LARGE CARDINALS IN GENERAL TOPOLOGY I

Miroslav HUŠEK

Winter School in Abstract Analysis Hejnice, January 26–February 2, 2019

Large cardinals

The existence of a large cardinal κ should not be inconsistent with ZFC. If ZFC is consistent, then ZFC + "the large cardinal κ does not exist" is consistent.

 $\begin{array}{c} {\rm Stanislaw \ Marcin \ Ulam,} \\ 1909 \hbox{-} 1984 \end{array}$

Kazimierz Kuratowski 1896–1980

Definition

For an infinite cardinal κ we say that a measure μ on A is κ -additive if $\mu(\bigcup_{\lambda} A_{\alpha}) = \sum_{\lambda} \mu(A_{\alpha})$ whenever $\{A_{\alpha}\}_{\lambda}$ is a disjoint collection of subsets of A and $\lambda < \kappa$.

Stanislaw Marcin Ulam, 1909-1984 Stefan Banach 1892–1945 Kazimierz Kuratowski 1896–1980

All our measures are defined on all subsets of some set. We shall assume that measures are non-trivial in the sense that the measure of the whole set is not zero, while measures of points are zero.

Measures with ranges equal to $\{0, 1\}$ are called two-valued.

Definition

For an infinite cardinal κ we say that a measure μ on A is κ -additive if $\mu(\cup_{\lambda}A_{\alpha}) = \sum_{\lambda} \mu(A_{\alpha})$ whenever $\{A_{\alpha}\}_{\lambda}$ is a disjoint collection of subsets of A and $\lambda < \kappa$.

If $\kappa = \omega$ (or $\kappa = \omega_1$), we speak about finitely additive (or countably additive) measure.

Definition (Measurable cardinals)

A cardinal number κ is said to be real-measurable if there is a κ -additive measure on the set κ .

A cardinal number κ is said to be measurable if there is a κ -additive two-valued measure on the set κ .

The class of measurable cardinals will be ordered: $\omega = \mathfrak{m}_0 < \mathfrak{m}_1 < \dots$ The first uncountable real-measurable cardinal is denoted as $\mathfrak{m}_{\mathbb{R}}$.

Definition

For an infinite cardinal κ we say that a measure μ on A is κ -additive if $\mu(\cup_{\lambda}A_{\alpha}) = \sum_{\lambda} \mu(A_{\alpha})$ whenever $\{A_{\alpha}\}_{\lambda}$ is a disjoint collection of subsets of A and $\lambda < \kappa$.

If $\kappa = \omega$ (or $\kappa = \omega_1$), we speak about finitely additive (or countably additive) measure.

Definition (Measurable cardinals)

A cardinal number κ is said to be real-measurable if there is a κ -additive measure on the set κ .

A cardinal number κ is said to be measurable if there is a κ -additive two-valued measure on the set κ .

The class of measurable cardinals will be ordered: $\omega = \mathfrak{m}_0 < \mathfrak{m}_1 < \dots$ The first uncountable real-measurable cardinal is denoted as $\mathfrak{m}_{\mathbb{R}}$.

Definition

For an infinite cardinal κ we say that a measure μ on A is κ -additive if $\mu(\cup_{\lambda}A_{\alpha}) = \sum_{\lambda} \mu(A_{\alpha})$ whenever $\{A_{\alpha}\}_{\lambda}$ is a disjoint collection of subsets of A and $\lambda < \kappa$.

If $\kappa = \omega$ (or $\kappa = \omega_1$), we speak about finitely additive (or countably additive) measure.

Definition (Measurable cardinals)

A cardinal number κ is said to be real-measurable if there is a κ -additive measure on the set κ .

A cardinal number κ is said to be measurable if there is a κ -additive two-valued measure on the set κ .

The class of measurable cardinals will be ordered: $\omega = \mathfrak{m}_0 < \mathfrak{m}_1 < \dots$ The first uncountable real-measurable cardinal is denoted as $\mathfrak{m}_{\mathbb{R}}$.

Every real measurable cardinal is inaccessible. Every measurable cardinal is strongly inaccessible. Any real measurable cardinal is measurable provided it is bigger than 2^{ω} .

Theorem (R.N.Solovay)

The consistencies of $\{ZFC + \exists \mathfrak{m}_1\}, \{ZFC + \exists \mathfrak{m}_{\mathbb{R}}\}, \{ZFC + (\exists \mathfrak{m}_{\mathbb{R}} \leq 2^{\omega})\}$ are equivalent.

For a cardinal κ , we denote by $\mathfrak{m}(\kappa)$ the first measurable cardinal bigger than κ or a symbol ∞ bigger than any cardinal if there is no measurable cardinal bigger than κ .

Theorem

Every κ -additive measure is $\mathfrak{m}(\kappa)$ -additive.

Corollary

Every real measurable cardinal is inaccessible. Every measurable cardinal is strongly inaccessible. Any real measurable cardinal is measurable provided it is bigger than 2^{ω} .

Theorem (R.N.Solovay)

The consistencies of {ZFC + $\exists \mathfrak{m}_1$ }, {ZFC + $\exists \mathfrak{m}_{\mathbb{R}}$ }, {ZFC + ($\exists \mathfrak{m}_{\mathbb{R}} \leq 2^{\omega}$)} are equivalent.

For a cardinal κ , we denote by $\mathfrak{m}(\kappa)$ the first measurable cardinal bigger than κ or a symbol ∞ bigger than any cardinal if there is no measurable cardinal bigger than κ .

Theorem

Every κ -additive measure is $\mathfrak{m}(\kappa)$ -additive.

Corollary

Every real measurable cardinal is inaccessible. Every measurable cardinal is strongly inaccessible. Any real measurable cardinal is measurable provided it is bigger than 2^{ω} .

Theorem (R.N.Solovay)

The consistencies of $\{ZFC + \exists \mathfrak{m}_1\}, \{ZFC + \exists \mathfrak{m}_{\mathbb{R}}\}, \{ZFC + (\exists \mathfrak{m}_{\mathbb{R}} \leq 2^{\omega})\}$ are equivalent.

For a cardinal κ , we denote by $\mathfrak{m}(\kappa)$ the first measurable cardinal bigger than κ or a symbol ∞ bigger than any cardinal if there is no measurable cardinal bigger than κ .

Theorem

Every κ -additive measure is $\mathfrak{m}(\kappa)$ -additive.

Corollary

Every real measurable cardinal is inaccessible. Every measurable cardinal is strongly inaccessible. Any real measurable cardinal is measurable provided it is bigger than 2^{ω} .

Theorem (R.N.Solovay)

The consistencies of $\{ZFC + \exists \mathfrak{m}_1\}, \{ZFC + \exists \mathfrak{m}_{\mathbb{R}}\}, \{ZFC + (\exists \mathfrak{m}_{\mathbb{R}} \leq 2^{\omega})\}$ are equivalent.

For a cardinal κ , we denote by $\mathfrak{m}(\kappa)$ the first measurable cardinal bigger than κ or a symbol ∞ bigger than any cardinal if there is no measurable cardinal bigger than κ .

Theorem

Every κ -additive measure is $\mathfrak{m}(\kappa)$ -additive.

Corollary

Definition (κ -completeness of filters)

For an infinite cardinal κ , a filter \mathcal{F} of subsets of A is said to be κ -complete if $\bigcap_{\lambda} A_{\alpha} \in \mathcal{F}$ whenever $\{A_{\alpha}\}_{\lambda} \subset \mathcal{F}$ and $\lambda < \kappa$.

Instead of ω_1 -complete filters we speak about countably complete filters.

If μ is a two-valued κ -additive measure on a set A then $\{P \subset A; \mu(P) = 1\}$ is a free κ -complete ultrafilter on A. Conversely, if \mathcal{F} is a free κ -complete ultrafilter then μ with values sets from \mathcal{F} and zero otherwise is a two-valued κ -additive measure α

Theorem

A cardinal κ is measurable iff there exists a free κ -complete ultrafilter on the set κ .

Definition (κ -completeness of filters)

For an infinite cardinal κ , a filter \mathcal{F} of subsets of A is said to be κ -complete if $\bigcap_{\lambda} A_{\alpha} \in \mathcal{F}$ whenever $\{A_{\alpha}\}_{\lambda} \subset \mathcal{F}$ and $\lambda < \kappa$.

Instead of ω_1 -complete filters we speak about countably complete filters.

If μ is a two-valued κ -additive measure on a set A then $\{P \subset A; \mu(P) = 1\}$ is a free κ -complete ultrafilter on A.

Conversely, if \mathcal{F} is a free κ -complete ultrafilter then μ with value 1 at sets from \mathcal{F} and zero otherwise is a two-valued κ -additive measure on A.

Theorem

A cardinal κ is measurable iff there exists a free κ -complete ultrafilter on the set κ .

Definition (κ -completeness of filters)

For an infinite cardinal κ , a filter \mathcal{F} of subsets of A is said to be κ -complete if $\bigcap_{\lambda} A_{\alpha} \in \mathcal{F}$ whenever $\{A_{\alpha}\}_{\lambda} \subset \mathcal{F}$ and $\lambda < \kappa$.

Instead of ω_1 -complete filters we speak about countably complete filters.

If μ is a two-valued κ -additive measure on a set A then { $P \subset A; \mu(P) = 1$ } is a free κ -complete ultrafilter on A. Conversely, if \mathcal{F} is a free κ -complete ultrafilter then μ with value 1 at

sets from \mathcal{F} and zero otherwise is a two-valued κ -additive measure on A.

Theorem

A cardinal κ is measurable iff there exists a free κ -complete ultrafilter on the set κ .

Measurable cardinals and topology

In this part, we shall work in Hausdorff completely regular (i.e., Tikhonov) spaces only.

Measurable cardinals and topology

Trivially: A set X has cardinality less than \mathfrak{m} iff every maximal filter on $\exp X$ is fixed provided it is \mathfrak{m} -complete.

When X is a topological space, one can take some subclasses of $\exp X$ instead of $\exp X$, like the class of closed sets or of zero sets in X (i.e., sets of a form $f^{-1}(0), f: X \to \mathbb{R}$ continuous).

Theorem $(\mathfrak{m} = \omega)$

- The following conditions for a topological space X are equivalent:
 - O X is compact.
 - **2** Every ultrafilter \mathcal{X} on X converges (i.e., $\bigcap_{\mathcal{X}} \overline{A} \neq \emptyset$).
 - For every ultrafilter \mathcal{X} on X the filter $\{F \in \mathcal{X}; F \text{ is closed }\}$ in closed sets in X is fixed (has nonempty intersection).
 - Every maximal filter of closed sets in X is fixed (has nonempty intersection).
 - For every ultrafilter \mathcal{X} on X the filter $\{F \in \mathcal{X}; F \text{ is a zero set }\}$ in zero sets in X is fixed (has nonempty intersection)
 - Every maximal filter of zero sets in X is fixed (has nonempty intersection).

Theorem $(\mathfrak{m} = \omega)$

- The following conditions for a topological space X are equivalent:
 - \bigcirc X is compact.
 - **2** Every ultrafilter \mathcal{X} on X converges (i.e., $\bigcap_{\mathcal{X}} \overline{A} \neq \emptyset$).
 - **3** For every ultrafilter \mathcal{X} on X the filter $\{F \in \mathcal{X}; F \text{ is closed }\}$ in closed sets in X is fixed (has nonempty intersection).
 - Every maximal filter of closed sets in X is fixed (has nonempty intersection).
 - For every ultrafilter X on X the filter $\{F \in X; F \text{ is a zero set }\}$ in zero sets in X is fixed (has nonempty intersection)
 - Every maximal filter of zero sets in X is fixed (has nonempty intersection).

Theorem $(\mathfrak{m} = \omega)$

- The following conditions for a topological space X are equivalent:
 - O X is compact.
 - **2** Every ultrafilter \mathcal{X} on X converges (i.e., $\bigcap_{\mathcal{X}} \overline{A} \neq \emptyset$).
 - **3** For every ultrafilter \mathcal{X} on X the filter $\{F \in \mathcal{X}; F \text{ is closed }\}$ in closed sets in X is fixed (has nonempty intersection).
 - Every maximal filter of closed sets in X is fixed (has nonempty intersection).
 - **(b)** For every ultrafilter \mathcal{X} on X the filter $\{F \in \mathcal{X}; F \text{ is a zero set }\}$ in zero sets in X is fixed (has nonempty intersection)
 - Every maximal filter of zero sets in X is fixed (has nonempty intersection).

Zero sets

For every ultrafilter \mathcal{X} on X the filter $\{F \in \mathcal{X}; F \text{ is a zero set }\}$ in zero sets in X is fixed (has nonempty intersection) provided it is κ -complete.

Every maximal filter of zero sets in X is fixed (has nonempty intersection) provided it is κ -complete.

Zero sets

For every ultrafilter \mathcal{X} on X the filter $\{F \in \mathcal{X}; F \text{ is a zero set }\}$ in zero sets in X is fixed (has nonempty intersection) provided it is κ -complete.

Every maximal filter of zero sets in X is fixed (has nonempty intersection) provided it is κ -complete.

Definition (κ -compact spaces, H.Herrlich)

A topological space X is said to be κ -compact if every maximal zero filter that is κ -complete, has nonempty intersection.

 ω_1 -compact space = realcompact space

Closed sets

For every ultrafilter \mathcal{X} on X the filter $\{F \in \mathcal{X}; F \text{ is closed }\}$ in closed sets in X is fixed (has nonempty intersection) provided it is κ -complete.

Every maximal filter of closed sets in X is fixed (has nonempty intersection) provided it is κ -complete.

Closed sets

For every ultrafilter \mathcal{X} on X the filter $\{F \in \mathcal{X}; F \text{ is closed }\}$ in closed sets in X is fixed (has nonempty intersection) provided it is κ -complete.

Every maximal filter of closed sets in X is fixed (has nonempty intersection) provided it is κ -complete.

Definition (κ -ultracompact spaces, J.van der Slot)

A topological space X is said to be κ -ultracompact if every ultrafilter with κ -complete property for its closed sets converges.

A productive and closed-hereditary (i.e., epireflective) class \mathcal{C} of spaces is said to be simple if there is $Z \in \mathcal{C}$ such that every $X \in \mathcal{C}$ can be embedded onto a closed subspace a power of Z. One says that \mathcal{C} is generated by Z and the spaces from \mathcal{C} are then called Z-compact spaces.

By C_{κ} we denote the class of κ -compact spaces. By U_{κ} we denote the class of κ -ultracompact spaces.

The classes $C_{\omega}, \mathcal{U}_{\omega}$ are simple, they coincide with the class of compact spaces and are generated by [0, 1].

The class \mathcal{C}_{ω_1} is the simple class of realcompact spaces generated by \mathbb{R} .

- Are the classes $C_{\kappa}, \kappa \geq \omega_2$ simple?
- **2** Are the classes $\mathcal{U}_{\kappa}, \kappa \geq \omega_1$ simple?
- **(b)** What is a relation between C_{κ} and U_{κ} ?

A productive and closed-hereditary (i.e., epireflective) class \mathcal{C} of spaces is said to be simple if there is $Z \in \mathcal{C}$ such that every $X \in \mathcal{C}$ can be embedded onto a closed subspace a power of Z. One says that \mathcal{C} is generated by Z and the spaces from \mathcal{C} are then called Z-compact spaces.

By C_{κ} we denote the class of κ -compact spaces. By \mathcal{U}_{κ} we denote the class of κ -ultracompact spaces.

The classes $\mathcal{C}_{\omega}, \mathcal{U}_{\omega}$ are simple, they coincide with the class of compact spaces and are generated by [0, 1].

The class C_{ω_1} is the simple class of realcompact spaces generated by \mathbb{R} .

• Are the classes $C_{\kappa}, \kappa \geq \omega_2$ simple?

② Are the classes $\mathcal{U}_{\kappa}, \kappa \geq \omega_1$ simple?

(b) What is a relation between C_{κ} and U_{κ} ?

A productive and closed-hereditary (i.e., epireflective) class \mathcal{C} of spaces is said to be simple if there is $Z \in \mathcal{C}$ such that every $X \in \mathcal{C}$ can be embedded onto a closed subspace a power of Z. One says that \mathcal{C} is generated by Z and the spaces from \mathcal{C} are then called Z-compact spaces.

By C_{κ} we denote the class of κ -compact spaces. By U_{κ} we denote the class of κ -ultracompact spaces.

The classes C_{ω}, U_{ω} are simple, they coincide with the class of compact spaces and are generated by [0, 1].

The class \mathcal{C}_{ω_1} is the simple class of real compact spaces generated by \mathbb{R} .

 $\textbf{ 0 Are the classes } \mathcal{C}_{\kappa}, \kappa \geq \omega_2 \text{ simple}?$

(a) Are the classes $\mathcal{U}_{\kappa}, \kappa \geq \omega_1$ simple?

③ What is a relation between C_{κ} and U_{κ} ?

A productive and closed-hereditary (i.e., epireflective) class \mathcal{C} of spaces is said to be simple if there is $Z \in \mathcal{C}$ such that every $X \in \mathcal{C}$ can be embedded onto a closed subspace a power of Z. One says that \mathcal{C} is generated by Z and the spaces from \mathcal{C} are then called Z-compact spaces.

By C_{κ} we denote the class of κ -compact spaces. By U_{κ} we denote the class of κ -ultracompact spaces.

The classes C_{ω}, U_{ω} are simple, they coincide with the class of compact spaces and are generated by [0, 1].

The class \mathcal{C}_{ω_1} is the simple class of real compact spaces generated by \mathbb{R} .

- Are the classes $C_{\kappa}, \kappa \geq \omega_2$ simple?
- 2 Are the classes $\mathcal{U}_{\kappa}, \kappa \geq \omega_1$ simple?
- **3** What is a relation between C_{κ} and U_{κ} ?

The classes C_{κ} are simple. For any cardinal κ , the class C_{κ^+} is generated by $P_{\kappa} = [0,1]^{\kappa} \setminus \{1\}$. For limit κ the class C_{κ} is generated by $\prod_{\kappa} P_{\lambda}$.

Theorem (van der Slot, Z.Frolík)

The class of perfect images of spaces from C_{κ} coincides with the class \mathcal{U}_{κ} .

Theorem (MH)

If C is epireflective, closed under perfect images and contains a discrete space of cardinality μ then C is not a part of E-compact spaces for any space E of cardinality less than $\mathfrak{m}(\mu)$.

Corollary

1. The classes $\mathcal{U}_{\kappa}, \omega < \kappa < \mathfrak{m}_1$, are not generated by a space of cardinality $< \mathfrak{m}_1$.

The classes C_{κ} are simple. For any cardinal κ , the class C_{κ^+} is generated by $P_{\kappa} = [0,1]^{\kappa} \setminus \{1\}$. For limit κ the class C_{κ} is generated by $\prod_{\kappa} P_{\lambda}$.

Theorem (van der Slot, Z.Frolík)

The class of perfect images of spaces from C_{κ} coincides with the class \mathcal{U}_{κ} .

Theorem (MH)

If C is epireflective, closed under perfect images and contains a discrete space of cardinality μ then C is not a part of E-compact spaces for any space E of cardinality less than $\mathfrak{m}(\mu)$.

Corollary

1. The classes $\mathcal{U}_{\kappa}, \omega < \kappa < \mathfrak{m}_1$, are not generated by a space of cardinality $< \mathfrak{m}_1$.

The classes C_{κ} are simple. For any cardinal κ , the class C_{κ^+} is generated by $P_{\kappa} = [0,1]^{\kappa} \setminus \{1\}$. For limit κ the class C_{κ} is generated by $\prod_{\kappa} P_{\lambda}$.

Theorem (van der Slot, Z.Frolík)

The class of perfect images of spaces from C_{κ} coincides with the class U_{κ} .

Theorem (MH)

If C is epireflective, closed under perfect images and contains a discrete space of cardinality μ then C is not a part of E-compact spaces for any space E of cardinality less than $\mathfrak{m}(\mu)$.

Corollary

1. The classes $\mathcal{U}_{\kappa}, \omega < \kappa < \mathfrak{m}_1$, are not generated by a space of cardinality $< \mathfrak{m}_1$.

The classes C_{κ} are simple. For any cardinal κ , the class C_{κ^+} is generated by $P_{\kappa} = [0,1]^{\kappa} \setminus \{1\}$. For limit κ the class C_{κ} is generated by $\prod_{\kappa} P_{\lambda}$.

Theorem (van der Slot, Z.Frolík)

The class of perfect images of spaces from C_{κ} coincides with the class \mathcal{U}_{κ} .

Theorem (MH)

If C is epireflective, closed under perfect images and contains a discrete space of cardinality μ then C is not a part of E-compact spaces for any space E of cardinality less than $\mathfrak{m}(\mu)$.

Corollary

1. The classes $\mathcal{U}_{\kappa}, \omega < \kappa < \mathfrak{m}_1$, are not generated by a space of cardinality $< \mathfrak{m}_1$.

PROBLEMS

- 1. Is $\mathcal{C}_{\mathfrak{m}} = \mathcal{U}_{\mathfrak{m}}$ for measurable cardinals \mathfrak{m} ?
- 2. Are the classes \mathcal{U}_{κ} simple?

Similar situation

P.Nyikos: The class of \mathbb{N} -compact spaces is a proper subclass of the class of all zerodimensional realcompact spaces. It does not contain the Prabir Roy's metric space Δ with $\operatorname{ind} \Delta = 0$, $\operatorname{Ind} \Delta = 1$.

Problem: Is the class of all zerodimensional realcompact spaces simple?

A.Mysior

The class of all zerodimensional realcompact spaces is not generated by any space of Ulam non-measurable cardinality.

Problem

Is the class of all zero dimensional real compact spaces generated by a space of cardinality bigger than \mathfrak{m}_1 ?

P.Nyikos: The class of \mathbb{N} -compact spaces is a proper subclass of the class of all zerodimensional realcompact spaces. It does not contain the Prabir Roy's metric space Δ with $\operatorname{ind} \Delta = 0$, $\operatorname{Ind} \Delta = 1$.

Problem: Is the class of all zerodimensional realcompact spaces simple?

A.Mysior

The class of all zerodimensional realcompact spaces is not generated by any space of Ulam non-measurable cardinality.

Problem

Is the class of all zerodimensional real compact spaces generated by a space of cardinality bigger than \mathfrak{m}_1 ?

P.Nyikos: The class of \mathbb{N} -compact spaces is a proper subclass of the class of all zerodimensional realcompact spaces. It does not contain the Prabir Roy's metric space Δ with $\operatorname{ind} \Delta = 0$, $\operatorname{Ind} \Delta = 1$.

Problem: Is the class of all zerodimensional realcompact spaces simple?

A.Mysior

The class of all zerodimensional realcompact spaces is not generated by any space of Ulam non-measurable cardinality.

Problem

Is the class of all zero dimensional real compact spaces generated by a space of cardinality bigger than $\mathfrak{m}_1?$

P.Nyikos: The class of \mathbb{N} -compact spaces is a proper subclass of the class of all zerodimensional realcompact spaces. It does not contain the Prabir Roy's metric space Δ with $\operatorname{ind} \Delta = 0$, $\operatorname{Ind} \Delta = 1$.

Problem: Is the class of all zerodimensional realcompact spaces simple?

A.Mysior

The class of all zerodimensional realcompact spaces is not generated by any space of Ulam non-measurable cardinality.

Problem

Is the class of all zero dimensional real compact spaces generated by a space of cardinality bigger than $\mathfrak{m}_1?$

P.Nyikos: The class of N-compact spaces is a proper subclass of the class of all zerodimensional realcompact spaces. It does not contain the Prabir Roy's metric space Δ with ind $\Delta = 0$, Ind $\Delta = 1$.

Problem: Is the class of all zerodimensional realcompact spaces simple?

A.Mysior

The class of all zerodimensional realcompact spaces is not generated by any space of Ulam non-measurable cardinality.

Problem

Is the class of all zero dimensional real compact spaces generated by a space of cardinality bigger than $\mathfrak{m}_1?$

Definition

A space X is said to be Dieudonné complete if there is a complete uniformity inducing its topology (i.e., the fine uniformity of X is complete).

Theorem (MH)

If X is a Dieudonné complete space and \mathfrak{m} a measurable cardinal then the following properties are equivalent:

- X is κ -compact and $\mathfrak{m}(\kappa) = \mathfrak{m}, \kappa$ not measurable.
- **Q** X is λ -ultracompact and $\mathfrak{m}(\lambda) = \mathfrak{m}, \lambda$ not measurable.
- **3** X contains no closed discrete subspace of cardinality \mathfrak{m} .
- **①** X is $H(\mu)$ -compact for any μ with $\mathfrak{m}(\mu) = \mathfrak{m}$.

Corollary

The class of Dieudonné spaces is simple iff the class of measurable

Definition

A space X is said to be Dieudonné complete if there is a complete uniformity inducing its topology (i.e., the fine uniformity of X is complete).

Every paracompact or realcompact space is Dieudonné complete.

Theorem (MH)

If X is a Dieudonné complete space and m a measurable cardinal then the following properties are equivalent:

- X is κ -compact and $\mathfrak{m}(\kappa) = \mathfrak{m}, \kappa$ not measurable.
- **(a)** X is λ -ultracompact and $\mathfrak{m}(\lambda) = \mathfrak{m}, \lambda$ not measurable.
- **()** X contains no closed discrete subspace of cardinality \mathfrak{m} .
- X is $H(\mu)$ -compact for any μ with $\mathfrak{m}(\mu) = \mathfrak{m}$.

Corollary

Definition

A space X is said to be Dieudonné complete if there is a complete uniformity inducing its topology (i.e., the fine uniformity of X is complete).

Every paracompact or real compact space is Dieudonné complete. For an infinite cardinal κ we denote by $H(\kappa)$ the metrizable hedge hog with κ many spines.

Theorem (MH)

If X is a Dieudonné complete space and \mathfrak{m} a measurable cardinal then the following properties are equivalent:

- X is κ -compact and $\mathfrak{m}(\kappa) = \mathfrak{m}, \kappa$ not measurable.
- **9** X is λ -ultracompact and $\mathfrak{m}(\lambda) = \mathfrak{m}, \lambda$ not measurable.
- **()** X contains no closed discrete subspace of cardinality \mathfrak{m} .
- X is $H(\mu)$ -compact for any μ with $\mathfrak{m}(\mu) = \mathfrak{m}$

Theorem (MH)

If X is a Dieudonné complete space and \mathfrak{m} a measurable cardinal then the following properties are equivalent:

- **(**) X is κ -compact and $\mathfrak{m}(\kappa) = \mathfrak{m}, \kappa$ not measurable.
- **2** X is λ -ultracompact and $\mathfrak{m}(\lambda) = \mathfrak{m}, \lambda$ not measurable.
- **3** X contains no closed discrete subspace of cardinality \mathfrak{m} .
- **4** X is $H(\mu)$ -compact for any μ with $\mathfrak{m}(\mu) = \mathfrak{m}$.

Corollary

The class of Dieudonné spaces is simple iff the class of measurable cardinals is a set.

Theorem (MH)

If X is a Dieudonné complete space and \mathfrak{m} a measurable cardinal then the following properties are equivalent:

- **1** X is κ -compact and $\mathfrak{m}(\kappa) = \mathfrak{m}, \kappa$ not measurable.
- **2** X is λ -ultracompact and $\mathfrak{m}(\lambda) = \mathfrak{m}, \lambda$ not measurable.
- **3** X contains no closed discrete subspace of cardinality \mathfrak{m} .
- **(1)** X is $H(\mu)$ -compact for any μ with $\mathfrak{m}(\mu) = \mathfrak{m}$.

Corollary

The class of Dieudonné spaces is simple iff the class of measurable cardinals is a set.

Theorem (N.Varopoulos)

Every sequentially continuous homomorphism between compact groups of cardinalities less than \mathfrak{m}_1 is continuous.

Theorem (CH)

Every sequentially continuous mapping between compact groups of cardinalities less than \mathfrak{m}_1 is continuous.

Theorem (N.Varopoulos)

Every sequentially continuous homomorphism between compact groups of cardinalities less than \mathfrak{m}_1 is continuous.

Theorem (CH)

Every sequentially continuous mapping between compact groups of cardinalities less than \mathfrak{m}_1 is continuous.

Factorizations of maps on products

Let $X \subset \prod_I X_i$ and $f: X \to Y$. We say that f depends on $J \subset I$ (or on |J| coordinates, or that f factorizes via $\operatorname{pr}_J(X)$) if there exists a map $f_J: \operatorname{pr}_J(X) \to Y$ such that $f = f_J \circ \operatorname{pr}_J$, i.e., if f(x) = f(y) provided $x, y \in X, \operatorname{pr}_J(x) = \operatorname{pr}_J(y)$.

Factorizations of maps on products

Let $X \subset \prod_I X_i$ and $f: X \to Y$. We say that f depends on $J \subset I$ (or on |J| coordinates, or that f factorizes via $\operatorname{pr}_J(X)$) if there exists a map $f_J: \operatorname{pr}_J(X) \to Y$ such that $f = f_J \circ \operatorname{pr}_J$, i.e., if f(x) = f(y) provided $x, y \in X, \operatorname{pr}_J(x) = \operatorname{pr}_J(y)$.

Σ -products

Σ -product

Let $p \in \prod_I X_i$. The subset $\{x \in \prod_I X_i; |i \in I; \operatorname{pr}_i a \neq \operatorname{pr}_i(p)| \leq \omega\}$ is called a Σ -product of $\{X_i\}_I$ with the basic point p. If instead of $\leq \omega$ in the previous definition we use $< \omega$ we get σ -products.

Theorem (N.Noble)

If all $X_i, i \in I$, are first countable then every Σ -product of $\{X_i\}_I$ is a Fréchet space.

Corollary

Every sequentially continuous mapping on a product of first countable spaces is continuous on every Σ -product of $\{X_i\}_I$.

Σ -products

Σ -product

Let $p \in \prod_I X_i$. The subset $\{x \in \prod_I X_i; |i \in I; \operatorname{pr}_i a \neq \operatorname{pr}_i(p)| \leq \omega\}$ is called a Σ -product of $\{X_i\}_I$ with the basic point p. If instead of $\leq \omega$ in the previous definition we use $< \omega$ we get σ -products.

Theorem (N.Noble)

If all $X_i, i \in I$, are first countable then every Σ -product of $\{X_i\}_I$ is a Fréchet space.

Corollary

Every sequentially continuous mapping on a product of first countable spaces is continuous on every Σ -product of $\{X_i\}_I$.

Σ -product

Let $p \in \prod_I X_i$. The subset $\{x \in \prod_I X_i; |i \in I; \operatorname{pr}_i a \neq \operatorname{pr}_i(p)| \leq \omega\}$ is called a Σ -product of $\{X_i\}_I$ with the basic point p. If instead of $\leq \omega$ in the previous definition we use $< \omega$ we get σ -products.

Theorem (N.Noble)

If all $X_i, i \in I$, are first countable then every Σ -product of $\{X_i\}_I$ is a Fréchet space.

Corollary

Every sequentially continuous mapping on a product of first countable spaces is continuous on every Σ -product of $\{X_i\}_I$.

Question

When a sequentially continuous map defined on a product of spaces is continuous?

Spaces having the property that every sequentially continuous map defined on them and ranging in a given class of spaces is continuous, form a coreflective class, i.e., the class is closed under taking quotients and inductive limits (sums). So, there is a more general question how big are the so called productivity numbers of coreflective classes:

Definition

Productivity number of a coreflective class \mathcal{C} is the smallest cardinal κ such that a product $\prod_{\kappa} X_{\alpha}, X_{\alpha} \in \mathcal{C}$, does not belong to \mathcal{C} .

Question

When a sequentially continuous map defined on a product of spaces is continuous?

Spaces having the property that every sequentially continuous map defined on them and ranging in a given class of spaces is continuous, form a coreflective class, i.e., the class is closed under taking quotients and inductive limits (sums). So, there is a more general question how big are the so called productivity numbers of coreflective classes:

Definition

Productivity number of a coreflective class \mathcal{C} is the smallest cardinal κ such that a product $\prod_{\kappa} X_{\alpha}, X_{\alpha} \in \mathcal{C}$, does not belong to \mathcal{C} .

Question

When a sequentially continuous map defined on a product of spaces is continuous?

Spaces having the property that every sequentially continuous map defined on them and ranging in a given class of spaces is continuous, form a coreflective class, i.e., the class is closed under taking quotients and inductive limits (sums). So, there is a more general question how big are the so called productivity numbers of coreflective classes:

Definition

Productivity number of a coreflective class \mathcal{C} is the smallest cardinal κ such that a product $\prod_{\kappa} X_{\alpha}, X_{\alpha} \in \mathcal{C}$, does not belong to \mathcal{C} .

For infinite spaces X, Y the equality $\beta(X \times Y) = \beta(X) \times \beta(Y)$ holds iff $X \times Y$ is pseudocompact.

Theorem

Let X, Y have Ulam measurable cardinalities. If $v(X \times Y) = v(X) \times v(Y)$ then $X \times Y$ is pseudo- \mathfrak{m}_1 -compact. The converse is not true.

Theorem

The property $v(X \times Y) = v(X) \times v(Y)$ for $X \times Y$ is not topological for infinite spaces X, Y.

Theorem

For infinite spaces X, Y the equality $\beta(X \times Y) = \beta(X) \times \beta(Y)$ holds iff $X \times Y$ is pseudocompact.

What is the situation for Hewitt-Nachbin real compactificatrion v? When $v(X \times Y) = v(X) \times v(Y)$? There is a partial analogous assertion to Glicksberg result:

$\operatorname{Theorem}$

Let X, Y have Ulam measurable cardinalities. If $v(X \times Y) = v(X) \times v(Y)$ then $X \times Y$ is pseudo- \mathfrak{m}_1 -compact. The converse is not true.

Theorem

The property $v(X \times Y) = v(X) \times v(Y)$ for $X \times Y$ is not topological for infinite spaces X, Y.

Theorem

Let \mathcal{K} be a finitely productive class of spaces containing all compact

For infinite spaces X, Y the equality $\beta(X \times Y) = \beta(X) \times \beta(Y)$ holds iff $X \times Y$ is pseudocompact.

Theorem

Let X, Y have Ulam measurable cardinalities. If $v(X \times Y) = v(X) \times v(Y)$ then $X \times Y$ is pseudo- \mathfrak{m}_1 -compact. The converse is not true.

Theorem

The property $v(X \times Y) = v(X) \times v(Y)$ for $X \times Y$ is not topological for infinite spaces X, Y.

Theorem

For infinite spaces X, Y the equality $\beta(X \times Y) = \beta(X) \times \beta(Y)$ holds iff $X \times Y$ is pseudocompact.

Theorem

Let X, Y have Ulam measurable cardinalities. If $\upsilon(X \times Y) = \upsilon(X) \times \upsilon(Y)$ then $X \times Y$ is pseudo- \mathfrak{m}_1 -compact. The converse is not true.

Theorem

The property $v(X \times Y) = v(X) \times v(Y)$ for $X \times Y$ is not topological for infinite spaces X, Y.

Theorem

For infinite spaces X, Y the equality $\beta(X \times Y) = \beta(X) \times \beta(Y)$ holds iff $X \times Y$ is pseudocompact.

Theorem

Let X, Y have Ulam measurable cardinalities. If $\upsilon(X \times Y) = \upsilon(X) \times \upsilon(Y)$ then $X \times Y$ is pseudo- \mathfrak{m}_1 -compact. The converse is not true.

Theorem

The property $v(X \times Y) = v(X) \times v(Y)$ for $X \times Y$ is not topological for infinite spaces X, Y.

Theorem