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Sequential continuity on products of LCS, TLS

Theorem (S.Mazur 1946)

Every sequentially continuous linear functional f on the power RX is of
the form f(ϕ) = c1ϕ(p1) + ...+ ckϕ(pk) for some integer k, points
p1, ..., pk of X and reals c1, ..., ck, iff |X| is Ulam non-measurable.

It means that f depends on finitely many coordinates. The space RX
may be regarded as Cp(X) with a discrete space X. The fact that |X| is
Ulam non-measurable is equivalent to realcompactness of X.

A topological linear space is called a Mazur space if every its
sequentially continuous functional is continuous.

Theorem (V.Pták, S.Mrówka, 1956)

The space Cp(X) is a Mazur space iff X is realcompact.
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Sequential continuity on products of TLS

Question

When a product of Mazur spaces is a Mazur space?

Theorem (S.Dierolf 1975)

In a coreflective subcategory C of locally convex spaces (or topological
linear spaces) containing R, a product of κ of its nontrivial members
belong to C iff Rκ ∈ C.
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Sequential continuity on products of TLS

Question

When a product of Mazur spaces is a Mazur space?

Theorem (S.Dierolf 1975)

In a coreflective subcategory C of locally convex spaces (or topological
linear spaces) containing R, a product of κ of its nontrivial members
belong to C iff Rκ ∈ C.

Corollary

A product of Mazur spaces is Mazur iff the number of nonzero coordinate
spaces is Ulam non-measurable.

Theorem

Productivity number of the coreflective class of Mazur spaces in TLS (or
LCS) is m1.



Productivity numbers of coreflective classes of LCS

Theorem (MH 2004)

Productivity numbers of coreflective classes in LCS are precisely
measurable cardinals and ∞. For every measurable m there is a
coreflective class in LCS with its productivity number equal to m.

Corollary

If a coreflective class in LCS is countably productive, it is m1-productive.
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Sequential continuity on products in Top

Theorem (S.Mazur 1952)

Let Xi, i ∈ I be metrizable separable spaces, Y be a space having Gδ
diagonal. Then every sequentially continuous map f :

∏
I Xi → Y is

continuous provided |I| is smaller than the first uncountable inaccessible
cardinal.



Sequential continuity on products in Top

Theorem (S.Mazur 1952)

Let Xi, i ∈ I be metrizable separable spaces, Y be a space having Gδ
diagonal. Then every sequentially continuous map f :

∏
I Xi → Y is

continuous provided |I| is smaller than the first uncountable inaccessible
cardinal.

Mazur proves that f depends on countably many coordinates, say on
a countable J ⊂ I. Then fJ is sequentially continuous, thus continuous
(as defined on metrizable space), thus the composition equal to f is
continuous.



Sequential continuity on products in Top

Theorem (N.Noble 1970)

A mapping on product
∏
I Xi of topological spaces into a regular space Y

is continuous iff its restrictions to all Σ-products and to all canonical 2|I|

are continuous.

A sequentially continuous mapping on product
∏
I Xi of first countable

spaces is continuous iff it is continuous on all canonical subspaces 2|I|.
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Sequential cardinal

Definition (N.Noble 1970)

The first cardinal κ such that there exists a non-continuous sequentially
continuous map 2κ → R is called sequential and denoted as s.

Theorem (N.Noble 1970)

Every sequentially continuous mapping on a product
∏
I Xi of

first-countable spaces is continuous provided |I| < s.

Theorem (S.Mazur 1952)

The cardinal s is inaccessible.

Theorem (D.V.Chudnovskij 1977)

If we denote by {κα} the increasing system of all inaccessible numbers
then s is bigger than any κα for α < s. Either s ≤ 2ω or s = m1.
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Definition (N.Noble 1970)

The first cardinal κ such that there exists a non-continuous sequentially
continuous map 2κ → R is called sequential and denoted as s.

Since a real measure on a set is non-continuous and sequentially
continuous, s ≤ mR.

Keisler-Tarski problem: Is s = mR?
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Varopoulos theorem

.
Theorem (N.Varopoulos 1964)

Every sequentially continuous homomorphism between compact groups of
cardinalities less than m1 is continuous.

Theorem

Every sequentially continuous mapping between compacts groups of
cardinalities less than m1 is continuous iff s = m1 (the equality is valid,
e.g., under CH or MA).

Theorem

Every sequentially continuous homomorphism of a product
∏
λGα → G,

where λ < m1 and G is a compact group, is continuous.
It suffices to assume that Gα are sequential groups. The result is not true
if s < m1 and G not compact.

A.V.Arkhangelskij, W.Just, G.Plebanek: Sequential continuity on dyadic
compacta and topological groups (Comment.Math.Univ.Carolinae 1996)
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Uniform sequential cardinal

Definition

A mapping f : X → Y between uniform spaces is said to be uniformly
sequentially continuous if it preserves adjacent sequences, i.e., if
lim d(xn, yn) = 0 for every uniformly continuous pseudometric d on X
then lim e(f(xn), f(yn)) = 0 for every uniformly continuous pseudometric
e on Y .

Definition (MH, M.D.Rice 1978)

The first cardinal κ such that there exists a non-continuous uniformly
sequentially continuous map 2κ → R is called uniformly sequential and
denoted as su.

Every uniformly sequentially continuous mapping is sequentially
continuous. Thus s ≤ su.

A uniform space X is said to be uniformly sequential if every
uniformly sequentially continuous map on X into a metric space is
uniformly continuous.

Theorem (MH, M.D.Rice 1978)

Every product of less than su of uniformly sequential spaces is uniformly
sequential.
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Group sequential cardinal

Definition

The first cardinal κ such that there exists a non-continuous sequentially
continuous homomorphism on Zκ2 (or on Zκ) is called group sequential
and denoted as sg.

Instead of non-continuous sequentially continuous homomorphism one
may take non-continuous sequentially continuous pseudonorm.

Every sequentially continuous homomorphism is uniformly
sequentially continuous. Thus su ≤ sg and also sg ≤ mR (since the
measure on mR witnessing the definition of mR is a non-continuous
sequentially continuous pseudonorm ZmR

2 → R. Thus
s ≤ su ≤ sg ≤ mR .

Theorem (B.Balcar 1995)

There is a nontrivial Maharam submeasure on s, i.e., there is a nontrivial
increasing, non-negative, subadditive and sequentially continuous map
µ : 2s → R with µ(∅) = 0.

Corollary

The cardinalities s, su, sg coincide.
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Submeasures

.
Definition (Submeasure)

A submeasure is a mapping µ : expX → [0,∞] having the next
properties:

1 µ(∅) = 0;

2 if A ⊂ B then µ(a) ≤ µ(B);

3 µ(A ∪B) ≤ µ(A) + µ(B).

For an infinite κ, µ is said to be κ-subadditive if µ(
⋃
λAα) ≤

∑
λ µ(Aα)

whenever λ < κ.

Definition (Submeasurable cardinal)

A cardinal κ is called submeasurable if there exists a non-zero
κ-continuous submeasure on κ having zero values at singletons.

Theorem

A submeasurable cardinal is either not bigger than 2ω or is measurable.
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Productivity numbers in Top

Theorem (MH 2003)

Let K be a nontrivial epireflective class in the category Top of topological
spaces. A finitely productive coreflective class C of K is κ-productive iff
2λ ∈ C for all λ < κ.
The class of productivity numbers of coreflective classes in K coincides
with the class of submesurable cardinals and {2,∞}.
For every submeasurable cardinal k there exists a coreflective class inTop
havuing k for its productivity number.

Problem (MH 1988): Is there a nontrivial productive class in Top
closed under quotients and disjoint sums?

Theorem (A.Dow, S.Watson 1993)

If GCH holds and there are no inaccessible cardinals, then every
productive coreflective subcategory of Top coincides with Top.
Existence of a proper productive coreflective subcategory of Top implies
existence of some large cardinal.

Theorem (MH 2007)

If there is no sequential cardinal then the only productive coreflective
class in Top is Top itself.

Then every topological space is generated from a converging sequence
by using finite products, disjoint sums and quotients.
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Productivity numbers in TopGr

Theorem (H.Herrlich, MH 1999)

Let K be a surreflective subcategory of the category of topological groups
containing Z. A bicoreflective class C in K is κ-productive iff Zλ ∈ C for
all λ < κ.
Productivity numbers of bicoreflective classes in K are submeasurable
cardinals and ∞ and all are attained.

Let groups from K have the property that for every sequence {xn} of
nonzero elements there exists an infinite set S ⊂ N and a sequence {kn}
of integers such that

∑
S knxn does not converge.

Then a bicoreflective class in K is either productive or is exactly
κ-productive for some measurable cardinal κ.
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Theorem (H.Herrlich, MH 1999)

Let K be a surreflective subcategory of the category of topological groups
containing Z. A bicoreflective class C in K is κ-productive iff Zλ ∈ C for
all λ < κ.
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Let groups from K have the property that for every sequence {xn} of
nonzero elements there exists an infinite set S ⊂ N and a sequence {kn}
of integers such that

∑
S knxn does not converge.

Then a bicoreflective class in K is either productive or is exactly
κ-productive for some measurable cardinal κ.

For every infinite regular cardinal κ there exists a monocoreflective
subcategory of topological Abelian groups that is exactly κ-productive.



Productivity numbers in TLS

Theorem (MH 1997)

Let K be a surreflective subcategory of the category of TLS containing R.
Productivity numbers of coreflective classes in K are submeasurable
cardinals and ∞ and all are attained.

Coreflective classes in LCS are either productive or their productivity
number is a measurable cardinal.
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Tightness of products of fans

Definition (Tightness)

For a space X,A ⊂ X and x ∈ A define
t(x,A) = min{|B|;B ⊂ A, x ∈ B}, t(X) = sup{t(x,A);A ⊂ X,x ∈ A}.

Definition (Fans)

Fan S({λα}λ) is a quotient of a disjoint sum
⋃
λ(λα

⊕
1), where the

accumulation points of λα
⊕

1 are sewed together.
If λ ≤ κ and all λα < κ we shall call S({λα}λ) a κ-fan.

Theorem (MH)

In products of finitely many of m-fans one always has t(x,A) < m.
Product of m-many of m-fans has tightness equal to m.
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Theorem (MH 2007)

χ(ξ) ≥ sup{κ ≤ 2ω;κ submeasurable } for every ξ ∈ β(N) \ N.

Corollary

If a nontrivial net in N converges in βN then its length must be at least
sup{κ ≤ 2ω;κ submeasurable }.

Balcar 1978, Shelah 1978: βN \ N always contains a nontrivial
converging net of length ω1.
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Balcar 1978, Shelah 1978: βN \ N always contains a nontrivial
converging net of length ω1.



Theorem

Let κ be an uncountable submeasurable cardinal. Then

1 Every monotone κ-family is extendible to (κ+ 1)-family.

2 �(κ) does not hold.

3 E(κ) does not hold.

4 Cardinal b is not submeasurable.

5 There are no (κ, λ)-good sets for λ ≤ κ in the sense of Brendle and
LaBerge.

.


