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Proofs:
@ Josefson '75 (very intricate)
@ Nissenzweig '75 (intricate)

© Hagler and Johnson '77 (legible, but the definition of ¢,'s is
non-constructive)

© Behrends '94 (clear, quite elementary and constructive for
C(K))
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K — an infinite compact Hausdorff space

C(K) — the Banach space of real-valued continuous functions on
K with the supremum norm

C(pw) = oo — the Banach space of bounded sequences
C([0,w]) = ¢ — the Banach space of convergent sequences

¢op — the Banach space of sequences converging to 0 (¢p ~ ¢)

¢ € C(K)* = there exists a unique nice measure y on K:

o(f) :/de# | Vf € C(K)
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The finite Josefson—Nissenzweig property

Question
Which compact spaces satisfy the first case?

A compact space K has the Josefson—Nissenzweig property
(the JNP) if there exists a sequence (y,: n € w) of measures on
K such that:

® [in = Y. cp, Rdx for some af € R and A, € [K]<¥,

® [luall = Xxea,
o un(f) — 0 for every f € C(K).

of =1,

(tn: n e w)is a Josefson—Nissenzweig sequence (JN).
Examples:

Q@ x,—-xEK = <%(5x,,_6x): n € w) is JN.

@ [w does not have the JNP (Banakh—-Kakol-Sliwa '18)
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More examples

@ If K has a non-trivial convergent sequence, then K has the
JNP.

Corollary

K has the JNP, if at least one of the following holds:

® K is metric,
® K is Eberlein / Corson / Valdivia / Rosenthal / Radon—Nikodym,
© w(K) < max (s, cov(M)).

@ If for compact K and L we have C,(K) =~ C,(L) and K has
the JNP, then L has the JNP, too.

Corollary

For every K, the Alexandrov duplicate AD(K) has the JNP, since

Co(AD(K)) ~ Cp(K L a(|K]))
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An example containing many copies of Sw

Schachermayer’s example:

B={A€p(w):INVn>N: 2ne A=2n+1€ A}

Theorem

The Stone space St(B) has the following properties:
@ St(.A) does not contain any non-trivial convergent sequences,
Q@ VAeB: |Al=w = pwC[A]
Q un= %((52,, — on+1) defines a JN-sequence.

Remark: There are examples having similar properties but such
that if (up: n € w) is a IN-sequence, then lim, | supp (un)| = oc.
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The Grothendieck property

A compact space K has the Grothendieck property (the GP) if
for every sequence (pp: n € w) of measures on K we have:

Vf e C(K): un(f) —0 = Vf — Borel, bounded: () — 0.

For K totally disconnected — equivalently:
VA € Clopen(K): pn(A) — 0 = VAe Borel(K): un(A) — 0.

Examples:

@ K — extremely disconnected = K has the Grothendieck
property (Grothendieck '50s)

@ K has a convergent sequence = K does not have the
Grothendieck property.
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The Grothendieck property and the JNP

@ K does not have the JNP if and only if C,(K) contains no
complemented copy of g C RY (Banakh—-Kakol-Sliwa '18).

@ K has the GP if and only if C(K) contains no complemented
copy of ¢g (Schachermayer '81, Cembranos '84).

Corollary by the Closed Graph Theorem

If K has the Grothendieck property, then K does not have the
Josefson—Nissenzweig property.

What about the converse?

Answer
Does not hold.
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Let M be a subset of C(K)*. A compact space K has the
Grothendieck property for M (the GP for M) if for every

sequence (p, € M: n € w) on K we have:
Vf e C(K): pn(f) —0 = Vf — Borel, bounded: p,(f) —0

Examples:
® M = {1(K) — measures of countable support:
IS gl(K) = K= Znew a"5Xn s Xn € K, Znew ’a"| <00
e M = spand(K) — measures of finite support

Theorem

For a compact space K TFAE:
@ K has the JNP.
Q@ Hun e lai(K): new): |lun|| =1, VF e C(K): pn(f) —0
© K does not have the GP for ¢1(K).
Q K does not have the GP for span d(K).
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The Grothendieck property and the JNP

Plebanek's example

There exists a space K such that every separable closed subset
L C K has the Grothendieck property, but K does not have the
Grothendieck property.

Corollary
There exists K without the GP and without the JNP.

In other words, there exists K without the GP but with the GP for
/1(K).

Question

Does there exist a separable space K without the GP but with the
GP for ¢1(K)? Hereditarily separable K7
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Products and the JNP

Theorem (Khurana '78, Cembranos '84)

For every compact spaces K and L the product K x L does not
have the Grothendieck property.

Question

Does (Bw)? have the Grothendieck property for /17?

Theorem
(Bw)? has the JNP, so it does not have the GP for ¢1((Sw)?).

There is a JN-sequence (p,: n € w) on (Bw)? such that
supp (1n) C w? for every n € w.

Corollary

For every K and L the product K x L does not have the
Grothendieck property for ¢1(K x L).
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Minimal extensions

Minimal extensions
A compact space K is obtained from a system of minimal
extensions if K is the inverse limit of a system
(Ko, T2 a < 8 < 6) such that:
e K, is the inverse limit of (Ko, 81 a < B <),
@ K,41 is a minimal extension of K, i.e. there is a unique point
Xo € K, such that |(7rg‘+1)_1(xa)| = 2 and
|(7Tg+1)_1(x)| =1 for every x # Xq,
@ Ky = 2% and every K, is perfect.
Remark: Many consistent examples of Efimov spaces are obtained
by minimal extensions, e.g.

Fedorchuk (¢), Dow and Pichardo-Mendoza (CH), Dow and
Shelah (MA+-CH) etc.
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Minimal extensions and the JNP

Theorem

If K is a compact space obtained from a system of minimal
extensions of length at most ¢, then K has the JNP.

A JN-sequence on 2%

1
Mn = ol Z (5x51 - 5x2)

se2n

Main Lemma

Let K be a compact totally disconnected space and f: K — 2“ be
a continuous surjection such that A\(f[U] N f[K \ U]) = 0 for every
clopen U C K. For every n € w,i € 2,5 € 2" fix yi € f(x!). Then,

1 .
Hn = Zar1 Z (5y51 — 5yg) defines a JN-sequence on K.
se2n
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Proposition (Borodulin-Nadzieja)

If K is a compact space obtained from a system of minimal
extensions, then K does not have the Grothendieck property.

Corollary

If K is a compact space obtained from a system of minimal
extensions of length at most ¢, then K does not have the
Grothendieck property for ¢1(K).
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Minimal extensions and Grothendieck property

Proposition (Borodulin-Nadzieja)

If K is a compact space obtained from a system of minimal
extensions, then K does not have the Grothendieck property.

Corollary

If K is a compact space obtained from a system of minimal
extensions of length at most ¢, then K does not have the
Grothendieck property for ¢1(K).

Question
What about systems of length > ¢*?

Corollary from results of Borodulin-Nadzieja and Mercourakis

If K is a compact space obtained from a system of minimal
extensions (of any length), then K has the JNP and hence does
not have the Grothendieck property for ¢1(K).



Thank you for the attention!



