LARGE CARDINALS IN GENERAL TOPOLOGY II

Miroslav HUŠEK

Winter School in Abstract Analysis Hejnice, January 26–February 2, 2019

Theorem (S.Mazur 1946)

Every sequentially continuous linear functional f on the power \mathbb{R}^X is of the form $f(\varphi) = c_1\varphi(p_1) + ... + c_k\varphi(p_k)$ for some integer k, points $p_1, ..., p_k$ of X and reals $c_1, ..., c_k$, iff |X| is Ulam non-measurable.

It means that f depends on finitely many coordinates. The space \mathbb{R}^X may be regarded as $C_p(X)$ with a discrete space X. The fact that |X| is Ulam non-measurable is equivalent to realcompactness of X.

A topological linear space is called a Mazur space if every its sequentially continuous functional is continuous.

Theorem (V.Pták, S.Mrówka, 1956)

The space $C_p(X)$ is a Mazur space iff X is realcompact.

Theorem (S.Mazur 1946)

Every sequentially continuous linear functional f on the power \mathbb{R}^X is of the form $f(\varphi) = c_1\varphi(p_1) + ... + c_k\varphi(p_k)$ for some integer k, points $p_1, ..., p_k$ of X and reals $c_1, ..., c_k$, iff |X| is Ulam non-measurable.

It means that f depends on finitely many coordinates. The space \mathbb{R}^X may be regarded as $C_p(X)$ with a discrete space X. The fact that |X| is Ulam non-measurable is equivalent to realcompactness of X.

A topological linear space is called a Mazur space if every its sequentially continuous functional is continuous.

Theorem (V.Pták, S.Mrówka, 1956)

The space $C_p(X)$ is a Mazur space iff X is realcompact.

Theorem (S.Mazur 1946)

Every sequentially continuous linear functional f on the power \mathbb{R}^X is of the form $f(\varphi) = c_1\varphi(p_1) + ... + c_k\varphi(p_k)$ for some integer k, points $p_1, ..., p_k$ of X and reals $c_1, ..., c_k$, iff |X| is Ulam non-measurable.

It means that f depends on finitely many coordinates. The space \mathbb{R}^X may be regarded as $C_p(X)$ with a discrete space X. The fact that |X| is Ulam non-measurable is equivalent to realcompactness of X.

A topological linear space is called a Mazur space if every its sequentially continuous functional is continuous.

Theorem (V.Pták, S.Mrówka, 1956)

The space $C_p(X)$ is a Mazur space iff X is realcompact.

Question

When a product of Mazur spaces is a Mazur space?

Theorem (S.Dierolf 1975)

In a coreflective subcategory C of locally convex spaces (or topological linear spaces) containing \mathbb{R} , a product of κ of its nontrivial members belong to C iff $\mathbb{R}^{\kappa} \in C$.

Question

When a product of Mazur spaces is a Mazur space?

Theorem (S.Dierolf 1975)

In a coreflective subcategory C of locally convex spaces (or topological linear spaces) containing \mathbb{R} , a product of κ of its nontrivial members belong to C iff $\mathbb{R}^{\kappa} \in C$.

Question

When a product of Mazur spaces is a Mazur space?

Theorem (S.Dierolf 1975)

In a coreflective subcategory C of locally convex spaces (or topological linear spaces) containing \mathbb{R} , a product of κ of its nontrivial members belong to C iff $\mathbb{R}^{\kappa} \in C$.

Corollary

A product of Mazur spaces is Mazur iff the number of nonzero coordinate spaces is Ulam non-measurable.

Question

When a product of Mazur spaces is a Mazur space?

Theorem (S.Dierolf 1975)

In a coreflective subcategory C of locally convex spaces (or topological linear spaces) containing \mathbb{R} , a product of κ of its nontrivial members belong to C iff $\mathbb{R}^{\kappa} \in C$.

Corollary

A product of Mazur spaces is Mazur iff the number of nonzero coordinate spaces is Ulam non-measurable.

Theorem

Productivity number of the coreflective class of Mazur spaces in TLS (or LCS) is \mathfrak{m}_1 .

Productivity numbers of coreflective classes of LCS

Theorem (MH 2004)

Productivity numbers of coreflective classes in LCS are precisely measurable cardinals and ∞ . For every measurable \mathfrak{m} there is a coreflective class in LCS with its productivity number equal to \mathfrak{m} .

Corollary

If a coreflective class in LCS is countably productive, it is \mathfrak{m}_1 -productive.

Productivity numbers of coreflective classes of LCS

Theorem (MH 2004)

Productivity numbers of coreflective classes in LCS are precisely measurable cardinals and ∞ . For every measurable \mathfrak{m} there is a coreflective class in LCS with its productivity number equal to \mathfrak{m} .

Corollary

If a coreflective class in LCS is countably productive, it is \mathfrak{m}_1 -productive.

Sequential continuity on products in Top

Theorem (S.Mazur 1952)

Let $X_i, i \in I$ be metrizable separable spaces, Y be a space having G_{δ} diagonal. Then every sequentially continuous map $f : \prod_I X_i \to Y$ is continuous provided |I| is smaller than the first uncountable inaccessible cardinal.

Theorem (S.Mazur 1952)

Let $X_i, i \in I$ be metrizable separable spaces, Y be a space having G_{δ} diagonal. Then every sequentially continuous map $f : \prod_I X_i \to Y$ is continuous provided |I| is smaller than the first uncountable inaccessible cardinal.

Mazur proves that f depends on countably many coordinates, say on a countable $J \subset I$. Then f_J is sequentially continuous, thus continuous (as defined on metrizable space), thus the composition equal to f is continuous.

Sequential continuity on products in Top

Theorem (N.Noble 1970)

A mapping on product $\prod_I X_i$ of topological spaces into a regular space Y is continuous iff its restrictions to all Σ -products and to all canonical $2^{|I|}$ are continuous.

A sequentially continuous mapping on product $\prod_I X_i$ of first countable spaces is continuous iff it is continuous on all canonical subspaces $2^{|I|}$.

Theorem (N.Noble 1970)

A mapping on product $\prod_I X_i$ of topological spaces into a regular space Y is continuous iff its restrictions to all Σ -products and to all canonical $2^{|I|}$ are continuous.

A sequentially continuous mapping on product $\prod_I X_i$ of first countable spaces is continuous iff it is continuous on all canonical subspaces $2^{|I|}$.

The first cardinal κ such that there exists a non-continuous sequentially continuous map $2^{\kappa} \to \mathbb{R}$ is called sequential and denoted as \mathfrak{s} .

Theorem (N.Noble 1970)

Every sequentially continuous mapping on a product $\prod_I X_i$ of first-countable spaces is continuous provided $|I| < \mathfrak{s}$.

Theorem (S.Mazur 1952)

The cardinal \mathfrak{s} is inaccessible.

Theorem (D.V.Chudnovskij 1977)

The first cardinal κ such that there exists a non-continuous sequentially continuous map $2^{\kappa} \to \mathbb{R}$ is called sequential and denoted as \mathfrak{s} .

Since a real measure on a set is non-continuous and sequentially continuous, $\mathfrak{s} \leq \mathfrak{m}_{\mathbb{R}}$.

Keisler-Tarski problem: Is $\mathfrak{s} = \mathfrak{m}_{\mathbb{R}}$?

Theorem (N.Noble 1970)

Every sequentially continuous mapping on a product $\prod_I X_i$ of first-countable spaces is continuous provided $|I| < \mathfrak{s}$.

Theorem (S.Mazur 1952)

The cardinal \mathfrak{s} is inaccessible.

Theorem (D.V.Chudnovskij 1977)

The first cardinal κ such that there exists a non-continuous sequentially continuous map $2^{\kappa} \to \mathbb{R}$ is called sequential and denoted as \mathfrak{s} .

Theorem (N.Noble 1970)

Every sequentially continuous mapping on a product $\prod_I X_i$ of first-countable spaces is continuous provided $|I| < \mathfrak{s}$.

Theorem (S.Mazur 1952)

The cardinal \mathfrak{s} is inaccessible.

Theorem (D.V.Chudnovskij 1977)

The first cardinal κ such that there exists a non-continuous sequentially continuous map $2^{\kappa} \to \mathbb{R}$ is called sequential and denoted as \mathfrak{s} .

Theorem (N.Noble 1970)

Every sequentially continuous mapping on a product $\prod_I X_i$ of first-countable spaces is continuous provided $|I| < \mathfrak{s}$.

Theorem (S.Mazur 1952)

The cardinal \mathfrak{s} is inaccessible.

Theorem (D.V.Chudnovskij 1977)

The first cardinal κ such that there exists a non-continuous sequentially continuous map $2^{\kappa} \to \mathbb{R}$ is called sequential and denoted as \mathfrak{s} .

Theorem (N.Noble 1970)

Every sequentially continuous mapping on a product $\prod_I X_i$ of first-countable spaces is continuous provided $|I| < \mathfrak{s}$.

Theorem (S.Mazur 1952)

The cardinal \mathfrak{s} is inaccessible.

Theorem (D.V.Chudnovskij 1977)

Theorem (N.Varopoulos 1964)

Every sequentially continuous homomorphism between compact groups of cardinalities less than \mathfrak{m}_1 is continuous.

Theorem

Every sequentially continuous mapping between compacts groups of cardinalities less than \mathfrak{m}_1 is continuous iff $\mathfrak{s} = \mathfrak{m}_1$ (the equality is valid, e.g., under CH or MA).

Theorem

Every sequentially continuous homomorphism of a product $\prod_{\lambda} G_{\alpha} \to G$, where $\lambda < \mathfrak{m}_1$ and G is a compact group, is continuous. It suffices to assume that G_{α} are sequential groups. The result is not true if $\mathfrak{s} < \mathfrak{m}_1$ and G not compact.

Theorem (N.Varopoulos 1964)

Every sequentially continuous homomorphism between compact groups of cardinalities less than \mathfrak{m}_1 is continuous.

Theorem

Every sequentially continuous mapping between compacts groups of cardinalities less than \mathfrak{m}_1 is continuous iff $\mathfrak{s} = \mathfrak{m}_1$ (the equality is valid, e.g., under CH or MA).

Theorem

Every sequentially continuous homomorphism of a product $\prod_{\lambda} G_{\alpha} \to G$, where $\lambda < \mathfrak{m}_1$ and G is a compact group, is continuous. It suffices to assume that G_{α} are sequential groups. The result is not true if $\mathfrak{s} < \mathfrak{m}_1$ and G not compact.

Theorem (N.Varopoulos 1964)

Every sequentially continuous homomorphism between compact groups of cardinalities less than \mathfrak{m}_1 is continuous.

Theorem

Every sequentially continuous mapping between compacts groups of cardinalities less than \mathfrak{m}_1 is continuous iff $\mathfrak{s} = \mathfrak{m}_1$ (the equality is valid, e.g., under CH or MA).

Theorem

Every sequentially continuous homomorphism of a product $\prod_{\lambda} G_{\alpha} \to G$, where $\lambda < \mathfrak{m}_1$ and G is a compact group, is continuous. It suffices to assume that G_{α} are sequential groups. The result is not true if $\mathfrak{s} < \mathfrak{m}_1$ and G not compact.

Theorem (N.Varopoulos 1964)

Every sequentially continuous homomorphism between compact groups of cardinalities less than \mathfrak{m}_1 is continuous.

Theorem

Every sequentially continuous mapping between compacts groups of cardinalities less than \mathfrak{m}_1 is continuous iff $\mathfrak{s} = \mathfrak{m}_1$ (the equality is valid, e.g., under CH or MA).

Theorem

Every sequentially continuous homomorphism of a product $\prod_{\lambda} G_{\alpha} \to G$, where $\lambda < \mathfrak{m}_1$ and G is a compact group, is continuous. It suffices to assume that G_{α} are sequential groups. The result is not true if $\mathfrak{s} < \mathfrak{m}_1$ and G not compact.

Definition

A mapping $f: X \to Y$ between uniform spaces is said to be uniformly sequentially continuous if it preserves adjacent sequences, i.e., if $\lim d(x_n, y_n) = 0$ for every uniformly continuous pseudometric d on Xthen $\lim e(f(x_n), f(y_n)) = 0$ for every uniformly continuous pseudometric e on Y.

Definition (MH, M.D.Rice 1978)

The first cardinal κ such that there exists a non-continuous uniformly sequentially continuous map $2^{\kappa} \to \mathbb{R}$ is called uniformly sequential and denoted as \mathfrak{s}_u .

Every uniformly sequentially continuous mapping is sequentially continuous. Thus $\mathfrak{s} \leq \mathfrak{s}_u$.

A uniform space X is said to be uniformly sequential if every uniformly sequentially continuous map on X into a metric space is

Definition

A mapping $f: X \to Y$ between uniform spaces is said to be uniformly sequentially continuous if it preserves adjacent sequences, i.e., if $\lim d(x_n, y_n) = 0$ for every uniformly continuous pseudometric d on Xthen $\lim e(f(x_n), f(y_n)) = 0$ for every uniformly continuous pseudometric e on Y.

Definition (MH, M.D.Rice 1978)

The first cardinal κ such that there exists a non-continuous uniformly sequentially continuous map $2^{\kappa} \to \mathbb{R}$ is called uniformly sequential and denoted as \mathfrak{s}_u .

Every uniformly sequentially continuous mapping is sequentially continuous. Thus $\mathfrak{s} \leq \mathfrak{s}_u$.

A uniform space X is said to be uniformly sequential if every uniformly sequentially continuous map on X into a metric space is

Definition (MH, M.D.Rice 1978)

The first cardinal κ such that there exists a non-continuous uniformly sequentially continuous map $2^{\kappa} \to \mathbb{R}$ is called uniformly sequential and denoted as \mathfrak{s}_u .

Every uniformly sequentially continuous mapping is sequentially continuous. Thus $\mathfrak{s} \leq \mathfrak{s}_u$.

A uniform space X is said to be uniformly sequential if every uniformly sequentially continuous map on X into a metric space is uniformly continuous.

Theorem (MH, M.D.Rice 1978)

Every product of less than \mathfrak{s}_u of uniformly sequential spaces is uniformly sequential.

Definition

The first cardinal κ such that there exists a non-continuous sequentially continuous homomorphism on \mathbb{Z}_2^{κ} (or on \mathbb{Z}^{κ}) is called group sequential and denoted as \mathfrak{s}_g .

Instead of non-continuous sequentially continuous homomorphism one may take non-continuous sequentially continuous pseudonorm.

Every sequentially continuous homomorphism is uniformly sequentially continuous. Thus $\mathfrak{s}_u \leq \mathfrak{s}_g$ and also $\mathfrak{s}_g \leq \mathfrak{m}_{\mathbb{R}}$ (since the measure on $\mathfrak{m}_{\mathbb{R}}$ witnessing the definition of $\mathfrak{m}_{\mathbb{R}}$ is a non-continuous sequentially continuous pseudonorm $\mathbb{Z}_2^{\mathfrak{m}_{\mathbb{R}}} \to \mathbb{R}$. Thus $\mathfrak{s} \leq \mathfrak{s}_u \leq \mathfrak{s}_g \leq \mathfrak{m}_{\mathbb{R}}$.

Theorem (B.Balcar 1995)

There is a nontrivial Maharam submeasure on \mathfrak{s} , *i.e.*, there is a nontrivial increasing non-negative subadditive and sequentially continuous map

Definition

The first cardinal κ such that there exists a non-continuous sequentially continuous homomorphism on \mathbb{Z}_2^{κ} (or on \mathbb{Z}^{κ}) is called group sequential and denoted as \mathfrak{s}_g .

Instead of non-continuous sequentially continuous homomorphism one may take non-continuous sequentially continuous pseudonorm.

Every sequentially continuous homomorphism is uniformly sequentially continuous. Thus $\mathfrak{s}_u \leq \mathfrak{s}_g$ and also $\mathfrak{s}_g \leq \mathfrak{m}_{\mathbb{R}}$ (since the measure on $\mathfrak{m}_{\mathbb{R}}$ witnessing the definition of $\mathfrak{m}_{\mathbb{R}}$ is a non-continuous sequentially continuous pseudonorm $\mathbb{Z}_2^{\mathfrak{m}_{\mathbb{R}}} \to \mathbb{R}$. Thus

 $\mathfrak{s} \leq \mathfrak{s}_u \leq \mathfrak{s}_g \leq \mathfrak{m}_{\mathbb{R}}$.

Theorem (B.Balcar 1995)

There is a nontrivial Maharam submeasure on \mathfrak{s} , *i.e.*, there is a nontrivial increasing non-negative subultitive and sequentially continuous man

Group sequential cardinal

Every sequentially continuous homomorphism is uniformly sequentially continuous. Thus $\mathfrak{s}_u \leq \mathfrak{s}_g$ and also $\mathfrak{s}_g \leq \mathfrak{m}_{\mathbb{R}}$ (since the measure on $\mathfrak{m}_{\mathbb{R}}$ witnessing the definition of $\mathfrak{m}_{\mathbb{R}}$ is a non-continuous sequentially continuous pseudonorm $\mathbb{Z}_2^{\mathfrak{m}_{\mathbb{R}}} \to \mathbb{R}$. Thus $\mathfrak{s} \leq \mathfrak{s}_u \leq \mathfrak{s}_g \leq \mathfrak{m}_{\mathbb{R}}$.

Theorem (B.Balcar 1995)

There is a nontrivial Maharam submeasure on \mathfrak{s} , i.e., there is a nontrivial increasing, non-negative, subadditive and sequentially continuous map $\mu: 2^{\mathfrak{s}} \to \mathbb{R}$ with $\mu(\emptyset) = 0$.

$\operatorname{Corollary}$

The cardinalities $\mathfrak{s}, \mathfrak{s}_u, \mathfrak{s}_q$ coincide.

Group sequential cardinal

Every sequentially continuous homomorphism is uniformly sequentially continuous. Thus $\mathfrak{s}_u \leq \mathfrak{s}_g$ and also $\mathfrak{s}_g \leq \mathfrak{m}_{\mathbb{R}}$ (since the measure on $\mathfrak{m}_{\mathbb{R}}$ witnessing the definition of $\mathfrak{m}_{\mathbb{R}}$ is a non-continuous sequentially continuous pseudonorm $\mathbb{Z}_2^{\mathfrak{m}_{\mathbb{R}}} \to \mathbb{R}$. Thus $\mathfrak{s} \leq \mathfrak{s}_u \leq \mathfrak{s}_g \leq \mathfrak{m}_{\mathbb{R}}$.

Theorem (B.Balcar 1995)

There is a nontrivial Maharam submeasure on \mathfrak{s} , i.e., there is a nontrivial increasing, non-negative, subadditive and sequentially continuous map $\mu: 2^{\mathfrak{s}} \to \mathbb{R}$ with $\mu(\emptyset) = 0$.

Corollary

The cardinalities $\mathfrak{s}, \mathfrak{s}_u, \mathfrak{s}_g$ coincide.

Definition (Submeasure)

A submeasure is a mapping $\mu: \exp X \to [0,\infty]$ having the next properties:

- $\ \, \mathbf{0} \ \, \mu(\emptyset)=0;$
- 2) if $A \subset B$ then $\mu(a) \leq \mu(B)$;
- ${\small \textcircled{3}} \ \mu(A\cup B) \leq \mu(A) + \mu(B).$

For an infinite κ , μ is said to be κ -subadditive if $\mu(\bigcup_{\lambda} A_{\alpha}) \leq \sum_{\lambda} \mu(A_{\alpha})$ whenever $\lambda < \kappa$.

Definition (Submeasurable cardinal)

A cardinal κ is called submeasurable if there exists a non-zero κ -continuous submeasure on κ having zero values at singletons.

Theorem

A submeasurable cardinal is either not bigger than 2^{ω} or is measurable.

Definition (Submeasure)

A submeasure is a mapping $\mu : \exp X \to [0, \infty]$ having the next properties:

- $\ \, \mathbf{0} \ \, \mu(\emptyset)=0;$
- 2) if $A \subset B$ then $\mu(a) \leq \mu(B)$;

For an infinite κ , μ is said to be κ -subadditive if $\mu(\bigcup_{\lambda} A_{\alpha}) \leq \sum_{\lambda} \mu(A_{\alpha})$ whenever $\lambda < \kappa$.

Definition (Submeasurable cardinal)

A cardinal κ is called submeasurable if there exists a non-zero κ -continuous submeasure on κ having zero values at singletons.

Theorem

A submeasurable cardinal is either not bigger than 2^{ω} or is measurable.

Definition (Submeasure)

A submeasure is a mapping $\mu: \exp X \to [0,\infty]$ having the next properties:

- $\ \, \mathbf{0} \ \, \mu(\emptyset) = 0;$
- 2) if $A \subset B$ then $\mu(a) \leq \mu(B)$;
- $\textbf{ 0 } \mu(A\cup B) \leq \mu(A) + \mu(B).$

For an infinite κ , μ is said to be κ -subadditive if $\mu(\bigcup_{\lambda} A_{\alpha}) \leq \sum_{\lambda} \mu(A_{\alpha})$ whenever $\lambda < \kappa$.

Definition (Submeasurable cardinal)

A cardinal κ is called submeasurable if there exists a non-zero κ -continuous submeasure on κ having zero values at singletons.

The smallest submeasurable cardinal is ω , the next one is the sequential cardinal \mathfrak{s} .

Theorem

Definition (Submeasure)

A submeasure is a mapping $\mu : \exp X \to [0, \infty]$ having the next properties:

- 2) if $A \subset B$ then $\mu(a) \leq \mu(B)$;

For an infinite κ , μ is said to be κ -subadditive if $\mu(\bigcup_{\lambda} A_{\alpha}) \leq \sum_{\lambda} \mu(A_{\alpha})$ whenever $\lambda < \kappa$.

Definition (Submeasurable cardinal)

A cardinal κ is called submeasurable if there exists a non-zero κ -continuous submeasure on κ having zero values at singletons.

Theorem

A submeasurable cardinal is either not bigger than 2^{ω} or is measurable.

Theorem (MH 2003)

Let \mathcal{K} be a nontrivial epireflective class in the category Top of topological spaces. A finitely productive coreflective class \mathcal{C} of \mathcal{K} is κ -productive iff $2^{\lambda} \in \mathcal{C}$ for all $\lambda < \kappa$.

The class of productivity numbers of coreflective classes in \mathcal{K} coincides with the class of submesurable cardinals and $\{2, \infty\}$.

For every submeasurable cardinal \mathfrak{k} there exists a coreflective class in Top having \mathfrak{k} for its productivity number.

Problem (MH 1988): Is there a nontrivial productive class in Top closed under quotients and disjoint sums?

Theorem (A.Dow, S.Watson 1993)

If GCH holds and there are no inaccessible cardinals, then every productive coreflective subcategory of Top coincides with Top. Existence of a proper productive coreflective subcategory of Top implies existence of some large cardinal

Productivity numbers in Top

Problem (MH 1988): Is there a nontrivial productive class in Top closed under quotients and disjoint sums?

Theorem (A.Dow, S.Watson 1993)

If GCH holds and there are no inaccessible cardinals, then every productive coreflective subcategory of Top coincides with Top. Existence of a proper productive coreflective subcategory of Top implies existence of some large cardinal.

Theorem (MH 2007)

If there is no sequential cardinal then the only productive coreflective class in Top is Top itself.

Then every topological space is generated from a converging sequence by using finite products, disjoint sums and quotients.

Productivity numbers in Top

Problem (MH 1988): Is there a nontrivial productive class in Top closed under quotients and disjoint sums?

Theorem (A.Dow, S.Watson 1993)

If GCH holds and there are no inaccessible cardinals, then every productive coreflective subcategory of Top coincides with Top. Existence of a proper productive coreflective subcategory of Top implies existence of some large cardinal.

Theorem (MH 2007)

If there is no sequential cardinal then the only productive coreflective class in Top is Top itself.

Then every topological space is generated from a converging sequence by using finite products, disjoint sums and quotients.

Productivity numbers in Top

Problem (MH 1988): Is there a nontrivial productive class in Top closed under quotients and disjoint sums?

Theorem (A.Dow, S.Watson 1993)

If GCH holds and there are no inaccessible cardinals, then every productive coreflective subcategory of Top coincides with Top. Existence of a proper productive coreflective subcategory of Top implies existence of some large cardinal.

Theorem (MH 2007)

If there is no sequential cardinal then the only productive coreflective class in Top is Top itself.

Then every topological space is generated from a converging sequence by using finite products, disjoint sums and quotients.

Let \mathcal{K} be a surreflective subcategory of the category of topological groups containing \mathbb{Z} . A bicoreflective class \mathcal{C} in \mathcal{K} is κ -productive iff $\mathbb{Z}^{\lambda} \in \mathcal{C}$ for all $\lambda < \kappa$.

Productivity numbers of bicoreflective classes in \mathcal{K} are submeasurable cardinals and ∞ and all are attained.

Let groups from \mathcal{K} have the property that for every sequence $\{x_n\}$ of nonzero elements there exists an infinite set $S \subset \mathbb{N}$ and a sequence $\{k_n\}$ of integers such that $\sum_S k_n x_n$ does not converge. Then a bicoreflective class in \mathcal{K} is either productive or is exactly κ -productive for some measurable cardinal κ .

Let \mathcal{K} be a surreflective subcategory of the category of topological groups containing \mathbb{Z} . A bicoreflective class \mathcal{C} in \mathcal{K} is κ -productive iff $\mathbb{Z}^{\lambda} \in \mathcal{C}$ for all $\lambda < \kappa$.

Productivity numbers of bicoreflective classes in \mathcal{K} are submeasurable cardinals and ∞ and all are attained.

Let groups from \mathcal{K} have the property that for every sequence $\{x_n\}$ of nonzero elements there exists an infinite set $S \subset \mathbb{N}$ and a sequence $\{k_n\}$ of integers such that $\sum_S k_n x_n$ does not converge. Then a bicoreflective class in \mathcal{K} is either productive or is exactly κ -productive for some measurable cardinal κ .

Let \mathcal{K} be a surreflective subcategory of the category of topological groups containing \mathbb{Z} . A bicoreflective class \mathcal{C} in \mathcal{K} is κ -productive iff $\mathbb{Z}^{\lambda} \in \mathcal{C}$ for all $\lambda < \kappa$.

Productivity numbers of bicoreflective classes in K are submeasurable cardinals and ∞ and all are attained.

Let groups from \mathcal{K} have the property that for every sequence $\{x_n\}$ of nonzero elements there exists an infinite set $S \subset \mathbb{N}$ and a sequence $\{k_n\}$ of integers such that $\sum_S k_n x_n$ does not converge. Then a bicoreflective class in \mathcal{K} is either productive or is exactly κ -productive for some measurable cardinal κ .

Let \mathcal{K} be a surreflective subcategory of the category of topological groups containing \mathbb{Z} . A bicoreflective class \mathcal{C} in \mathcal{K} is κ -productive iff $\mathbb{Z}^{\lambda} \in \mathcal{C}$ for all $\lambda < \kappa$.

Productivity numbers of bicoreflective classes in \mathcal{K} are submeasurable cardinals and ∞ and all are attained.

Let groups from \mathcal{K} have the property that for every sequence $\{x_n\}$ of nonzero elements there exists an infinite set $S \subset \mathbb{N}$ and a sequence $\{k_n\}$ of integers such that $\sum_S k_n x_n$ does not converge. Then a bicoreflective class in \mathcal{K} is either productive or is exactly κ -productive for some measurable cardinal κ .

For every infinite regular cardinal κ there exists a monocoreflective subcategory of topological Abelian groups that is exactly κ -productive.

Theorem (MH 1997)

Let \mathcal{K} be a surreflective subcategory of the category of TLS containing \mathbb{R} . Productivity numbers of coreflective classes in \mathcal{K} are submeasurable cardinals and ∞ and all are attained.

Coreflective classes in LCS are either productive or their productivity number is a measurable cardinal.

Theorem (MH 1997)

Let \mathcal{K} be a surreflective subcategory of the category of TLS containing \mathbb{R} . Productivity numbers of coreflective classes in \mathcal{K} are submeasurable cardinals and ∞ and all are attained.

Coreflective classes in LCS are either productive or their productivity number is a measurable cardinal.

Tightness of products of fans

Definition (Tightness)

For a space $X, A \subset X$ and $x \in \overline{A}$ define $t(x, A) = \min\{|B|; B \subset A, x \in \overline{B}\}, t(X) = \sup\{t(x, A); A \subset X, x \in \overline{A}\}.$

Definition (Fans)

Fan $S({\lambda_{\alpha}}_{\lambda})$ is a quotient of a disjoint sum $\bigcup_{\lambda} (\lambda_{\alpha} \bigoplus 1)$, where the accumulation points of $\lambda_{\alpha} \bigoplus 1$ are sewed together. If $\lambda \leq \kappa$ and all $\lambda_{\alpha} < \kappa$ we shall call $S({\lambda_{\alpha}}_{\lambda})$ a κ -fan.

Theorem (MH)

In products of finitely many of \mathfrak{m} -fans one always has $t(x, A) < \mathfrak{m}$. Product of \mathfrak{m} -many of \mathfrak{m} -fans has tightness equal to \mathfrak{m} .

Tightness of products of fans

Definition (Tightness)

For a space $X, A \subset X$ and $x \in \overline{A}$ define $t(x, A) = \min\{|B|; B \subset A, x \in \overline{B}\}, t(X) = \sup\{t(x, A); A \subset X, x \in \overline{A}\}.$

Definition (Fans)

Fan $S(\{\lambda_{\alpha}\}_{\lambda})$ is a quotient of a disjoint sum $\bigcup_{\lambda} (\lambda_{\alpha} \bigoplus 1)$, where the accumulation points of $\lambda_{\alpha} \bigoplus 1$ are sewed together. If $\lambda \leq \kappa$ and all $\lambda_{\alpha} < \kappa$ we shall call $S(\{\lambda_{\alpha}\}_{\lambda})$ a κ -fan.

Theorem (MH)

In products of finitely many of \mathfrak{m} -fans one always has $t(x, A) < \mathfrak{m}$. Product of \mathfrak{m} -many of \mathfrak{m} -fans has tightness equal to \mathfrak{m} .

Tightness of products of fans

Definition (Tightness)

For a space $X, A \subset X$ and $x \in \overline{A}$ define $t(x, A) = \min\{|B|; B \subset A, x \in \overline{B}\}, t(X) = \sup\{t(x, A); A \subset X, x \in \overline{A}\}.$

Definition (Fans)

Fan $S(\{\lambda_{\alpha}\}_{\lambda})$ is a quotient of a disjoint sum $\bigcup_{\lambda} (\lambda_{\alpha} \bigoplus 1)$, where the accumulation points of $\lambda_{\alpha} \bigoplus 1$ are sewed together. If $\lambda \leq \kappa$ and all $\lambda_{\alpha} < \kappa$ we shall call $S(\{\lambda_{\alpha}\}_{\lambda})$ a κ -fan.

Theorem (MH)

In products of finitely many of \mathfrak{m} -fans one always has $t(x, A) < \mathfrak{m}$. Product of \mathfrak{m} -many of \mathfrak{m} -fans has tightness equal to \mathfrak{m} .

Theorem (MH 2007)

$\chi(\xi) \geq \sup\{\kappa \leq 2^{\omega}; \kappa \text{ submeasurable }\} \text{ for every } \xi \in \beta(\mathbb{N}) \setminus \mathbb{N}.$

Corollary

If a nontrivial net in \mathbb{N} converges in $\beta \mathbb{N}$ then its length must be at least $\sup\{\kappa \leq 2^{\omega}; \kappa \text{ submeasurable }\}.$

Balcar 1978, Shelah 1978: $\beta \mathbb{N} \setminus \mathbb{N}$ always contains a nontrivial converging net of length ω_1 .

Theorem (MH 2007)

 $\chi(\xi) \geq \sup\{\kappa \leq 2^{\omega}; \kappa \text{ submeasurable }\} \text{ for every } \xi \in \beta(\mathbb{N}) \setminus \mathbb{N}.$

Corollary

If a nontrivial net in \mathbb{N} converges in $\beta \mathbb{N}$ then its length must be at least $\sup\{\kappa \leq 2^{\omega}; \kappa \text{ submeasurable }\}.$

Balcar 1978, Shelah 1978: $\beta \mathbb{N} \setminus \mathbb{N}$ always contains a nontrivial converging net of length ω_1 .

Theorem (MH 2007)

 $\chi(\xi) \geq \sup\{\kappa \leq 2^{\omega}; \kappa \text{ submeasurable }\} \text{ for every } \xi \in \beta(\mathbb{N}) \setminus \mathbb{N}.$

Corollary

If a nontrivial net in \mathbb{N} converges in $\beta \mathbb{N}$ then its length must be at least $\sup\{\kappa \leq 2^{\omega}; \kappa \text{ submeasurable }\}.$

Balcar 1978, Shelah 1978: $\beta \mathbb{N} \setminus \mathbb{N}$ always contains a nontrivial converging net of length ω_1 .

Theorem

- Let κ be an uncountable submeasurable cardinal. Then
 - **()** Every monotone κ -family is extendible to $(\kappa + 1)$ -family.
 - **2** $\Box(\kappa)$ does not hold.
 - **3** $E(\kappa)$ does not hold.
 - **④** Cardinal b is not submeasurable.
 - There are no (κ, λ)-good sets for λ ≤ κ in the sense of Brendle and LaBerge.