on any set D converges
in a reflection rA(D) of D in A-compact spaces, and let χ(A) < κ. Then
coord(C(A), A) ≤ κ.

3. Now f depends continuously on some J0 ∈ [I]<κ. Denote again
J = {J ∈ [I]<κ, J ⊃ J0}. Assume no such fJ can be continuously
extended to prJ(X). Then we can define

CJ = {x ∈ pr−1J (prJ(X)); fJ does not extend continuously to prJ(x)} .

Again, the sets CJ form a base of a κ-complete filter F in AI extendible
to a µ-complete ultrafilter on AI and, thus, having an accumulation point
in X.



Herrlich’s κ-compact spaces

Let κ be an infinite cardinal. The class of κ-compact spaces is denoted
by H(κ).

We repeat that a Tikhonov space is κ-compact if every maximal
zero-filter, that is κ-complete, is fixed; [0, 1]κ \ {1}-compact spaces are
exactly κ+-compact spaces.

If κ is not measurable then mH(κ) = m(κ)

Theorem

m(κ) ≤ coord(H(κ)) ≤ inf {κ;κ is κ-strongly compact }.
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Dieudonné complete spaces

Dieudonné complete space is a topological space induced by a
complete uniformity.

The class Dieud of Dieudonné complete spaces is simple iff the class of
measurable cardinals is a set (the class is generated by {H(m)}), m
measurable).

By Dieudκ we denote the class of Dieudonné complete spaces X
generated by {H(λ);λ < κ} (i.e., every closed discrete set in X is of
cardinality less than m(κ)).

Theorem

1 coordd(Dieud) =∞.

2 coordd(Dieudκ) = m(κ)

3 m(κ) ≤ coord(Dieudκ) ≤ inf{µ;µ is m(κ)-strongly compact }.
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Uniform spaces

Theorem (Viddossich, 1970)

Every uniformly continuous map from a subspace of a product of uniform
spaces into a uniform space A depends on at most wu(A) many
coordinates and the factorized map is uniformly continuous.

Theorem

Let C be a productive and closed hereditary subcategory of Unif2 with
generators A. Then coordd(C,A) ≤ (sup{wu(A);A ∈ A})+. If A consist
of complete spaces then coord(C,A) ≤ (sup{wu(A);A ∈ A})+.

Corollary

1 For every simple subcategory C of Unif2 one has coordd(C) <∞.

2 If C is the class of all complete uniform spaces then coord(C) = ω1.
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Precompact spaces

Consider the category Prec of all precompact (totally bounded)
uniform Hausdorff spaces. It has an interesting class of generators,
namely Pκ = [0, 1]κ \ {1} for all infinite cardinals κ.

Theorem

coordd(Prec, {Pκ}) =∞.

Theorem

κ ≤ coord(Prec(Pκ), Pκ) ≤ inf{λ;λ is a κ-strongly compact cardinal} .
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Problems

Is Cm = Um for measurable cardinals m? (Yes, if m is m-strongly
compact.)

Are the classes Uκ simple? (Not, if m1 does not exists.)

Is the class of all zerodimensional realcompact spaces simple? (Not, if m1

does not exists.)

Find a topological characterizatiuon of the property
υ(X × Y ) = υ(X)× υ(Y ).

Is there a nontrivial productive class in Top closed under quotients and
disjoint sums? (Not, if s does not exists.)
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