LARGE CARDINALS IN GENERAL TOPOLOGY I

Miroslav HUŠEK

Winter School in Abstract Analysis
Hejnice, January 26–February 2, 2019
The existence of a large cardinal κ should not be inconsistent with ZFC. If ZFC is consistent, then ZFC + "the large cardinal κ does not exist" is consistent.
Measurable cardinals
S.Banach, K.Kuratowski, S.Ulam (Lvov 1929-1930)

Stanislaw Marcin Ulam, 1909-1984
Stefan Banach 1892–1945
Kazimierz Kuratowski 1896–1980

Definition

For an infinite cardinal κ we say that a measure μ on A is κ-additive if
\[\mu(\bigcup \lambda A_\alpha) = \sum \lambda \mu(A_\alpha) \]
whenever $\{A_\alpha\}_\lambda$ is a disjoint collection of subsets of A and $\lambda < \kappa$.

If $\kappa = \omega$ (or $\kappa = \omega_1$), we speak about finitely additive (or countably additive) measure.

Definition (Measurable cardinals)

A cardinal number κ is said to be real-measurable if there is a κ-additive measure on the set κ.

A cardinal number κ is said to be measurable if there is a κ-additive two-valued measure on the set κ.

The class of measurable cardinals will be ordered:
$\omega = m_0 < m_1 < ...$.

The first uncountable real-measurable cardinal is denoted as m_R.
All our measures are defined on all subsets of some set. We shall assume that measures are non-trivial in the sense that the measure of the whole set is not zero, while measures of points are zero.

Measures with ranges equal to \{0, 1\} are called two-valued.
Measurable cardinals
S.Banach, K.Kuratowski, S.Ulam (Lvov 1929-1930)

Definition
For an infinite cardinal κ we say that a measure μ on A is κ-additive if
$$\mu(\bigcup_\lambda A_\alpha) = \sum_\lambda \mu(A_\alpha)$$
whenever $\{A_\alpha\}_\lambda$ is a disjoint collection of subsets
of A and $\lambda < \kappa$.

If $\kappa = \omega$ (or $\kappa = \omega_1$), we speak about finitely additive (or countably
additive) measure.

Definition (Measurable cardinals)
A cardinal number κ is said to be real-measurable if there is a κ-additive
measure on the set κ.
A cardinal number κ is said to be measurable if there is a κ-additive
two-valued measure on the set κ.

The class of measurable cardinals will be ordered: $\omega = m_0 < m_1 < ...$
The first uncountable real-measurable cardinal is denoted as $m_\mathbb{R}$.
Measurable cardinals
S.Banach, K.Kuratowski, S.Ulam (Lvov 1929-1930)

Definition

For an infinite cardinal κ we say that a measure μ on A is κ-additive if $\mu(\bigcup_{\lambda} A_\alpha) = \sum_{\lambda} \mu(A_\alpha)$ whenever $\{A_\alpha\}_\lambda$ is a disjoint collection of subsets of A and $\lambda < \kappa$.

If $\kappa = \omega$ (or $\kappa = \omega_1$), we speak about finitely additive (or countably additive) measure.

Definition (Measurable cardinals)

A cardinal number κ is said to be real-measurable if there is a κ-additive measure on the set κ.
A cardinal number κ is said to be measurable if there is a κ-additive two-valued measure on the set κ.

The class of measurable cardinals will be ordered: $\omega = m_0 < m_1 <$
The first uncountable real-measurable cardinal is denoted as m_R.
Measurable cardinals
S. Banach, K. Kuratowski, S. Ulam (Lvov 1929-1930)

Definition

For an infinite cardinal \(\kappa \) we say that a measure \(\mu \) on \(A \) is \(\kappa \)-additive if
\[
\mu(\bigcup_{\lambda} A_{\alpha}) = \sum_{\lambda} \mu(A_{\alpha})
\]
whenever \(\{A_{\alpha}\}_{\lambda} \) is a disjoint collection of subsets of \(A \) and \(\lambda < \kappa \).

If \(\kappa = \omega \) (or \(\kappa = \omega_1 \)), we speak about finitely additive (or countably additive) measure.

Definition (Measurable cardinals)

A cardinal number \(\kappa \) is said to be real-measurable if there is a \(\kappa \)-additive measure on the set \(\kappa \).

A cardinal number \(\kappa \) is said to be measurable if there is a \(\kappa \)-additive two-valued measure on the set \(\kappa \).

The class of measurable cardinals will be ordered: \(\omega = m_0 < m_1 < \ldots \). The first uncountable real-measurable cardinal is denoted as \(m_\mathbb{R} \).
Theorem

Every real measurable cardinal is inaccessible.

Every measurable cardinal is strongly inaccessible.

*Any real measurable cardinal is measurable provided it is bigger than 2^ω."

Theorem (R.N.Solovay)

The consistencies of $\{\text{ZFC } + \exists m_1\}$, $\{\text{ZFC } + \exists m_R\}$, $\{\text{ZFC } + (\exists m_R \leq 2^\omega)\}$ are equivalent.

For a cardinal κ, we denote by $m(\kappa)$ the first measurable cardinal bigger than κ or a symbol ∞ bigger than any cardinal if there is no measurable cardinal bigger than κ.

Theorem

Every κ-additive measure is $m(\kappa)$-additive.

Corollary

The first uncountable measurable cardinal is the first uncountable cardinal admitting a countably additive measure.
Theorem

Every real measurable cardinal is inaccessible.
Every measurable cardinal is strongly inaccessible.
Any real measurable cardinal is measurable provided it is bigger than 2^ω.

Theorem (R.N. Solovay)

The consistencies of $\{\text{ZFC} + \exists m_1\}$, $\{\text{ZFC} + \exists m_R\}$, $\{\text{ZFC} + (\exists m_R \leq 2^\omega)\}$ are equivalent.

For a cardinal κ, we denote by $m(\kappa)$ the first measurable cardinal bigger than κ or a symbol ∞ bigger than any cardinal if there is no measurable cardinal bigger than κ.

Theorem

Every κ-additive measure is $m(\kappa)$-additive.

Corollary

The first uncountable measurable cardinal is the first uncountable cardinal admitting a countably additive measure.
Theorem
Every real measurable cardinal is inaccessible.
Every measurable cardinal is strongly inaccessible.
Any real measurable cardinal is measurable provided it is bigger than 2^ω.

Theorem (R.N. Solovay)
The consistencies of $\{\text{ZFC} + \exists m_1\}$, $\{\text{ZFC} + \exists m_\mathbb{R}\}$, $\{\text{ZFC} + (\exists m_\mathbb{R} \leq 2^\omega)\}$ are equivalent.

For a cardinal κ, we denote by $m(\kappa)$ the first measurable cardinal bigger than κ or a symbol ∞ bigger than any cardinal if there is no measurable cardinal bigger than κ.

Theorem
Every κ-additive measure is $m(\kappa)$-additive.

Corollary
The first uncountable measurable cardinal is the first uncountable cardinal admitting a countably additive measure.
Theorem

Every real measurable cardinal is inaccessible.
Every measurable cardinal is strongly inaccessible.
Any real measurable cardinal is measurable provided it is bigger than 2^ω.

Theorem (R.N. Solovay)

The consistencies of $\{\text{ZFC + } \exists m_1\}$, $\{\text{ZFC + } \exists m_\mathbb{R}\}$, $\{\text{ZFC + } (\exists m_\mathbb{R} \leq 2^\omega)\}$
are equivalent.

For a cardinal κ, we denote by $m(\kappa)$ the first measurable cardinal bigger than κ or a symbol ∞ bigger than any cardinal if there is no measurable cardinal bigger than κ.

Theorem

Every κ-additive measure is $m(\kappa)$-additive.

Corollary

The first uncountable measurable cardinal is the first uncountable cardinal admitting a countably additive measure.
Ultrafilters

Definition (κ-completeness of filters)

For an infinite cardinal κ, a filter \mathcal{F} of subsets of A is said to be κ-complete if $\bigcap_\lambda A_\alpha \in \mathcal{F}$ whenever $\{A_\alpha\}_\lambda \subset \mathcal{F}$ and $\lambda < \kappa$.

Instead of ω_1-complete filters we speak about countably complete filters.

If μ is a two-valued κ-additive measure on a set A then $\{P \subset A; \mu(P) = 1\}$ is a free κ-complete ultrafilter on A.

Conversely, if \mathcal{F} is a free κ-complete ultrafilter then μ with value 1 at sets from \mathcal{F} and zero otherwise is a two-valued κ-additive measure on A.

Theorem

A cardinal κ is measurable iff there exists a free κ-complete ultrafilter on the set κ.
Ultrafilters

Definition (κ-completeness of filters)

For an infinite cardinal κ, a filter \mathcal{F} of subsets of A is said to be κ-complete if $\bigcap_\lambda A_\alpha \in \mathcal{F}$ whenever $\{A_\alpha\}_\lambda \subset \mathcal{F}$ and $\lambda < \kappa$.

Instead of ω_1-complete filters we speak about countably complete filters.

If μ is a two-valued κ-additive measure on a set A then $\{P \subset A; \mu(P) = 1\}$ is a free κ-complete ultrafilter on A.

Conversely, if \mathcal{F} is a free κ-complete ultrafilter then μ with value 1 at sets from \mathcal{F} and zero otherwise is a two-valued κ-additive measure on A.

Theorem

A cardinal κ is measurable iff there exists a free κ-complete ultrafilter on the set κ.
Ultrafilters

Definition (κ-completeness of filters)

For an infinite cardinal κ, a filter \mathcal{F} of subsets of A is said to be κ-complete if $\bigcap_{\lambda} A_{\alpha} \in \mathcal{F}$ whenever $\{A_{\alpha}\}_\lambda \subset \mathcal{F}$ and $\lambda < \kappa$.

Instead of ω_1-complete filters we speak about countably complete filters.

If μ is a two-valued κ-additive measure on a set A then $\{P \subset A; \mu(P) = 1\}$ is a free κ-complete ultrafilter on A.

Conversely, if \mathcal{F} is a free κ-complete ultrafilter then μ with value 1 at sets from \mathcal{F} and zero otherwise is a two-valued κ-additive measure on A.

Theorem

A cardinal κ is measurable iff there exists a free κ-complete ultrafilter on the set κ.
Measurable cardinals and topology

In this part, we shall work in Hausdorff completely regular (i.e., Tikhonov) spaces only.
Trivially: A set X has cardinality less than m iff every maximal filter on $\exp X$ is fixed provided it is m-complete.

When X is a topological space, one can take some subclasses of $\exp X$ instead of $\exp X$, like the class of closed sets or of zero sets in X (i.e., sets of a form $f^{-1}(0)$, $f : X \to \mathbb{R}$ continuous).
Theorem \((m = \omega)\)

The following conditions for a topological space \(X\) are equivalent:

1. \(X\) is compact.
2. Every ultrafilter \(\mathcal{U}\) on \(X\) converges (i.e., \(\bigcap_{\mathcal{U}} \overline{A} \neq \emptyset\)).
3. For every ultrafilter \(\mathcal{U}\) on \(X\) the filter \(\{F \in \mathcal{U}; F\) is closed\} in closed sets in \(X\) is fixed (has nonempty intersection).
4. Every maximal filter of closed sets in \(X\) is fixed (has nonempty intersection).
5. For every ultrafilter \(\mathcal{U}\) on \(X\) the filter \(\{F \in \mathcal{U}; F\) is a zero set\} in zero sets in \(X\) is fixed (has nonempty intersection).
6. Every maximal filter of zero sets in \(X\) is fixed (has nonempty intersection).
Theorem \((m = \omega)\)

The following conditions for a topological space \(X\) are equivalent:

1. \(X\) is compact.

2. Every ultrafilter \(\mathcal{X}\) on \(X\) converges (i.e., \(\bigcap_{\mathcal{X}} A \neq \emptyset\)).

3. For every ultrafilter \(\mathcal{X}\) on \(X\) the filter \(\{F \in \mathcal{X}; F\) is closed \}\) in closed sets in \(X\) is fixed (has nonempty intersection).

4. Every maximal filter of closed sets in \(X\) is fixed (has nonempty intersection).

5. For every ultrafilter \(\mathcal{X}\) on \(X\) the filter \(\{F \in \mathcal{X}; F\) is a zero set \}\) in zero sets in \(X\) is fixed (has nonempty intersection).

6. Every maximal filter of zero sets in \(X\) is fixed (has nonempty intersection).
Theorem ($m = \omega$)

The following conditions for a topological space X are equivalent:

1. X is compact.

2. Every ultrafilter \mathcal{X} on X converges (i.e., $\bigcap_{\mathcal{X}} \overline{A} \neq \emptyset$).

3. For every ultrafilter \mathcal{X} on X the filter $\{F \in \mathcal{X}; F$ is closed $\}$ in closed sets in X is fixed (has nonempty intersection).

4. Every maximal filter of closed sets in X is fixed (has nonempty intersection).

5. For every ultrafilter \mathcal{X} on X the filter $\{F \in \mathcal{X}; F$ is a zero set $\}$ in zero sets in X is fixed (has nonempty intersection).

6. Every maximal filter of zero sets in X is fixed (has nonempty intersection).
Zero sets

For every ultrafilter \mathcal{X} on X the filter $\{ F \in \mathcal{X}; F \text{ is a zero set } \}$ in zero sets in X is fixed (has nonempty intersection) provided it is κ-complete.

Every maximal filter of zero sets in X is fixed (has nonempty intersection) provided it is κ-complete.
Zero sets

For every ultrafilter \mathcal{U} on X the filter $\{ F \in \mathcal{U}; F \text{ is a zero set} \}$ in zero sets in X is fixed (has nonempty intersection) provided it is κ-complete.

Every maximal filter of zero sets in X is fixed (has nonempty intersection) provided it is κ-complete.

Definition (κ-compact spaces, H.Herrlich)

A topological space X is said to be κ-compact if every maximal zero filter that is κ-complete, has nonempty intersection.

ω_1-compact space $=$ realcompact space
Closed sets

For every ultrafilter \mathcal{X} on X the filter $\{ F \in \mathcal{X} ; F \text{ is closed} \}$ in closed sets in X is fixed (has nonempty intersection) provided it is κ-complete.

Every maximal filter of closed sets in X is fixed (has nonempty intersection) provided it is κ-complete.
Closed sets

For every ultrafilter \(\mathcal{X} \) on \(X \) the filter \(\{ F \in \mathcal{X}; F \text{ is closed} \} \) in closed sets in \(X \) is fixed (has nonempty intersection) provided it is \(\kappa \)-complete.

Every maximal filter of closed sets in \(X \) is fixed (has nonempty intersection) provided it is \(\kappa \)-complete.

Definition (\(\kappa \)-ultracompact spaces, J.van der Slot)

A topological space \(X \) is said to be \(\kappa \)-ultracompact if every ultrafilter with \(\kappa \)-complete property for its closed sets converges.
Definition

A productive and closed-hereditary (i.e., epireflective) class \mathcal{C} of spaces is said to be **simple** if there is $Z \in \mathcal{C}$ such that every $X \in \mathcal{C}$ can be embedded onto a closed subspace a power of Z. One says that \mathcal{C} is generated by Z and the spaces from \mathcal{C} are then called Z-compact spaces.

By \mathcal{C}_κ we denote the class of κ-compact spaces.

By \mathcal{U}_κ we denote the class of κ-ultracompact spaces.

The classes $\mathcal{C}_\omega, \mathcal{U}_\omega$ are simple, they coincide with the class of compact spaces and are generated by $[0, 1]$.

The class \mathcal{C}_{ω_1} is the simple class of realcompact spaces generated by \mathbb{R}.

1. Are the classes $\mathcal{C}_\kappa, \kappa \geq \omega_2$ simple?
2. Are the classes $\mathcal{U}_\kappa, \kappa \geq \omega_1$ simple?
3. What is a relation between \mathcal{C}_κ and \mathcal{U}_κ?
A productive and closed-hereditary (i.e., epireflective) class C of spaces is said to be simple if there is $Z \in C$ such that every $X \in C$ can be embedded onto a closed subspace a power of Z. One says that C is generated by Z and the spaces from C are then called Z-compact spaces.

By C_κ we denote the class of κ-compact spaces.
By U_κ we denote the class of κ-ultracompact spaces.

The classes C_ω, U_ω are simple, they coincide with the class of compact spaces and are generated by $[0, 1]$.

The class C_{ω_1} is the simple class of realcompact spaces generated by \mathbb{R}.

1. Are the classes $C_\kappa, \kappa \geq \omega_2$ simple?
2. Are the classes $U_\kappa, \kappa \geq \omega_1$ simple?
3. What is a relation between C_κ and U_κ?
Definition

A productive and closed-hereditary (i.e., epireflective) class \mathcal{C} of spaces is said to be **simple** if there is $Z \in \mathcal{C}$ such that every $X \in \mathcal{C}$ can be embedded onto a closed subspace a power of Z. One says that \mathcal{C} is generated by Z and the spaces from \mathcal{C} are then called Z-compact spaces.

By \mathcal{C}_κ we denote the class of κ-compact spaces.

By \mathcal{U}_κ we denote the class of κ-ultracompact spaces.

The classes $\mathcal{C}_\omega, \mathcal{U}_\omega$ are simple, they coincide with the class of compact spaces and are generated by $[0,1]$.

The class \mathcal{C}_{ω_1} is the simple class of realcompact spaces generated by \mathbb{R}.

1. Are the classes $\mathcal{C}_\kappa, \kappa \geq \omega_2$ simple?
2. Are the classes $\mathcal{U}_\kappa, \kappa \geq \omega_1$ simple?
3. What is a relation between \mathcal{C}_κ and \mathcal{U}_κ?
A productive and closed-hereditary (i.e., epireflective) class C of spaces is said to be **simple** if there is $Z \in C$ such that every $X \in C$ can be embedded onto a closed subspace a power of Z. One says that C is generated by Z and the spaces from C are then called Z-compact spaces.

By C_κ we denote the class of κ-compact spaces.

By U_κ we denote the class of κ-ultracompact spaces.

The classes C_ω, U_ω are simple, they coincide with the class of compact spaces and are generated by $[0, 1]$.

The class C_{ω_1} is the simple class of realcompact spaces generated by \mathbb{R}.

1. Are the classes $C_\kappa, \kappa \geq \omega_2$ simple?
2. Are the classes $U_\kappa, \kappa \geq \omega_1$ simple?
3. What is a relation between C_κ and U_κ?
Theorem (MH)
The classes \mathcal{C}_κ are simple. For any cardinal κ, the class \mathcal{C}_{κ^+} is generated by $P_\kappa = [0, 1]^\kappa \setminus \{1\}$. For limit κ the class \mathcal{C}_κ is generated by $\prod_\kappa P_\lambda$.

Theorem (van der Slot, Z.Frolík)
The class of perfect images of spaces from C_κ coincides with the class \mathcal{U}_κ.

Theorem (MH)
If C is epireflective, closed under perfect images and contains a discrete space of cardinality μ then C is not a part of E-compact spaces for any space E of cardinality less than $m(\mu)$.

Corollary
1. The classes \mathcal{U}_κ, $\omega < \kappa < m_1$, are not generated by a space of cardinality $< m_1$.
2. The classes C_κ, $\omega < \kappa < m_1$, and \mathcal{U}_λ are all different.
The classes C_κ are simple. For any cardinal κ, the class C_{κ^+} is generated by $P_\kappa = [0, 1]^\kappa \setminus \{1\}$. For limit κ the class C_κ is generated by $\prod_\kappa P_\lambda$.

The class of perfect images of spaces from C_κ coincides with the class U_κ.

If C is epireflective, closed under perfect images and contains a discrete space of cardinality μ then C is not a part of E-compact spaces for any space E of cardinality less than $m(\mu)$.

Corollary

1. The classes U_κ, $\omega < \kappa < m_1$, are not generated by a space of cardinality $< m_1$.
2. The classes C_κ, $\omega < \kappa < m_1$, and U_λ are all different.
Theorem (MH)

The classes \mathcal{C}_κ *are simple. For any cardinal* κ, *the class* \mathcal{C}_{κ^+} *is generated by* $P_\kappa = [0, 1]^{\kappa} \setminus \{1\}$. *For limit* κ *the class* \mathcal{C}_κ *is generated by* $\prod_\kappa P_\lambda$.

Theorem (van der Slot, Z.Frolík)

The class of perfect images of spaces from \mathcal{C}_κ *coincides with the class* \mathcal{U}_κ.

Theorem (MH)

If \mathcal{C} *is epireflective, closed under perfect images and contains a discrete space of cardinality* μ *then* \mathcal{C} *is not a part of* E-*compact spaces for any* E *of cardinality less than* $m(\mu)$.

Corollary

1. *The classes* $\mathcal{U}_\kappa, \omega < \kappa < m_1$, *are not generated by a space of cardinality* $< m_1$.
2. *The classes* $\mathcal{C}_\kappa, \omega < \kappa < m_1$, *and* \mathcal{U}_λ *are all different.*
Theorem (MH)

The classes C_κ are simple. For any cardinal κ, the class C_{κ^+} is generated by $P_\kappa = [0, 1]^\kappa \setminus \{1\}$. For limit κ the class C_κ is generated by $\prod_\kappa P_\lambda$.

Theorem (van der Slot, Z.Frolík)

The class of perfect images of spaces from C_κ coincides with the class U_κ.

Theorem (MH)

If C is epireflective, closed under perfect images and contains a discrete space of cardinality μ then C is not a part of E-compact spaces for any space E of cardinality less than $m(\mu)$.

Corollary

1. The classes U_κ, $\omega < \kappa < m_1$, are not generated by a space of cardinality $< m_1$.
2. The classes C_κ, $\omega < \kappa < m_1$, and U_λ are all different.
PROBLEMS

1. Is $C_m = U_m$ for measurable cardinals m?

2. Are the classes U_κ simple?

Similar situation

P. Nyikos: The class of \mathbb{N}-compact spaces is a proper subclass of the class of all zerodimensional realcompact spaces. It does not contain the Prabir Roy’s metric space Δ with $\text{ind} \, \Delta = 0$, $\text{Ind} \, \Delta = 1$.

Problem: Is the class of all zerodimensional realcompact spaces simple?

A. Mysior

The class of all zerodimensional realcompact spaces is not generated by any space of Ulam non-measurable cardinality.

Problem

Is the class of all zerodimensional realcompact spaces generated by a space of cardinality bigger than m_1?
Similar situation

P. Nyikos: *The class of \mathbb{N}-compact spaces is a proper subclass of the class of all zerodimensional realcompact spaces. It does not contain the Prabir Roy’s metric space Δ with $\text{ind} \Delta = 0$, $\text{Ind} \Delta = 1$.*

Problem: Is the class of all zerodimensional realcompact spaces simple?

A. Mysior

The class of all zerodimensional realcompact spaces is not generated by any space of Ulam non-measurable cardinality.

Problem

Is the class of all zerodimensional realcompact spaces generated by a space of cardinality bigger than m_1?
P.Nyikos: *The class of \mathbb{N}-compact spaces is a proper subclass of the class of all zerodimensional realcompact spaces. It does not contain the Prabir Roy’s metric space Δ with $\text{ind} \, \Delta = 0$, $\text{Ind} \, \Delta = 1$.*

Problem: Is the class of all zerodimensional realcompact spaces simple?

A.Mysior

The class of all zerodimensional realcompact spaces is not generated by any space of Ulam non-measurable cardinality.

Problem

Is the class of all zerodimensional realcompact spaces generated by a space of cardinality bigger than m_1?
P.Nyikos: *The class of \(\mathbb{N} \)-compact spaces is a proper subclass of the class of all zerodimensional realcompact spaces. It does not contain the Prabir Roy’s metric space \(\Delta \) with \(\text{ind} \Delta = 0, \text{Ind} \Delta = 1 \).*

Problem: Is the class of all zerodimensional realcompact spaces simple?

A.Mysior

The class of all zerodimensional realcompact spaces is not generated by any space of Ulam non-measurable cardinality.
P. Nyikos: *The class of \(\mathbb{N}\)-compact spaces is a proper subclass of the class of all zerodimensional realcompact spaces. It does not contain the Prabir Roy’s metric space \(\Delta\) with \(\text{ind } \Delta = 0, \text{Ind } \Delta = 1\).*

Problem: Is the class of all zerodimensional realcompact spaces simple?

A. Mysior

The class of all zerodimensional realcompact spaces is not generated by any space of Ulam non-measurable cardinality.

Problem

Is the class of all zerodimensional realcompact spaces generated by a space of cardinality bigger than \(m_1\)?
Dieudonné complete spaces

Definition
A space X is said to be Dieudonné complete if there is a complete uniformity inducing its topology (i.e., the fine uniformity of X is complete).

Theorem (MH)
If X is a Dieudonné complete space and m a measurable cardinal then the following properties are equivalent:

1. X is κ-compact and $m(\kappa) = m$, κ not measurable.
2. X is λ-ultracompact and $m(\lambda) = m$, λ not measurable.
3. X contains no closed discrete subspace of cardinality m.
4. X is $H(\mu)$-compact for any μ with $m(\mu) = m$.

Corollary
The class of Dieudonné spaces is simple iff the class of measurable cardinals is a set.
Dieudonné complete spaces

Definition
A space X is said to be Dieudonné complete if there is a complete uniformity inducing its topology (i.e., the fine uniformity of X is complete).

Every paracompact or realcompact space is Dieudonné complete.

Theorem (MH)
If X is a Dieudonné complete space and m a measurable cardinal then the following properties are equivalent:

1. X is κ-compact and $m(\kappa) = m$, κ not measurable.
2. X is λ-ultracompact and $m(\lambda) = m$, λ not measurable.
3. X contains no closed discrete subspace of cardinality m.
4. X is $H(\mu)$-compact for any μ with $m(\mu) = m$.

Corollary
The class of Dieudonné spaces is simple iff the class of measurable cardinals is a set.
Dieudonné complete spaces

Definition

A space X is said to be Dieudonné complete if there is a complete uniformity inducing its topology (i.e., the fine uniformity of X is complete).

Every paracompact or realcompact space is Dieudonné complete. For an infinite cardinal κ we denote by $H(\kappa)$ the metrizable hedgehog with κ many spines.

Theorem (MH)

If X is a Dieudonné complete space and m a measurable cardinal then the following properties are equivalent:

1. X is κ-compact and $m(\kappa) = m$, κ not measurable.
2. X is λ-ultracompact and $m(\lambda) = m$, λ not measurable.
3. X contains no closed discrete subspace of cardinality m.
4. X is $H(\mu)$-compact for any μ with $m(\mu) = m$.

Corollary

The class of Dieudonné spaces is simple iff the class of measurable cardinals is a set.
Dieudonné complete spaces

Theorem (MH)

If X is a Dieudonné complete space and m a measurable cardinal then the following properties are equivalent:

1. X is κ-compact and $m(\kappa) = m$, κ not measurable.
2. X is λ-ultracompact and $m(\lambda) = m$, λ not measurable.
3. X contains no closed discrete subspace of cardinality m.
4. X is $H(\mu)$-compact for any μ with $m(\mu) = m$.

Corollary

The class of Dieudonné spaces is simple iff the class of measurable cardinals is a set.
The class of Dieudonné spaces is simple iff the class of measurable cardinals is a set.
Theorem (N.Varopoulos)

Every sequentially continuous homomorphism between compact groups of cardinalities less than m_1 is continuous.

Theorem (CH)

Every sequentially continuous mapping between compact groups of cardinalities less than m_1 is continuous.
Theorem (N. Varopoulos)

Every sequentially continuous homomorphism between compact groups of cardinalities less than m_1 is continuous.

Theorem (CH)

Every sequentially continuous mapping between compact groups of cardinalities less than m_1 is continuous.
Let $X \subset \prod_{i} X_i$ and $f : X \rightarrow Y$. We say that f depends on $J \subset I$ (or on $|J|$ coordinates, or that f factorizes via $\text{pr}_J(X)$) if there exists a map $f_J : \text{pr}_J(X) \rightarrow Y$ such that $f = f_J \circ \text{pr}_J$, i.e., if $f(x) = f(y)$ provided $x, y \in X, \text{pr}_J(x) = \text{pr}_J(y)$.
Let $X \subset \prod_i X_i$ and $f : X \rightarrow Y$. We say that f depends on $J \subset I$ (or on $|J|$ coordinates, or that f factorizes via $pr_J(X)$) if there exists a map $f_J : pr_J(X) \rightarrow Y$ such that $f = f_J \circ pr_J$, i.e., if $f(x) = f(y)$ provided $x, y \in X, pr_J(x) = pr_J(y)$.

\[
\begin{tikzcd}
X \arrow{r} \arrow[swap]{d}{f} & \prod_i X_i \arrow{dr}{pr_J} \arrow[swap]{dl}{f_J} \arrow{d}{pr_J(X)} & \prod_J X_i \\
Y & &
\end{tikzcd}
\]
Σ-products

Σ-product

Let $p \in \prod_I X_i$. The subset \(\{ x \in \prod_I X_i; |i \in I; \text{pr}_i a \neq \text{pr}_i(p)| \leq \omega \} \) is called a Σ-product of \(\{ X_i \}_I \) with the basic point \(p \).

If instead of \(\leq \omega \) in the previous definition we use \(< \omega \) we get σ-products.

Theorem (N.Noble)

If all \(X_i, i \in I \), are first countable then every Σ-product of \(\{ X_i \}_I \) is a Fréchet space.

Corollary

Every sequentially continuous mapping on a product of first countable spaces is continuous on every Σ-product of \(\{ X_i \}_I \).
Σ-products

Σ-product

Let \(p \in \prod_{i} X_i \). The subset \(\{ x \in \prod_{i} X_i ; \forall i \in I; \text{pr}_i a \neq \text{pr}_i (p) \} \leq \omega \} \) is called a **Σ-product** of \(\{ X_i \}_I \) with the basic point \(p \).

If instead of \(\leq \omega \) in the previous definition we use \(< \omega \) we get **σ-products**.

Theorem (N. Noble)

If all \(X_i, i \in I, \) are first countable then every Σ-product of \(\{ X_i \}_I \) is a Fréchet space.

Corollary

Every sequentially continuous mapping on a product of first countable spaces is continuous on every Σ-product of \(\{ X_i \}_I \).
Σ-products

Σ-product

Let $p \in \prod_I X_i$. The subset $\{x \in \prod_I X_i; |i \in I; \text{pr}_i a \neq \text{pr}_i(p)| \leq \omega\}$ is called a **Σ-product** of $\{X_i\}_I$ with the basic point p.

If instead of $\leq \omega$ in the previous definition we use $<\omega$ we get **σ-products**.

Theorem (N.Noble)

If all $X_i, i \in I$, are first countable then every Σ-product of $\{X_i\}_I$ is a Fréchet space.

Corollary

*Every sequentially continuous mapping on a product of first countable spaces is continuous on every Σ-product of $\{X_i\}_I$.***
Productivity number

Question

When a sequentially continuous map defined on a product of spaces is continuous?

Spaces having the property that every sequentially continuous map defined on them and ranging in a given class of spaces is continuous, form a coreflective class, i.e., the class is closed under taking quotients and inductive limits (sums). So, there is a more general question how big are the so called productivity numbers of coreflective classes:

Definition

Productivity number of a coreflective class \(\mathcal{C} \) is the smallest cardinal \(\kappa \) such that a product \(\prod_{\kappa} X_\alpha, X_\alpha \in \mathcal{C} \), does not belong to \(\mathcal{C} \).
Question

When a sequentially continuous map defined on a product of spaces is continuous?

Spaces having the property that every sequentially continuous map defined on them and ranging in a given class of spaces is continuous, form a coreflective class, i.e., the class is closed under taking quotients and inductive limits (sums). So, there is a more general question how big are the so called productivity numbers of coreflective classes:

Definition

Productivity number of a coreflective class C is the smallest cardinal κ such that a product $\prod_\kappa X_\alpha, X_\alpha \in C$, does not belong to C.
Productivity number

Question

When a sequentially continuous map defined on a product of spaces is continuous?

Spaces having the property that every sequentially continuous map defined on them and ranging in a given class of spaces is continuous, form a coreflective class, i.e., the class is closed under taking quotients and inductive limits (sums). So, there is a more general question how big are the so called productivity numbers of coreflective classes:

Definition

Productivity number of a coreflective class \mathcal{C} is the smallest cardinal κ such that a product $\prod_\kappa X_\alpha$, $X_\alpha \in \mathcal{C}$, does not belong to \mathcal{C}.
Theorem (I. Glicksberg)

For infinite spaces X, Y the equality $\beta(X \times Y) = \beta(X) \times \beta(Y)$ holds iff $X \times Y$ is pseudocompact.

Theorem

Let X, Y have Ulam measurable cardinalities. If $v(X \times Y) = v(X) \times v(Y)$ then $X \times Y$ is pseudo-m_1-compact. The converse is not true.

Theorem

The property $v(X \times Y) = v(X) \times v(Y)$ for $X \times Y$ is not topological for infinite spaces X, Y.

Theorem

Let \mathcal{K} be a finitely productive class of spaces containing all compact spaces and a pair P, Q with $v(P \times Q) \neq v(P) \times v(Q)$. Then there are no topological properties \mathcal{A}, \mathcal{B} such that for $X, Y \in \mathcal{K}$ one has $v(X \times Y) = v(X) \times v(Y)$ iff $X, Y \in \mathcal{A}, X \times Y \in \mathcal{B}$.
Theorem (I. Glicksberg)

For infinite spaces X, Y the equality $\beta(X \times Y) = \beta(X) \times \beta(Y)$ holds iff $X \times Y$ is pseudocompact.

What is the situation for Hewitt-Nachbin realcompactification ν? When $\nu(X \times Y) = \nu(X) \times \nu(Y)$? There is a partial analogous assertion to Glicksberg result:

Theorem

Let X, Y have Ulam measurable cardinalities. If $\nu(X \times Y) = \nu(X) \times \nu(Y)$ then $X \times Y$ is pseudo-m_1-compact. The converse is not true.

Theorem

The property $\nu(X \times Y) = \nu(X) \times \nu(Y)$ for $X \times Y$ is not topological for infinite spaces X, Y.

Theorem

Let \mathcal{K} be a finitely productive class of spaces containing all compact
Theorem (I. Glicksberg)

For infinite spaces X, Y the equality $\beta(X \times Y) = \beta(X) \times \beta(Y)$ holds iff $X \times Y$ is pseudocompact.

Theorem

Let X, Y have Ulam measurable cardinalities. If $\upsilon(X \times Y) = \upsilon(X) \times \upsilon(Y)$ then $X \times Y$ is pseudo-m_1-compact. The converse is not true.

Theorem

The property $\upsilon(X \times Y) = \upsilon(X) \times \upsilon(Y)$ for $X \times Y$ is not topological for infinite spaces X, Y.

Theorem

Let \mathcal{K} be a finitely productive class of spaces containing all compact spaces and a pair P, Q with $\upsilon(P \times Q) \neq \upsilon(P) \times \upsilon(Q)$. Then there are no topological properties A, B such that for $X, Y \in \mathcal{K}$ one has $\upsilon(X \times Y) = \upsilon(X) \times \upsilon(Y)$ iff $X, Y \in A, X \times Y \in B$.
Theorem (I. Glicksberg)

For infinite spaces X, Y the equality $\beta(X \times Y) = \beta(X) \times \beta(Y)$ holds iff $X \times Y$ is pseudocompact.

Theorem

Let X, Y have Ulam measurable cardinalities. If $\nu(X \times Y) = \nu(X) \times \nu(Y)$ then $X \times Y$ is pseudo-m_1-compact.

The converse is not true.

Theorem

The property $\nu(X \times Y) = \nu(X) \times \nu(Y)$ for $X \times Y$ is not topological for infinite spaces X, Y.

Theorem

Let \mathcal{K} be a finitely productive class of spaces containing all compact spaces and a pair P, Q with $\nu(P \times Q) \neq \nu(P) \times \nu(Q)$. Then there are no topological properties A, B such that for $X, Y \in \mathcal{K}$ one has $\nu(X \times Y) = \nu(X) \times \nu(Y)$ iff $X, Y \in A, X \times Y \in B$.
Theorem (I. Glicksberg)

For infinite spaces X, Y the equality $\beta(X \times Y) = \beta(X) \times \beta(Y)$ holds iff $X \times Y$ is pseudocompact.

Theorem

Let X, Y have Ulam measurable cardinalities. If $\nu(X \times Y) = \nu(X) \times \nu(Y)$ then $X \times Y$ is pseudo-m_1-compact.
The converse is not true.

Theorem

The property $\nu(X \times Y) = \nu(X) \times \nu(Y)$ for $X \times Y$ is not topological for infinite spaces X, Y.

Theorem

Let \mathcal{K} be a finitely productive class of spaces containing all compact spaces and a pair P, Q with $\nu(P \times Q) \neq \nu(P) \times \nu(Q)$. Then there are no topological properties \mathcal{A}, \mathcal{B} such that for $X, Y \in \mathcal{K}$ one has $\nu(X \times Y) = \nu(X) \times \nu(Y)$ iff $X, Y \in \mathcal{A}$, $X \times Y \in \mathcal{B}$.