Almost disjoint families and C*-algebras

Saeed Ghasemi

(Joint work with Piotr Koszmider)

Institute of Mathematics, Czech Academy of Sciences

Winter School in Abstract Analysis 2018, section Set Theory and Topology, Hejnice

31 January 2018
1 Introduction

2 Projections of the Calkin algebra

3 Scattered C^*-algebras
 - Ψ-type C^*-algebras
 - Thin-tall C^*-algebras
Definition

A C*-algebra \mathcal{A} is a structure $(\mathcal{A}, +, \cdot, *, ||||)$ such that

1. $(\mathcal{A}, +, \cdot, ||||)$ is a Banach algebra over \mathbb{C},
2. $(a + b)^* = a^* + b^*$, $(\alpha a)^* = \overline{\alpha} a^*$, $(ab)^* = b^*a^*$,
3. $\|aa^*\| = \|a\|^2$ (the C^*-identity),

for every $a, b \in \mathcal{A}$ and $\alpha \in \mathbb{C}$.

Examples

- $M_n(\mathbb{C})$,
- $B(\mathcal{H})$ - The C*-algebra of all bounded linear operators on a Hilbert space \mathcal{H},
- $K(\mathcal{H})$ - The ideal of all compact operators on \mathcal{H},
Definition

A C*-algebra \mathcal{A} is a structure $(\mathcal{A}, +, \cdot, \cdot, *, \|\|)$ such that

1. $(\mathcal{A}, +, \cdot, \cdot, \|\|)$ is a Banach algebra over \mathbb{C},
2. $(a + b)^* = a^* + b^*$, $(\alpha a)^* = \overline{\alpha}a^*$, $(ab)^* = b^*a^*$,
3. $\|aa^*\| = \|a\|^2$ (the C^*-identity),

for every $a, b \in \mathcal{A}$ and $\alpha \in \mathbb{C}$.

Examples

- $M_n(\mathbb{C})$,
- $\mathcal{B}(\mathcal{H})$ - The C*-algebra of all bounded linear operators on a Hilbert space \mathcal{H},
- $\mathcal{K}(\mathcal{H})$ - The ideal of all compact operators on \mathcal{H},
Definition

A C*-algebra \mathcal{A} is a structure $(\mathcal{A}, +, \cdot, \ast, \|\|)$ such that

1. $(\mathcal{A}, +, \cdot, \|\|)$ is a Banach algebra over \mathbb{C},
2. $(a + b)\ast = a\ast + b\ast$, $(\alpha a)\ast = \overline{\alpha}a\ast$, $(ab)\ast = b\ast a\ast$,
3. $\|aa\ast\| = \|a\|^2$ (the C^*-identity),

for every $a, b \in \mathcal{A}$ and $\alpha \in \mathbb{C}$.

Examples

- $M_n(\mathbb{C})$,
- $\mathcal{B}(\mathcal{H})$ - The C*-algebra of all bounded linear operators on a Hilbert space \mathcal{H},
- $\mathcal{K}(\mathcal{H})$ - The ideal of all compact operators on \mathcal{H},
Definition

A C*-algebra \mathcal{A} is a structure $(\mathcal{A}, +, ., *, \|\|)$ such that

1. $(\mathcal{A}, +, ., \|\|)$ is a Banach algebra over \mathbb{C},
2. $(a + b)^* = a^* + b^*$, $(\alpha a)^* = \overline{\alpha} a^*$, $(ab)^* = b^* a^*$,
3. $\|a a^*\| = \|a\|^2$ (the C^*-identity),

for every $a, b \in \mathcal{A}$ and $\alpha \in \mathbb{C}$.

Examples

- $M_n(\mathbb{C})$,
- $\mathcal{B}(\mathcal{H})$ - The C*-algebra of all bounded linear operators on a Hilbert space \mathcal{H},
- $\mathcal{K}(\mathcal{H})$ - The ideal of all compact operators on \mathcal{H},
Definition

A C*-algebra \(\mathcal{A} \) is a structure \((\mathcal{A}, +, \cdot, *, ||||)\) such that

1. \((\mathcal{A}, +, \cdot, ||||)\) is a Banach algebra over \(\mathbb{C} \),
2. \((a + b)^* = a^* + b^*, (\alpha a)^* = \overline{\alpha} a^*, (ab)^* = b^* a^*\),
3. \(||aa^*|| = ||a||^2\) (the C*-identity),

for every \(a, b \in \mathcal{A} \) and \(\alpha \in \mathbb{C} \).

Examples

- \(M_n(\mathbb{C}) \),
- \(\mathcal{B}(\mathcal{H}) \) - The C*-algebra of all bounded linear operators on a Hilbert space \(\mathcal{H} \),
- \(\mathcal{K}(\mathcal{H}) \) - The ideal of all compact operators on \(\mathcal{H} \),
Definition
A C*-algebra \mathcal{A} is a structure $(\mathcal{A}, +, ., *, ||||)$ such that

1. $(\mathcal{A}, +, ., ||||)$ is a Banach algebra over \mathbb{C},
2. $(a + b)^* = a^* + b^*$, $(\alpha a)^* = \overline{\alpha} a^*$, $(ab)^* = b^* a^*$,
3. $\|aa^*\| = \|a\|^2$ (the C*-identity),

for every $a, b \in \mathcal{A}$ and $\alpha \in \mathbb{C}$.

Examples

- $M_n(\mathbb{C})$,
- $\mathcal{B}(\mathcal{H})$ - The C*-algebra of all bounded linear operators on a Hilbert space \mathcal{H},
- $\mathcal{K}(\mathcal{H})$ - The ideal of all compact operators on \mathcal{H},
Definition

A C*-algebra \(\mathcal{A} \) is a structure \((\mathcal{A}, +, \cdot, *, ||||)\) such that

1. \((\mathcal{A}, +, \cdot, ||||)\) is a Banach algebra over \(\mathbb{C} \),
2. \((a + b)^* = a^* + b^*, (\alpha a)^* = \overline{\alpha}a^*, (ab)^* = b^*a^*\),
3. \(\|aa^*\| = \|a\|^2\) (the C*-identity),

for every \(a, b \in \mathcal{A} \) and \(\alpha \in \mathbb{C} \).

Examples

- \(M_n(\mathbb{C}) \),
- \(\mathcal{B}(\mathcal{H}) \) - The C*-algebra of all bounded linear operators on a Hilbert space \(\mathcal{H} \),
- \(\mathcal{K}(\mathcal{H}) \) - The ideal of all compact operators on \(\mathcal{H} \),
Examples

- For a locally compact Hausdorff space X, the space $C_0(X)$ with

\[
\begin{align*}
 f \cdot g(x) &= f(x)g(x), \\
 f^*(x) &= \overline{f(x)}, \\
 \|f\| &= \sup\{f(x) : x \in X\},
\end{align*}
\]

is a commutative C^*-algebra.

Theorem (Gelfand)

Every commutative C^*-algebra is $*$-isomorphic to $C_0(X)$, for a locally compact Hausdorff space X.
Examples

- For a locally compact Hausdorff space X, the space $C_0(X)$ with
 \[f \cdot g(x) = f(x)g(x), \]
 \[f^*(x) := \overline{f(x)}, \]
 \[\|f\| = \sup\{f(x) : x \in X\}, \]

 is a commutative C*-algebra.

Theorem (Gelfand)

Every commutative C-algebra is *-isomorphic to $C_0(X)$, for a locally compact Hausdorff space X.***
Examples

For a locally compact Hausdorff space X, the space $C_0(X)$ with

$$f.g(x) = f(x)g(x),$$

$$f^*(x) := \overline{f(x)},$$

$$\|f\| = \sup\{f(x) : x \in X\},$$

is a commutative C*-algebra.

Theorem (Gelfand)

Every commutative C-algebra is *-isomorphic to $C_0(X)$, for a locally compact Hausdorff space X.***
Almost disjoint families

Recall that an almost disjoint family $\mathcal{D} = \{D_\alpha : \alpha < \omega_1\} \subseteq \mathcal{P}(\mathbb{N})$ is called Luzin if for every $\alpha < \omega_1$ and $n \in \mathbb{N}$

$$\{\beta < \alpha : D_\alpha \cap D_\beta \subseteq n\}$$

is finite.

Facts

- There are Luzin families in ZFC.
- There are no separations of uncountable subfamilies i.e., given two disjoint uncountable $\mathcal{D}', \mathcal{D}'' \subseteq \mathcal{D}$ there is no $X \subseteq \mathbb{N}$ such that $A \subseteq^* X$ and $B \cap X =^* \emptyset$ for all $A \in \mathcal{D}'$ and $B \in \mathcal{D}''$.
Almost disjoint families

Recall that an almost disjoint family $\mathcal{D} = \{D_\alpha : \alpha < \omega_1\} \subseteq \mathcal{P}(\mathbb{N})$ is called Luzin if for every $\alpha < \omega_1$ and $n \in \mathbb{N}$

$$\{\beta < \alpha : D_\alpha \cap D_\beta \subseteq n\}$$

is finite.

Facts

- There are Luzin families in ZFC.
- There are no separations of uncountable subfamilies i.e., given two disjoint uncountable $\mathcal{D}', \mathcal{D}'' \subseteq \mathcal{D}$ there is no $X \subseteq \mathbb{N}$ such that $A \subseteq^* X$ and $B \cap X =^* \emptyset$ for all $A \in \mathcal{D}'$ and $B \in \mathcal{D}''$.
Almost disjoint families

Recall that an almost disjoint family $\mathcal{D} = \{D_\alpha : \alpha < \omega_1\} \subseteq \mathcal{P}(\mathbb{N})$ is called Luzin if for every $\alpha < \omega_1$ and $n \in \mathbb{N}$

\[
\{\beta < \alpha : D_\alpha \cap D_\beta \subseteq n\}
\]

is finite.

Facts

- There are Luzin families in ZFC.
- There are no separations of uncountable subfamilies i.e., given two disjoint uncountable $\mathcal{D}', \mathcal{D}'' \subseteq \mathcal{D}$ there is no $X \subseteq \mathbb{N}$ such that $A \subseteq^* X$ and $B \cap X =^* \emptyset$ for all $A \in \mathcal{D}'$ and $B \in \mathcal{D}''$.

Almost disjoint families in C^*-algebras

- $p \in A$ is a projection if $p^2 = p^* = p$.

Fix an orthonormal basis $\{e_x : x \in \mathbb{N}\}$ for ℓ_2. For every $A \subseteq \mathbb{N}$ let P_A denote the projection on the closed subspace spanned by $\{e_n : n \in A\}$.

$$P_A P_B \in \mathcal{K}(\ell_2) \iff A \cap B \in \text{Fin}.$$

Definition (Wofsey)

For a Hilbert space \mathcal{H}, a family \mathcal{P} of noncompact projections of $\mathcal{B}(\mathcal{H})$ is called almost orthogonal if the product of any two distinct elements is compact.

- For an almost disjoint family $\mathcal{D} = \{A_\xi : \xi < \kappa\}$, the corresponding family $\{P_{A_\xi} : \xi < \kappa\}$ is an almost orthogonal family of projections.
Almost disjoint families in C^*-algebras

- $p \in A$ is a projection if $p^2 = p^* = p$.

Fix an orthonormal basis $\{e_x : x \in \mathbb{N}\}$ for ℓ_2. For every $A \subseteq \mathbb{N}$ let P_A denote the projection on the closed subspace spanned by $\{e_n : n \in A\}$.

$$P_A P_B \in K(\ell_2) \iff A \cap B \in \text{Fin}.$$

Definition (Wofsey)

For a Hilbert space \mathcal{H}, a family \mathcal{P} of noncompact projections of $B(\mathcal{H})$ is called almost orthogonal if the product of any two distinct elements is compact.

- For an almost disjoint family $\mathcal{D} = \{A_\xi : \xi < \kappa\}$, the corresponding family $\{P_{A_\xi} : \xi < \kappa\}$ is an almost orthogonal family of projections.
Almost disjoint families in C^*-algebras

- $p \in \mathcal{A}$ is a projection if $p^2 = p^* = p$.

Fix an orthonormal basis $\{e_x : x \in \mathbb{N}\}$ for ℓ_2. For every $A \subseteq \mathbb{N}$ let P_A denote the projection on the closed subspace spanned by $\{e_n : n \in A\}$.

$$P_A P_B \in \mathcal{K}(\ell_2) \iff A \cap B \in \text{Fin}. $$

Definition (Wofsey)

For a Hilbert space \mathcal{H}, a family \mathcal{P} of noncompact projections of $\mathcal{B}(\mathcal{H})$ is called almost orthogonal if the product of any two distinct elements is compact.

- For an almost disjoint family $\mathcal{D} = \{A_\xi : \xi < \kappa\}$, the corresponding family $\{P_{A_\xi} : \xi < \kappa\}$ is an almost orthogonal family of projections.
Almost disjoint families in C^*-algebras

- $p \in \mathcal{A}$ is a projection if $p^2 = p^* = p$.

Fix an orthonormal basis $\{e_x : x \in \mathbb{N}\}$ for ℓ_2. For every $A \subseteq \mathbb{N}$ let P_A denote the projection on the closed subspace spanned by $\{e_n : n \in A\}$.

$$P_A P_B \in \mathcal{K}(\ell_2) \iff A \cap B \in \text{Fin}.$$

Definition (Wofsey)

For a Hilbert space \mathcal{H}, a family \mathcal{P} of noncompact projections of $\mathcal{B}(\mathcal{H})$ is called **almost orthogonal** if the product of any two distinct elements is compact.

- For an almost disjoint family $\mathcal{D} = \{A_\xi : \xi < \kappa\}$, the corresponding family $\{P_{A_\xi} : \xi < \kappa\}$ is an almost orthogonal family of projections.
Almost disjoint families in C^*-algebras

- $p \in \mathcal{A}$ is a projection if $p^2 = p^* = p$.

Fix an orthonormal basis $\{e_x : x \in \mathbb{N}\}$ for ℓ_2. For every $A \subseteq \mathbb{N}$ let P_A denote the projection on the closed subspace spanned by $\{e_n : n \in A\}$.

$$P_A P_B \in \mathcal{K}(\ell_2) \iff A \cap B \in \text{Fin}.$$

Definition (Wofsey)

For a Hilbert space \mathcal{H}, a family \mathcal{P} of noncompact projections of $\mathcal{B}(\mathcal{H})$ is called **almost orthogonal** if the product of any two distinct elements is compact.

- For an almost disjoint family $\mathcal{D} = \{A_\xi : \xi < \kappa\}$, the corresponding family $\{P_{A_\xi} : \xi < \kappa\}$ is an almost orthogonal family of projections.
Almost disjoint families in C^*-algebras

• $p \in A$ is a projection if $p^2 = p^* = p$.

Fix an orthonormal basis $\{e_x : x \in \mathbb{N}\}$ for ℓ_2. For every $A \subseteq \mathbb{N}$ let P_A denote the projection on the closed subspace spanned by $\{e_n : n \in A\}$.

$$P_A P_B \in \mathcal{K}(\ell_2) \iff A \cap B \in \text{Fin}.$$

Definition (Wofsey)

For a Hilbert space \mathcal{H}, a family \mathcal{P} of noncompact projections of $\mathcal{B}(\mathcal{H})$ is called **almost orthogonal** if the product of any two distinct elements is compact.

• For an almost disjoint family $\mathcal{D} = \{A_\xi : \xi < \kappa\}$, the corresponding family $\{P_{A_\xi} : \xi < \kappa\}$ is an almost orthogonal family of projections.
Almost disjoint families in C^*-algebras

- $p \in A$ is a projection if $p^2 = p^* = p$.

Fix an orthonormal basis $\{e_x : x \in \mathbb{N}\}$ for ℓ_2. For every $A \subseteq \mathbb{N}$ let P_A denote the projection on the closed subspace spanned by $\{e_n : n \in A\}$.

$$P_A P_B \in \mathcal{K}(\ell_2) \iff A \cap B \in \text{Fin}. $$

Definition (Wofsey)

For a Hilbert space \mathcal{H}, a family \mathcal{P} of noncompact projections of $\mathcal{B}(\mathcal{H})$ is called **almost orthogonal** if the product of any two distinct elements is compact.

- For an almost disjoint family $\mathcal{D} = \{A_\xi : \xi < \kappa\}$, the corresponding family $\{P_{A_\xi} : \xi < \kappa\}$ is an almost orthogonal family of projections.
• SOME APPLICATIONS
lifting projections of the Calkin algebra

\[\mathcal{C}(H) = \mathcal{B}(H)/\mathcal{K}(H) := \text{The Calkin algebra.} \]

Fact

Every countable commuting family of projections of the Calkin algebra can be simultaneously lifted to a family of commuting projections in \(\mathcal{B}(H) \).

Theorem (Anderson, 1979)

Under CH there is an uncountable family \(\mathcal{P} \) of commuting projections in the Calkin algebra such that no uncountable \(\mathcal{P}_1 \subseteq \mathcal{P} \) can be simultaneously lifted to a family of commuting projections in \(\mathcal{B}(H) \).

Theorem (Farah 2006, Bice-Koszmider 2016)

There are \(\aleph_1 \) orthogonal projections in the Calkin algebra such that no uncountable subset can be simultaneously lifted to commuting projections in \(\mathcal{B}(H) \).
lifting projections of the Calkin algebra

\[\mathcal{C}(H) = \mathcal{B}(H)/\mathcal{K}(H) := \text{The Calkin algebra.} \]

Fact
Every countable commuting family of projections of the Calkin algebra can be simultaneously lifted to a family of commuting projections in \(\mathcal{B}(H) \).

Theorem (Anderson, 1979)
Under CH there is an uncountable family \(\mathcal{P} \) of commuting projections in the Calkin algebra such that no uncountable \(\mathcal{P}_1 \subseteq \mathcal{P} \) can be simultaneously lifted to a family of commuting projections in \(\mathcal{B}(H) \).

Theorem (Farah 2006, Bice-Koszmider 2016)
There are \(\aleph_1 \) orthogonal projections in the Calkin algebra such that no uncountable subset can be simultaneously lifted to commuting projections in \(\mathcal{B}(H) \).
lifting projections of the Calkin algebra

\[\mathcal{C}(H) = \mathcal{B}(H)/\mathcal{K}(H) := \text{The Calkin algebra.} \]

Fact

Every countable commuting family of projections of the Calkin algebra can be simultaneously lifted to a family of commuting projections in \(\mathcal{B}(H) \).

Theorem (Anderson, 1979)

Under CH there is an uncountable family \(\mathcal{P} \) of commuting projections in the Calkin algebra such that no uncountable \(\mathcal{P}_1 \subseteq \mathcal{P} \) can be simultaneously lifted to a family of commuting projections in \(\mathcal{B}(H) \).

Theorem (Farah 2006, Bice-Koszmider 2016)

There are \(\aleph_1 \) orthogonal projections in the Calkin algebra such that no uncountable subset can be simultaneously lifted to commuting projections in \(\mathcal{B}(H) \).
lifting projections of the Calkin algebra

\[\mathcal{C}(H) = \mathcal{B}(H)/\mathcal{K}(H) := \text{The Calkin algebra.} \]

Fact

Every countable commuting family of projections of the Calkin algebra can be simultaneously lifted to a family of commuting projections in \(\mathcal{B}(H) \).

Theorem (Anderson, 1979)

Under CH there is an uncountable family \(\mathcal{P} \) of commuting projections in the Calkin algebra such that no uncountable \(\mathcal{P}_1 \subseteq \mathcal{P} \) can be simultaneously lifted to a family of commuting projections in \(\mathcal{B}(H) \).

Theorem (Farah 2006, Bice-Koszmider 2016)

There are \(\aleph_1 \) orthogonal projections in the Calkin algebra such that no uncountable subset can be simultaneously lifted to commuting projections in \(\mathcal{B}(H) \).
lifting projections of the Calkin algebra

\[\mathcal{C}(H) = \mathcal{B}(H)/\mathcal{K}(H) := \text{The Calkin algebra.} \]

Fact

Every countable commuting family of projections of the Calkin algebra can be simultaneously lifted to a family of commuting projections in \(\mathcal{B}(H) \).

Theorem (Anderson, 1979)

Under CH there is an uncountable family \(\mathcal{P} \) of commuting projections in the Calkin algebra such that no uncountable \(\mathcal{P}_1 \subseteq \mathcal{P} \) can be simultaneously lifted to a family of commuting projections in \(\mathcal{B}(H) \).

Theorem (Farah 2006, Bice-Koszmider 2016)

There are \(\aleph_1 \) orthogonal projections in the Calkin algebra such that no uncountable subset can be simultaneously lifted to commuting projections in \(\mathcal{B}(H) \).
Sketch of the proof

Fix a dense set of operators \(\{ K_n : n \in \mathbb{N} \} \subseteq \mathcal{K}(H) \) and \(0 < \epsilon < 1/2 \).
Recursively construct a (Luzin-like) family of projections \(\{ P_\xi : \xi < \omega_1 \} \) in \(\mathcal{B}(H) \):

1. \(P_\xi P_\eta \in \mathcal{K}(H) \) for all \(\xi \neq \eta \),
2. for every \(\alpha < \omega_1 \) and for all \(n \), the set of all \(\beta < \alpha \) such that

\[
\| (P_\alpha - K_n)(P_\beta - K_n) - (P_\beta - K_n)(P_\alpha - K_n) \| < \epsilon
\]

is finite.

\[\Rightarrow \] No uncountable subset of \(\{ P_\xi : \xi < \omega_1 \} \) can be perturbed by compact operators to commuting ones.
Sketch of the proof

Fix a dense set of operators \(\{ K_n : n \in \mathbb{N} \} \subseteq \mathcal{K}(H) \) and \(0 < \epsilon < 1/2 \). Recursively construct a (Luzin-like) family of projections \(\{ P_\xi : \xi < \omega_1 \} \) in \(\mathcal{B}(H) \):

1. \(P_\xi P_\eta \in \mathcal{K}(H) \) for all \(\xi \neq \eta \),
2. for every \(\alpha < \omega_1 \) and for all \(n \), the set of all \(\beta < \alpha \) such that

\[
\|(P_\alpha - K_n)(P_\beta - K_n) - (P_\beta - K_n)(P_\alpha - K_n)\| < \epsilon
\]

is finite.

\(\Rightarrow \) No uncountable subset of \(\{ P_\xi : \xi < \omega_1 \} \) can be perturbed by compact operators to commuting ones.
Sketch of the proof

Fix a dense set of operators \(\{ K_n : n \in \mathbb{N} \} \subseteq \mathcal{K}(H) \) and \(0 < \epsilon < 1/2 \).

Recursively construct a (Luzin-like) family of projections \(\{ P_\xi : \xi < \omega_1 \} \) in \(\mathcal{B}(H) \):

1. \(P_\xi P_\eta \in \mathcal{K}(H) \) for all \(\xi \neq \eta \),

2. for every \(\alpha < \omega_1 \) and for all \(n \), the set of all \(\beta < \alpha \) such that

\[
\|(P_\alpha - K_n)(P_\beta - K_n) - (P_\beta - K_n)(P_\alpha - K_n)\| < \epsilon
\]

is finite.

\(\Rightarrow \) No uncountable subset of \(\{ P_\xi : \xi < \omega_1 \} \) can be perturbed by compact operators to commuting ones.
Sketch of the proof

Fix a dense set of operators \(\{K_n : n \in \mathbb{N}\} \subseteq \mathcal{K}(H) \) and \(0 < \epsilon < 1/2 \).

Recursively construct a \((\text{Luzin-like})\) family of projections \(\{P_\xi : \xi < \omega_1\} \) in \(\mathcal{B}(H) \):

1. \(P_\xi P_\eta \in \mathcal{K}(H) \) for all \(\xi \neq \eta \),
2. for every \(\alpha < \omega_1 \) and for all \(n \), the set of all \(\beta < \alpha \) such that

\[
\|(P_\alpha - K_n)(P_\beta - K_n) - (P_\beta - K_n)(P_\alpha - K_n)\| < \epsilon
\]

is finite.

\(\Rightarrow \) No uncountable subset of \(\{P_\xi : \xi < \omega_1\} \) can be perturbed by compact operators to commuting ones.
Sketch of the proof

Fix a dense set of operators \(\{K_n : n \in \mathbb{N}\} \subseteq \mathcal{K}(H) \) and \(0 < \epsilon < 1/2 \). Recursively construct a (Luzin-like) family of projections \(\{P_\xi : \xi < \omega_1\} \) in \(\mathcal{B}(H) \):

1. \(P_\xi P_\eta \in \mathcal{K}(H) \) for all \(\xi \neq \eta \),
2. for every \(\alpha < \omega_1 \) and for all \(n \), the set of all \(\beta < \alpha \) such that

\[
\| (P_\alpha - K_n)(P_\beta - K_n) - (P_\beta - K_n)(P_\alpha - K_n) \| < \epsilon
\]

is finite.

\[\Rightarrow \] No uncountable subset of \(\{P_\xi : \xi < \omega_1\} \) can be perturbed by compact operators to commuting ones.
Definition
A locally compact space K is called **scattered** if every nonempty subset of K has an isolated point. Equivalently every continuous image of K has an isolated point.

Definition (Cantor-Bendixon Derivatives)
- $K^{(1)} = K'$ be the set of all non-isolated points of K,
- $K^{(\alpha+1)} = K^{(\alpha)'}$,
- $K^{(\gamma)} = \bigcap_{\alpha<\gamma} K^{(\alpha)}$, for limit ordinal γ.

- K is scattered iff for for an ordinal $ht(K)$ (the **height** of K) such that $K^{ht(K)} = \emptyset$.
- The **width** of K is the supremum of the cardinality of $K^{(\alpha)} \setminus K^{(\alpha+1)}$ for $\alpha < ht(K)$.
Definition

A locally compact space K is called scattered if every nonempty subset of K has an isolated point. Equivalently every continuous image of K has an isolated point.

Definition (Cantor-Bendixon Derivatives)

- $K^{(1)} = K'$ be the set of all non-isolated points of K,
- $K^{(\alpha+1)} = K^{(\alpha)'}$,
- $K^{(\gamma)} = \bigcap_{\alpha < \gamma} K^{(\alpha)}$, for limit ordinal γ.

- K is scattered iff for for an ordinal $ht(K)$ (the height of K) such that $K^{ht(K)} = \emptyset$.
- The width of K is the supremum of the cardinality of $K^{(\alpha)} \setminus K^{(\alpha+1)}$ for $\alpha < ht(K)$.

Definition
A locally compact space K is called scattered if every nonempty subset of K has an isolated point. Equivalently every continuous image of K has an isolated point.

Definition (Cantor-Bendixon Derivatives)
- $K^{(1)} = K'$ be the set of all non-isolated points of K,
- $K^{(\alpha+1)} = K^{(\alpha)'}$,
- $K^{(\gamma)} = \bigcap_{\alpha<\gamma} K^{(\alpha)}$, for limit ordinal γ.

- K is scattered iff for an ordinal $ht(K)$ (the height of K) such that $K^{ht(K)} = \emptyset$.
- The width of K is the supremum of the cardinality of $K^{(\alpha)} \setminus K^{(\alpha+1)}$ for $\alpha < ht(K)$.
Definition
A locally compact space K is called scattered if every nonempty subset of K has an isolated point. Equivalently every continuous image of K has an isolated point.

Definition (Cantor-Bendixon Derivatives)
- $K^{(1)} = K'$ be the set of all non-isolated points of K,
- $K^{(\alpha+1)} = K^{(\alpha)'}$,
- $K^{(\gamma)} = \bigcap_{\alpha<\gamma} K^{(\alpha)}$, for limit ordinal γ.

- K is scattered iff for an ordinal $ht(K)$ (the height of K) such that $K^{ht(K)} = \emptyset$.
- The width of K is the supremum of the cardinality of $K^{(\alpha)} \setminus K^{(\alpha+1)}$ for $\alpha < ht(K)$.
Definition
A locally compact space K is called scattered if every nonempty subset of K has an isolated point. Equivalently every continuous image of K has an isolated point.

Definition (Cantor-Bendixon Derivatives)
- $K^{(1)} = K'$ be the set of all non-isolated points of K,
- $K^{(\alpha+1)} = K^{(\alpha)'}$,
- $K^{(\gamma)} = \bigcap_{\alpha < \gamma} K^{(\alpha)}$, for limit ordinal γ.

- K is scattered iff for an ordinal $ht(K)$ (the height of K) such that $K^{ht(K)} = \emptyset$.
- The width of K is the supremum of the cardinality of $K^{(\alpha)} \setminus K^{(\alpha+1)}$ for $\alpha < ht(K)$.

Saeed Ghasemi (Prague)

Almost disjoint families and C*-algebras

31 January 2018
Definition
A locally compact space K is called **scattered** if every nonempty subset of K has an isolated point. Equivalently every continuous image of K has an isolated point.

Definition (Cantor-Bendixon Derivatives)
- $K^{(1)} = K'$ be the set of all non-isolated points of K,
- $K^{(\alpha+1)} = K^{(\alpha)'}$,
- $K^{(\gamma)} = \bigcap_{\alpha < \gamma} K^{(\alpha)}$, for limit ordinal γ.

- K is scattered iff for for an ordinal $ht(K)$ (the **height** of K) such that $K^{ht(K)} = \emptyset$.
- The **width** of K is the supremum of the cardinality of $K^{(\alpha)} \setminus K^{(\alpha+1)}$ for $\alpha < ht(K)$.
Definition
A locally compact space K is called scattered if every nonempty subset of K has an isolated point. Equivalently every continuous image of K has an isolated point.

Definition (Cantor-Bendixon Derivatives)
- $K^{(1)} = K'$ be the set of all non-isolated points of K,
- $K^{(\alpha+1)} = K^{(\alpha)'}$,
- $K^{(\gamma)} = \bigcap_{\alpha < \gamma} K^{(\alpha)}$, for limit ordinal γ.
- K is scattered iff for for an ordinal $ht(K)$ (the height of K) such that $K^{ht(K)} = \emptyset$.
- The width of K is the supremum of the cardinality of $K^{(\alpha)} \setminus K^{(\alpha+1)}$ for $\alpha < ht(K)$.
• Scattered C^*-algebras
Definition

isolated points \iff minimal projections

A projection p in \mathcal{A} is called minimal if $pAp = \mathbb{C}p$.

- In $\mathcal{B}(H)$ minimal projections are projections onto one dimensional subspaces.
- In $\mathcal{C}(X)$ minimal projections correspond to the characteristic functions of isolated points of X.

Definition

A C^*-algebra \mathcal{A} is called scattered if every nonzero subalgebra $B \subseteq \mathcal{A}$, has a minimal projection. Equivalently every non-zero $*$-homomorphic image of \mathcal{A} has a minimal projection.

Definition

isolated points ⇐⇒ minimal projections
A projection p in \mathcal{A} is called minimal if $pAp = \mathbb{C}p$.

- In $\mathcal{B}(\mathcal{H})$ minimal projections are projections onto one dimensional subspaces.
- In $C(X)$ minimal projections correspond to the characteristic functions of isolated points of X.

Definition

A C^*-algebra \mathcal{A} is called scattered if every nonzero subalgebra $\mathcal{B} \subseteq \mathcal{A}$, has a minimal projection. Equivalently every non-zero $*$-homomorphic image of \mathcal{A} has a minimal projection,

Definition

isolated points $\overset{\sim}{\leftrightarrow}$ minimal projections
A projection p in \mathcal{A} is called **minimal** if $pAp = C_p$.

- In $\mathcal{B}(H)$ minimal projections are projections onto one dimensional subspaces.
- In $C(X)$ minimal projections correspond to the characteristic functions of isolated points of X.

Definition

A C^*-algebra \mathcal{A} is called **scattered** if every nonzero subalgebra $\mathcal{B} \subseteq \mathcal{A}$, has a minimal projection. Equivalently every non-zero $*$-homomorphic image of \mathcal{A} has a minimal projection,

Definition

isolated points \leftrightarrow minimal projections

A projection p in \mathcal{A} is called minimal if $pAp = \mathbb{C}p$.

- In $\mathcal{B}(H)$ minimal projections are projections onto one dimensional subspaces.
- In $\mathcal{C}(X)$ minimal projections correspond to the characteristic functions of isolated points of X.

Definition

A \mathbb{C}^*-algebra \mathcal{A} is called scattered if every nonzero subalgebra $\mathcal{B} \subseteq \mathcal{A}$, has a minimal projection. Equivalently every non-zero \ast-homomorphic image of \mathcal{A} has a minimal projection,

Definition

isolated points \leftrightarrow minimal projections
A projection p in \mathcal{A} is called minimal if $pAp = \mathbb{C}p$.

- In $\mathcal{B}(H)$ minimal projections are projections onto one dimensional subspaces.
- In $C(X)$ minimal projections correspond to the characteristic functions of isolated points of X.

Definition

A C^*-algebra \mathcal{A} is called scattered if every nonzero subalgebra $\mathcal{B} \subseteq \mathcal{A}$, has a minimal projection. Equivalently every non-zero $*$-homomorphic image of \mathcal{A} has a minimal projection,

Definition

isolated points \leftrightarrow minimal projections
A projection p in \mathcal{A} is called **minimal** if $pAp = \mathbb{C}p$.

- In $\mathcal{B}(\mathcal{H})$ minimal projections are projections onto one dimensional subspaces.
- In $\mathcal{C}(\mathcal{X})$ minimal projections correspond to the characteristic functions of isolated points of \mathcal{X}.

Definition

A C^*-algebra \mathcal{A} is called **scattered** if every nonzero subalgebra $\mathcal{B} \subseteq \mathcal{A}$, has a minimal projection. Equivalently every non-zero $*$-homomorphic image of \mathcal{A} has a minimal projection,

Definition

isolated points \leftrightarrow minimal projections
A projection p in \mathcal{A} is called minimal if $pAp = \mathbb{C}p$.

- In $\mathcal{B}(\mathcal{H})$ minimal projections are projections onto one dimensional subspaces.
- In $\mathcal{C}(X)$ minimal projections correspond to the characteristic functions of isolated points of X.

Definition

A C^*-algebra \mathcal{A} is called scattered if every nonzero subalgebra $\mathcal{B} \subseteq \mathcal{A}$, has a minimal projection. Equivalently every non-zero $*$-homomorphic image of \mathcal{A} has a minimal projection,

For a C*-algebra \mathcal{A}, let $\mathcal{I}^{\text{At}}(\mathcal{A})$ denote the ∗-subalgebra of \mathcal{A} generated by its minimal projections.

Theorem

Suppose that \mathcal{A} is a C*-algebra.

1. $\mathcal{I}^{\text{At}}(\mathcal{A})$ is an ideal of \mathcal{A},
2. $\mathcal{I}^{\text{At}}(\mathcal{A})$ is isomorphic to a subalgebra of $\mathcal{K}({\mathcal{H}})$ of compact operators on a Hilbert space \mathcal{H},
3. $\mathcal{I}^{\text{At}}(\mathcal{A})$ contains all ideals of \mathcal{A} which are isomorphic to a subalgebra of $\mathcal{K}({\mathcal{H}})$.

Saeed Ghasemi (Prague)
Almost disjoint families and C*-algebras
31 January 2018 13 / 30
For a C*-algebra \mathcal{A}, let $I^{At}(\mathcal{A})$ denote the $*$-subalgebra of \mathcal{A} generated by its minimal projections.

Theorem

Suppose that \mathcal{A} is a C*-algebra.

1. $I^{At}(\mathcal{A})$ is an ideal of \mathcal{A},
2. $I^{At}(\mathcal{A})$ is isomorphic to a subalgebra of $\mathcal{K}(\mathcal{H})$ of compact operators on a Hilbert space \mathcal{H},
3. $I^{At}(\mathcal{A})$ contains all ideals of \mathcal{A} which are isomorphic to a subalgebra of $\mathcal{K}(\mathcal{H})$.
Suppose \mathcal{A} is a scattered C*-algebra. We define the Cantor-Bendixson sequence $(\mathcal{I}_\alpha)_{\alpha \leq ht(\mathcal{A})}$ of ideals of \mathcal{A} by induction:

- $\mathcal{I}_0 = \{0\}, \mathcal{I}_{ht(\mathcal{A})} = \mathcal{A},$
- $\mathcal{I}_{\alpha+1}/\mathcal{I}_\alpha = \mathcal{I}^{At}(\mathcal{A}/\mathcal{I}_\alpha), \text{ for } \alpha < ht(\mathcal{A}),$
- If γ is a limit ordinal let $\mathcal{I}_\gamma = \bigcup_{\alpha < \gamma} \mathcal{I}_\alpha.$
The Cantor-Bendixson composition series

Suppose \mathcal{A} is a scattered C^\ast-algebra. We define the Cantor-Benndixson sequence $(\mathcal{I}_\alpha)_{\alpha \leq ht(\mathcal{A})}$ of ideals of \mathcal{A} by induction:

- $\mathcal{I}_0 = \{0\}$, $\mathcal{I}_{ht(\mathcal{A})} = \mathcal{A}$,
- $\mathcal{I}_{\alpha+1}/\mathcal{I}_\alpha = \mathcal{I}^{At}(\mathcal{A}/\mathcal{I}_\alpha)$, for $\alpha < ht(\mathcal{A})$,
- If γ is a limit ordinal let $\mathcal{I}_\gamma = \bigcup_{\alpha < \gamma} \mathcal{I}_\alpha$.
The Cantor-Bendixson composition series

Suppose \(\mathcal{A} \) is a scattered \(\text{C}^* \)-algebra. We define the Cantor-Bendixson sequence \((\mathcal{I}_\alpha)_{\alpha \leq \text{ht}(\mathcal{A})} \) of ideals of \(\mathcal{A} \) by induction:

- \(\mathcal{I}_0 = \{0\}, \mathcal{I}_{\text{ht}(\mathcal{A})} = \mathcal{A}, \)
- \(\mathcal{I}_{\alpha+1}/\mathcal{I}_\alpha = \mathcal{I}^\text{At}(\mathcal{A}/\mathcal{I}_\alpha), \) for \(\alpha < \text{ht}(\mathcal{A}), \)
- If \(\gamma \) is a limit ordinal let \(\mathcal{I}_\gamma = \bigcup_{\alpha < \gamma} \mathcal{I}_\alpha. \)
The Cantor-Bendixson composition series

Suppose \mathcal{A} is a scattered C*-algebra. We define the Cantor-Bendixson sequence $(\mathcal{I}_\alpha)_{\alpha \leq \text{ht}(\mathcal{A})}$ of ideals of \mathcal{A} by induction:

- $\mathcal{I}_0 = \{0\}, \mathcal{I}_{\text{ht}(\mathcal{A})} = \mathcal{A},$
- $\mathcal{I}_{\alpha+1}/\mathcal{I}_\alpha = \mathcal{I}^{At}(\mathcal{A}/\mathcal{I}_\alpha), \text{ for } \alpha < \text{ht}(\mathcal{A}),$
- If γ is a limit ordinal let $\mathcal{I}_\gamma = \bigcup_{\alpha < \gamma} \mathcal{I}_\alpha.$
Examples

- $\mathcal{K}(H)$,
- $C_0(K)$, for K scattered locally compact Hausdorff space,
- noncommutative analogues of scattered $C_0(K)$.
Examples

- $\mathcal{K}(H)$,
- $C_0(K)$, for K scattered locally compact Hausdorff space,
- noncommutative analogues of scattered $C_0(K)$.
Examples

- $\mathcal{K}(H)$,
- $C_0(K)$, for K scattered locally compact Hausdorff space,
- noncommutative analogues of scattered $C_0(K)$.
Examples

- $\mathcal{K}(H)$,
- $C_0(K)$, for K scattered locally compact Hausdorff space,
- noncommutative analogues of scattered $C_0(K)$.
• \(\Psi \)-type \(C^* \)-algebras
Let $D = \{A_\xi : \xi < \kappa \}$ be an almost disjoint family of subsets of \mathbb{N}. The $\Psi(D)$ is the space $\mathbb{N} \cup D$, where all elements of \mathbb{N} are isolated and the basic neighborhoods of $A_\xi \in D$ are of the form $\{A_\xi\} \cup A_\xi \setminus F$ for some finite set $F \subseteq \mathbb{N}$.

$\Psi(D)$ is a separable, scattered space of height two.

Faithfully represent $C_0(\Psi(D))$ in $B(\ell_2)$, by $\pi : C_0(\Psi(D)) \to B(\ell_2)$

$$
\pi(\chi_{\{n\}}) = \text{Proj } \text{span}\{e_n\},
$$

$$
\pi(\chi_{A_\xi}) = \text{Proj } \text{span}\{e_n : n \in A_\xi\}.
$$

Let $P_\xi = \pi(\chi_{A_\xi})$.
Ψ-spaces (Mrówka-Isbell spaces)

Let $\mathcal{D} = \{A_\xi : \xi < \kappa \}$ be an almost disjoint family of subsets of \mathbb{N}. The $\Psi(\mathcal{D})$ is the space $\mathbb{N} \cup \mathcal{D}$, where all elements of \mathbb{N} are isolated and the basic neighborhoods of $A_\xi \in \mathcal{D}$ are of the form $\{A_\xi\} \cup A_\xi \setminus F$ for some finite set $F \subseteq \mathbb{N}$.

$\Psi(\mathcal{D})$ is a separable, scattered space of height two.

Faithfully represent $C_0(\Psi(\mathcal{D}))$ in $B(\ell_2)$, by $\pi : C_0(\Psi(\mathcal{D})) \to B(\ell_2)$

\[
\pi(\chi_{\{n\}}) = \text{Proj span}\{e_n\},
\]

\[
\pi(\chi_{A_\xi}) = \text{Proj span}\{e_n : n \in A_\xi\}.
\]

Let $P_\xi = \pi(\chi_{A_\xi})$.

Saeed Ghasemi (Prague)
\(\Psi\)-spaces (Mrówka-Isbell spaces)

Let \(\mathcal{D} = \{A_\xi : \xi < \kappa \} \) be an almost disjoint family of subsets of \(\mathbb{N} \).

The \(\Psi(\mathcal{D}) \) is the space \(\mathbb{N} \cup \mathcal{D} \), where all elements of \(\mathbb{N} \) are isolated and the basic neighborhoods of \(A_\xi \in \mathcal{D} \) are of the form \(\{A_\xi\} \cup A_\xi \setminus F \) for some finite set \(F \subseteq \mathbb{N} \).

\(\Psi(\mathcal{D}) \) is a separable, scattered space of height two.

Faithfully represent \(C_0(\Psi(\mathcal{D})) \) in \(B(\ell_2) \), by \(\pi : C_0(\Psi(\mathcal{D})) \to B(\ell_2) \)

\[
\pi(\chi_{\{n\}}) = \text{Proj span}\{e_n\},
\]

\[
\pi(\chi_{A_\xi}) = \text{Proj span}\{e_n : n \in A_\xi\}.
\]

Let \(P_\xi = \pi(\chi_{A_\xi}) \).
Let $D = \{A_\xi : \xi < \kappa\}$ be an almost disjoint family of subsets of \mathbb{N}. The $\Psi(D)$ is the space $\mathbb{N} \cup D$, where all elements of \mathbb{N} are isolated and the basic neighborhoods of $A_\xi \in D$ are of the form $\{A_\xi\} \cup A_\xi \setminus F$ for some finite set $F \subseteq \mathbb{N}$.

$\Psi(D)$ is a separable, scattered space of height two.

Faithfully represent $C_0(\Psi(D))$ in $B(\ell_2)$, by $\pi : C_0(\Psi(D)) \to B(\ell_2)$

$$\pi(\chi_{\{n\}}) = \text{Proj span}\{e_n\},$$

$$\pi(\chi_{A_\xi}) = \text{Proj span}\{e_n : n \in A_\xi\}.$$
Let $\mathcal{D} = \{A_\xi : \xi < \kappa\}$ be an almost disjoint family of subsets of \mathbb{N}. The $\Psi(\mathcal{D})$ is the space $\mathbb{N} \cup \mathcal{D}$, where all elements of \mathbb{N} are isolated and the basic neighborhoods of $A_\xi \in \mathcal{D}$ are of the form $\{A_\xi\} \cup A_\xi \setminus F$ for some finite set $F \subseteq \mathbb{N}$.

$\Psi(\mathcal{D})$ is a separable, scattered space of height two.

Faithfully represent $C_0(\Psi(\mathcal{D}))$ in $\mathcal{B}(\ell_2)$, by $\pi : C_0(\Psi(\mathcal{D})) \to \mathcal{B}(\ell_2)$

$$\pi(\chi\{n\}) = \text{Proj span}\{e_n\},$$

$$\pi(\chi A_\xi) = \text{Proj span}\{e_n : n \in A_\xi\}.$$
\[A_D = \pi[C(\Psi(D))] \] is the commutative C*-algebra generated by \(\{P_\xi : \xi < \kappa\} \) and \(c_0 \subseteq K(\ell_2) \).

For \(\xi \neq \eta \), we have \(P_\xi P_\eta \in K(\ell_2) \), since \(A_\xi \cap A_\eta \) is finite.

We have

\[I_1 = c_0, \quad I_2/I_1 \cong c_0(\kappa), \quad I_2 = C_0(\Psi(D)). \]

Hence

\[0 \to c_0 \xrightarrow{\iota} C_0(\Psi(D)) \xrightarrow{\pi} c_0(\kappa) \to 0, \]

We would like to obtain a non-commutative version of this phenomena, i.e., a C*-algebra \(A \subseteq B(\ell_2) \) which contains \(K(\ell_2) \) as an (essential) ideal and satisfies

\[0 \to K(\ell_2) \xrightarrow{\iota} A \xrightarrow{\pi} K(\ell_2(\kappa)) \to 0. \]
\(\mathcal{A}_D = \pi[C(\Psi(D))] \) is the commutative C*-algebra generated by \(\{P_\xi : \xi < \kappa\} \) and \(c_0 \subseteq \mathcal{K}(\ell_2) \).

For \(\xi \neq \eta \), we have \(P_\xi P_\eta \in \mathcal{K}(\ell_2) \), since \(A_\xi \cap A_\eta \) is finite.

We have

\[\mathcal{I}_1 = c_0, \quad \mathcal{I}_2/\mathcal{I}_1 \cong c_0(\kappa), \quad \mathcal{I}_2 = C_0(\Psi(D)). \]

Hence

\[0 \to c_0 \xrightarrow{\iota} C_0(\Psi(D)) \to c_0(\kappa) \to 0, \]

We would like to obtain a non-commutative version of this phenomena, i.e., a C*-algebra \(\mathcal{A} \subseteq B(\ell_2) \) which contains \(\mathcal{K}(\ell_2) \) as an (essential) ideal and satisfies

\[0 \to \mathcal{K}(\ell_2) \xrightarrow{\iota} \mathcal{A} \xrightarrow{\pi} \mathcal{K}(\ell_2(\kappa)) \to 0. \]
\(A_D = \pi[C(\Psi(D))] \) is the commutative C*-algebra generated by \(\{P_\xi : \xi < \kappa\} \) and \(c_0 \subseteq \mathcal{K}(\ell_2) \).

- For \(\xi \neq \eta \), we have \(P_\xi P_\eta \in \mathcal{K}(\ell_2) \), since \(A_\xi \cap A_\eta \) is finite.

- We have

\[
I_1 = c_0, \quad I_2/I_1 \cong c_0(\kappa), \quad I_2 = C_0(\Psi(D)).
\]

Hence

\[
0 \to c_0 \xhookrightarrow{I} C_0(\Psi(D)) \to c_0(\kappa) \to 0,
\]

We would like to obtain a non-commutative version of this phenomena, i.e, a C*-algebra \(A \subseteq B(\ell_2) \) which contains \(\mathcal{K}(\ell_2) \) as an (essential) ideal and satisfies

\[
0 \to \mathcal{K}(\ell_2) \xhookrightarrow{I} A \xrightarrow{\pi} \mathcal{K}(\ell_2(\kappa)) \to 0.
\]
• $\mathcal{A}_D = \pi[C(\Psi(D))]$ is the commutative C*-algebra generated by \(\{ P_\xi : \xi < \kappa \} \) and $c_0 \subseteq \mathcal{K}(\ell_2)$.

• For $\xi \neq \eta$, we have $P_\xi P_\eta \in \mathcal{K}(\ell_2)$, since $A_\xi \cap A_\eta$ is finite.

• We have

\[
\mathcal{I}_1 = c_0, \quad \mathcal{I}_2/\mathcal{I}_1 \cong c_0(\kappa), \quad \mathcal{I}_2 = C_0(\Psi(D)).
\]

Hence

\[
0 \to c_0 \xhookrightarrow{\iota} C_0(\Psi(D)) \to c_0(\kappa) \to 0,
\]

We would like to obtain a non-commutative version of this phenomena, i.e, a C*-algebra $\mathcal{A} \subseteq B(\ell_2)$ which contains $\mathcal{K}(\ell_2)$ as an (essential) ideal and satisfies

\[
0 \to \mathcal{K}(\ell_2) \xhookrightarrow{\iota} \mathcal{A} \xrightarrow{\pi} \mathcal{K}(\ell_2(\kappa)) \to 0.
\]
In order to build such \mathcal{A},

- Start with \mathcal{A}_D,
 - add $\mathcal{K}(\ell_2)$,
 - add partial isometries to $\{P_\xi : \xi < c\}$ sending the projection P_ξ to P_η for each pair $\xi, \eta < c$, i.e., elements $T_{\xi,\eta}$ of $B(\ell_2)$ such that $T_{\xi,\eta} T_{\xi,\eta}^* = P_\xi$ and $T_{\xi,\eta}^* T_{\xi,\eta} = P_\eta$.

\mathcal{A} is simply subalgebra of $B(\ell_2)$ generated by $\mathcal{T} = \{T_{\xi,\eta} : \xi, \eta < \kappa\}$ and the compact operators $\mathcal{K}(\ell_2)$.

Let’s denote \mathcal{A} with $\mathcal{A}(\mathcal{T})$.

Saeed Ghasemi (Prague)
In order to build such A,

- Start with A_D,
- add $\mathcal{K}(\ell_2)$,
- add partial isometries to $\{P_\xi : \xi < c\}$ sending the projection P_ξ to P_η for each pair $\xi, \eta < c$, i.e., elements $T_{\xi, \eta}$ of $B(\ell_2)$ such that $T_{\xi, \eta} T_{\xi, \eta}^* = P_\xi$ and $T_{\xi, \eta}^* T_{\xi, \eta} = P_\eta$.

A is simply subalgebra of $B(\ell_2)$ generated by $\mathcal{T} = \{T_{\xi, \eta} : \xi, \eta < \kappa\}$ and the compact operators $\mathcal{K}(\ell_2)$.

Let’s denote A with $A(\mathcal{T})$.
In order to build such \mathcal{A},

- Start with \mathcal{A}_D,
- add $\mathcal{K}(\ell_2)$,
- add partial isometries to $\{P_\xi : \xi < c\}$ sending the projection P_ξ to P_η for each pair $\xi, \eta < c$, i.e., elements $T_{\xi,\eta}$ of $\mathcal{B}(\ell_2)$ such that $T_{\xi,\eta} T_{\xi,\eta}^* = P_\xi$ and $T_{\xi,\eta}^* T_{\xi,\eta} = P_\eta$.

\mathcal{A} is simply subalgebra of $\mathcal{B}(\ell_2)$ generated by $\mathcal{T} = \{T_{\xi,\eta} : \xi, \eta < \kappa\}$ and the compact operators $\mathcal{K}(\ell_2)$.

Let’s denote \mathcal{A} with $\mathcal{A}(\mathcal{T})$.
In order to build such \mathcal{A},

- Start with \mathcal{A}_D,
- add $\mathcal{K}(\ell_2)$,
- add partial isometries to $\{P_\xi : \xi < c\}$ sending the projection P_ξ to P_η for each pair $\xi, \eta < c$, i.e., elements $T_{\xi,\eta}$ of $\mathcal{B}(\ell_2)$ such that $T_{\xi,\eta} T_{\xi,\eta}^* = P_\xi$ and $T_{\xi,\eta}^* T_{\xi,\eta} = P_\eta$.

\mathcal{A} is simply subalgebra of $\mathcal{B}(\ell_2)$ generated by $\mathcal{T} = \{T_{\xi,\eta} : \xi, \eta < \kappa\}$ and the compact operators $\mathcal{K}(\ell_2)$.

Let’s denote \mathcal{A} with $\mathcal{A}(\mathcal{T})$.
Definition
We say $\mathcal{T} = \{ T_{\xi,\eta} : \xi, \eta < \kappa \} \subseteq B(\ell_2(\kappa))$ is a system of matrix units if and only if for every $\alpha, \beta, \xi, \eta < \kappa$,

1. $T_{\eta,\xi}^{*} = T_{\xi,\eta}$,
2. $T_{\beta,\alpha} T_{\eta,\xi} = \delta_{\alpha,\eta} T_{\beta,\xi}$.

Fact
A C^*-algebra generated by a system of matrix units $\{ T_{\xi,\eta} : \xi, \eta < \kappa \}$ is isomorphic to $K(\ell_2(\kappa))$.
Definition

We say $\mathcal{T} = \{T_{\xi,\eta} : \xi, \eta < \kappa\} \subseteq B(\ell_2(\kappa))$ is a system of matrix units if and only if for every $\alpha, \beta, \xi, \eta < \kappa$,

1. $T_{\eta,\xi}^* = T_{\xi,\eta}$,
2. $T_{\beta,\alpha} T_{\eta,\xi} = \delta_{\alpha,\eta} T_{\beta,\xi}$.

Fact

A C^*-algebra generated by a system of matrix units $\{T_{\xi,\eta} : \xi, \eta < \kappa\}$ is isomorphic to $\mathcal{K}(\ell_2(\kappa))$.
Definition

We say $\mathcal{T} = \{ T_{\xi,\eta} : \xi, \eta < \kappa \} \subseteq \mathcal{B}(\ell_2(\kappa))$ is a system of matrix units if and only if for every $\alpha, \beta, \xi, \eta < \kappa$,

1. $T_{\eta,\xi}^* = T_{\xi,\eta}$,
2. $T_{\beta,\alpha} T_{\eta,\xi} = \delta_{\alpha,\eta} T_{\beta,\xi}$.

Fact

A C^*-algebra generated by a system of matrix units $\{ T_{\xi,\eta} : \xi, \eta < \kappa \}$ is isomorphic to $\mathcal{K}(\ell_2(\kappa))$.
Definition

We say $\mathcal{T} = \{T_{\xi,\eta} : \xi, \eta < \kappa\} \subseteq \mathcal{B}(\ell_2)$ is a system of almost matrix units if and only if for every $\alpha, \beta, \xi, \eta < \kappa$,

1. $T_{\eta,\xi}^* - T_{\xi,\eta}$ is a compact operator,
2. $T_{\beta,\alpha} T_{\eta,\xi} - \delta_{\alpha,\eta} T_{\beta,\xi}$ is a compact operator.

$\mathcal{A}(\mathcal{T})$ is a scattered C^*-algebra of height 2.

$I_1 = \mathcal{K}(\ell_2), \quad I_2/I_1 \cong \mathcal{K}(\ell_2(\kappa)), \quad I_2 = \mathcal{A}(\mathcal{T}).$

And

$0 \rightarrow \mathcal{K}(\ell_2) \overset{\iota}{\hookrightarrow} \mathcal{A}(\mathcal{T}) \overset{\pi}{\rightarrow} \mathcal{K}(\ell_2(\kappa)) \rightarrow 0.$
Definition

We say $\mathcal{T} = \{ T_{\xi,\eta} : \xi, \eta < \kappa \} \subseteq B(\ell_2)$ is a system of almost matrix units if and only if for every $\alpha, \beta, \xi, \eta < \kappa$,

1. $T_{\eta,\xi}^* - T_{\xi,\eta}$ is a compact operator,
2. $T_{\beta,\alpha} T_{\eta,\xi} - \delta_{\alpha,\eta} T_{\beta,\xi}$ is a compact operator.

$\mathcal{A}(\mathcal{T})$ is a scattered C^*-algebra of height 2.

$$\mathcal{I}_1 = \mathcal{K}(\ell_2), \quad \mathcal{I}_2/\mathcal{I}_1 \cong \mathcal{K}(\ell_2(\kappa)), \quad \mathcal{I}_2 = \mathcal{A}(\mathcal{T}).$$

And

$$0 \to \mathcal{K}(\ell_2) \overset{\iota}{\hookleftarrow} \mathcal{A}(\mathcal{T}) \overset{\pi}{\longrightarrow} \mathcal{K}(\ell_2(\kappa)) \to 0.$$
Definition

We say \(\mathcal{T} = \{ T_{\xi,\eta} : \xi, \eta < \kappa \} \subseteq B(\ell_2) \) is a system of almost matrix units if and only if for every \(\alpha, \beta, \xi, \eta < \kappa \),

1. \(T_{\eta,\xi}^* - T_{\xi,\eta} \) is a compact operator,

2. \(T_{\beta,\alpha} T_{\eta,\xi} - \delta_{\alpha,\eta} T_{\beta,\xi} \) is a compact operator.

\(\mathcal{A}(\mathcal{T}) \) is a scattered \(C^\ast \)-algebra of height 2.

\[
\mathcal{I}_1 = \mathcal{K}(\ell_2), \quad \mathcal{I}_2 / \mathcal{I}_1 \cong \mathcal{K}(\ell_2(\kappa)), \quad \mathcal{I}_2 = \mathcal{A}(\mathcal{T}).
\]

And

\[
0 \rightarrow \mathcal{K}(\ell_2) \xleftarrow{\iota} \mathcal{A}(\mathcal{T}) \xrightarrow{\pi} \mathcal{K}(\ell_2(\kappa)) \rightarrow 0.
\]
Theorem (Mrówka)

There is a maximal almost disjoint family D of size c, such that $|\beta(\Psi(D)) \setminus \Psi(D)| = 1$.

Compactifications \leftrightarrow Unitizations
One-point Compactification \leftrightarrow The (minimal) unitization
Čech-Stone Compactification \leftrightarrow Multiplier algebra

Theorem (G., Koszmider, 2016)

There is a system of almost matrix units S of size c such that $A(S)$ has the property that the multiplier algebra $M(A(S))$ of $A(S)$ is isomorphic to the (minimal) unitization of $A(S)$, i.e., $M(A(S))/A(S) \cong \mathbb{C}$.
Theorem (Mrówka)

There is a maximal almost disjoint family \mathcal{D} of size \mathfrak{c}, such that $|\beta(\Psi(\mathcal{D})) \setminus \Psi(\mathcal{D})| = 1.

Compactifications \leftrightarrow Unitizations

One-point Compactification \leftrightarrow The (minimal) unitization

Čech-Stone Compactification \leftrightarrow Multiplier algebra

Theorem (G., Koszmider, 2016)

There is a system of almost matrix units S of size \mathfrak{c} such that $A(S)$ has the property that the multiplier algebra $M(A(S))$ of $A(S)$ is isomorphic to the (minimal) unitization of $A(S)$, i.e., $M(A(S))/A(S) \cong \mathbb{C}.
Theorem (Mrówka)

There is a maximal almost disjoint family D of size \mathfrak{c}, such that

$|\beta(\psi(D)) \setminus \psi(D)| = 1$.

Compactifications \leftrightarrow Unitizations

One-point Compactification \leftrightarrow The (minimal) unitization

Čech-Stone Compactification \leftrightarrow Multiplier algebra

Theorem (G., Koszmider, 2016)

There is a system of almost matrix units S of size \mathfrak{c} such that $A(S)$ has the property that the multiplier algebra $M(A(S))$ of $A(S)$ is isomorphic to the (minimal) unitization of $A(S)$, i.e., $M(A(S))/A(S) \cong \mathbb{C}$.
Theorem (Mrówka)

There is a maximal almost disjoint family \mathcal{D} of size c, such that $|\beta(\Psi(\mathcal{D})) \setminus \Psi(\mathcal{D})| = 1.

Compactifications ↔ Unitizations

- One-point Compactification ↔ The (minimal) unitization
- Čech-Stone Compactification ↔ Multiplier algebra

Theorem (G., Koszmider, 2016)

There is a system of almost matrix units S of size c such that $\mathcal{A}(S)$ has the property that the multiplier algebra $\mathcal{M}(\mathcal{A}(S))$ of $\mathcal{A}(S)$ is isomorphic to the (minimal) unitization of $\mathcal{A}(S)$, i.e., $\mathcal{M}(\mathcal{A}(S))/\mathcal{A}(S) \cong \mathbb{C}.$
Theorem (Mrówka)

There is a maximal almost disjoint family D of size c, such that $|\beta(\psi(D)) \setminus \psi(D)| = 1$.

Compactifications \leftrightarrow Unitizations
One-point Compactification \leftrightarrow The (minimal) unitization
Čech-Stone Compactification \leftrightarrow Multiplier algebra

Theorem (G., Koszmider, 2016)

There is a system of almost matrix units S of size c such that $A(S)$ has the property that the multiplier algebra $M(A(S))$ of $A(S)$ is isomorphic to the (minimal) unitization of $A(S)$, i.e., $M(A(S))/A(S) \cong \mathbb{C}$.
Theorem (Mrówka)

There is a maximal almost disjoint family \mathcal{D} of size c, such that

$$|\beta(\Psi(\mathcal{D})) \setminus \Psi(\mathcal{D})| = 1.$$

Compactifications \leftrightarrow Unitizations

One-point Compactification \leftrightarrow The (minimal) unitization

Čech-Stone Compactification \leftrightarrow Multiplier algebra

Theorem (G., Koszmider, 2016)

There is a system of almost matrix units S of size c such that $A(S)$ has the property that the multiplier algebra $M(A(S))$ of $A(S)$ is isomorphic to the (minimal) unitization of $A(S)$, i.e., $M(A(S))/A(S) \cong \mathbb{C}$.
Definition

A C*-algebra \mathcal{A} is called **stable**, if $\mathcal{A} \otimes K(\ell_2) \cong \mathcal{A}$.

- For any infinite-dimensional Hilbert space \mathcal{H}, $K(\mathcal{H})$ is stable, since $K(\mathcal{H}) \otimes K(\ell_2) \cong K(\mathcal{H} \otimes \ell_2) \cong K(\mathcal{H})$.
- The Mrówka C*-algebra $\mathcal{A}(S)$ is not stable, since

$$B(\ell_2) \hookrightarrow M(\mathcal{A}(S)) \otimes B(\ell_2) \subseteq M(\mathcal{A}(S) \otimes K(\ell_2)).$$

However $M(\mathcal{A}(S))$ does not contain a copy of $B(\ell_2)$.
Definition

A C*-algebra \mathcal{A} is called **stable**, if $\mathcal{A} \otimes \mathcal{K}(\ell_2) \cong \mathcal{A}$.

- For any infinite-dimensional Hilbert space \mathcal{H}, $\mathcal{K}(\mathcal{H})$ is stable, since $\mathcal{K}(\mathcal{H}) \otimes \mathcal{K}(\ell_2) \cong \mathcal{K}(\mathcal{H} \otimes \ell_2) \cong \mathcal{K}(\mathcal{H})$.

- The Mrówka C*-algebra $\mathcal{A}(S)$ is not stable, since

$$\mathcal{B}(\ell_2) \hookrightarrow \mathcal{M}(\mathcal{A}(S)) \otimes \mathcal{B}(\ell_2) \subseteq \mathcal{M}(\mathcal{A}(S) \otimes \mathcal{K}(\ell_2)).$$

However $\mathcal{M}(\mathcal{A}(S))$ does not contain a copy of $\mathcal{B}(\ell_2)$.
Definition

A C*-algebra \mathcal{A} is called stable, if $\mathcal{A} \otimes \mathcal{K}(\ell_2) \cong \mathcal{A}$.

- For any infinite-dimensional Hilbert space \mathcal{H}, $\mathcal{K}(\mathcal{H})$ is stable, since $\mathcal{K}(\mathcal{H}) \otimes \mathcal{K}(\ell_2) \cong \mathcal{K}(\mathcal{H} \otimes \ell_2) \cong \mathcal{K}(\mathcal{H})$.
- The Mrówka C*-algebra $\mathcal{A}(S)$ is not stable, since

$$\mathcal{B}(\ell_2) \hookrightarrow \mathcal{M}(\mathcal{A}(S)) \otimes \mathcal{B}(\ell_2) \subseteq \mathcal{M}(\mathcal{A}(S) \otimes \mathcal{K}(\ell_2)).$$

However $\mathcal{M}(\mathcal{A}(S))$ does not contain a copy of $\mathcal{B}(\ell_2)$.
Extensions of C^*-algebras

Fact
It is well-known (Brown- Douglas-Fillmore) that for an extension

$$0 \to \mathcal{K}(\ell_2) \xrightarrow{\iota} A \xrightarrow{\pi} B \to 0$$

for separable A and B, the C^*-algebra A is stable if and only if B is stable.

Not true for non-separable C^*-algebras, since

$$0 \to \mathcal{K}(\ell_2) \xrightarrow{\iota} A(S) \xrightarrow{\pi} \mathcal{K}(\ell_2(c)) \to 0.$$
Fact

It is well-known (Brown- Douglas-Fillmore) that for an extension

$$0 \to \mathcal{K}(\ell_2) \xrightarrow{\iota} \mathcal{A} \xrightarrow{\pi} \mathcal{B} \to 0$$

for separable \mathcal{A} and \mathcal{B}, the C^*-algebra \mathcal{A} is stable if and only if \mathcal{B} is stable.

Not true for non-separable C^*-algebras, since

$$0 \to \mathcal{K}(\ell_2) \xrightarrow{\iota} \mathcal{A}(S) \xrightarrow{\pi} \mathcal{K}(\ell_2(c)) \to 0.$$
Fact

It is well-known (Brown- Douglas-Fillmore) that for an extension

\[0 \to \mathcal{K}(\ell_2) \xrightarrow{\ell} A \xrightarrow{\pi} B \to 0 \]

for separable \(A \) and \(B \), the C*-algebra \(A \) is stable if and only if \(B \) is stable.

Not true for non-separable C*-algebras, since

\[0 \to \mathcal{K}(\ell_2) \xrightarrow{\ell} A(S) \xrightarrow{\pi} \mathcal{K}(\ell_2(c)) \to 0. \]
Thin-tall C^*-algebras
A locally compact scattered space K is called thin-tall if $ht(K) = \omega_1$, $wd(K) = \omega$.

- In 1978 Juhász and Weiss showed the existence of a compact thin-tall space.
- Simon and Weese were first to construct two nonisomorphc compact thin-tall spaces.
- Dow and Simon showed that in ZFC, there are 2^{ω_1} (as many as possible) pairwise non-isomorphic compact thin-tall spaces.
A locally compact scattered space K is called **thin-tall** if $ht(K) = \omega_1$, $wd(K) = \omega$.

- In 1978 Juhász and Weiss showed the existence of a compact thin-tall space.
- Simon and Weese were first to construct two nonisomorphically compact thin-tall spaces.
- Dow and Simon showed that in ZFC, there are 2^{ω_1} (as many as possible) pairwise non-isomorphic compact thin-tall spaces.
A locally compact scattered space K is called **thin-tall** if $ht(K) = \omega_1$, $wd(K) = \omega$.

- In 1978 Juhász and Weiss showed the existence of a compact thin-tall space.
- Simon and Weese were first to construct two nonisomorphic compact thin-tall spaces.
- Dow and Simon showed that in ZFC, there are 2^{ω_1} (as many as possible) pairwise non-isomorphic compact thin-tall spaces.
A locally compact scattered space K is called thin-tall if $ht(K) = \omega_1$, $wd(K) = \omega$.

- In 1978 Juhász and Weiss showed the existence of a compact thin-tall space.
- Simon and Weese were first to construct two nonisomorphic compact thin-tall spaces.
- Dow and Simon showed that in ZFC, there are 2^{ω_1} (as many as possible) pairwise non-isomorphic compact thin-tall spaces.
Definition

A C^*-algebra \mathcal{A} is called **fully noncommutative thin-tall** if there is a sequence of ideals $(\mathcal{I}_\alpha)_{\alpha \leq \omega_1}$ of \mathcal{A} is such that

1. $\mathcal{I}_0 = \{0\}$, $\mathcal{I}_{\omega_1} = \mathcal{A}$, $\mathcal{I}_\alpha \subseteq \mathcal{I}_{\alpha'}$ for $\alpha \leq \alpha' \leq \omega_1$,
2. $\mathcal{I}_\lambda = \bigcup_{\alpha < \lambda} \mathcal{I}_\alpha$ for all limit ordinals $\lambda \leq \omega_1$,
 For every $\alpha < \omega_1$
3. $\mathcal{I}_{\alpha+1}/\mathcal{I}_\alpha$ is an essential ideal of $\mathcal{A}/\mathcal{I}_\alpha$,
4. $\mathcal{I}_{\alpha+1}/\mathcal{I}_\alpha \cong K(\ell_2)$.

Theorem (G, Koszmider, 2017)

There are at least two non-isomorphic fully noncommutative thin-tall C^*-algebra, a stable one and a non-stable one.
Definition

A C^*-algebra \mathcal{A} is called **fully noncommutative thin-tall** if there is a sequence of ideals $(\mathcal{I}_\alpha)_{\alpha \leq \omega_1}$ of \mathcal{A} is such that

1. $\mathcal{I}_0 = \{0\}$, $\mathcal{I}_{\omega_1} = \mathcal{A}$, $\mathcal{I}_\alpha \subseteq \mathcal{I}_{\alpha'}$ for $\alpha \leq \alpha' \leq \omega_1$,
2. $\mathcal{I}_\lambda = \bigcup_{\alpha < \lambda} \mathcal{I}_\alpha$ for all limit ordinals $\lambda \leq \omega_1$,
 For every $\alpha < \omega_1$,
3. $\mathcal{I}_{\alpha+1}/\mathcal{I}_\alpha$ is an essential ideal of $\mathcal{A}/\mathcal{I}_\alpha$,
4. $\mathcal{I}_{\alpha+1}/\mathcal{I}_\alpha \cong K(\ell_2)$.

Theorem (G, Koszmider, 2017)

There are at least two non-isomorphic fully noncommutative thin-tall C^*-algebra, a stable one and a non-stable one.
Definition

A C*-algebra \mathcal{A} is called **fully noncommutative thin-tall** if there is a sequence of ideals $(I_\alpha)_{\alpha \leq \omega_1}$ of \mathcal{A} is such that

1. $I_0 = \{0\}$, $I_{\omega_1} = \mathcal{A}$, $I_\alpha \subseteq I_{\alpha'}$ for $\alpha \leq \alpha' \leq \omega_1$,
2. $I_\lambda = \bigcup_{\alpha < \lambda} I_\alpha$ for all limit ordinals $\lambda \leq \omega_1$, For every $\alpha < \omega_1$
3. $I_{\alpha+1}/I_\alpha$ is an essential ideal of \mathcal{A}/I_α,
4. $I_{\alpha+1}/I_\alpha \cong K(\ell_2)$.

Theorem (G, Koszmider, 2017)

There are at least two non-isomorphic fully noncommutative thin-tall C*-algebra, a stable one and a non-stable one.
Definition

A C*-algebra \(\mathcal{A} \) is called **fully noncommutative thin-tall** if there is a sequence of ideals \((\mathcal{I}_\alpha)_{\alpha \leq \omega_1} \) of \(\mathcal{A} \) is such that

1. \(\mathcal{I}_0 = \{0\}, \mathcal{I}_{\omega_1} = \mathcal{A}, \mathcal{I}_\alpha \subseteq \mathcal{I}_{\alpha'} \) for \(\alpha \leq \alpha' \leq \omega_1 \),
2. \(\mathcal{I}_\lambda = \bigcup_{\alpha < \lambda} \mathcal{I}_\alpha \) for all limit ordinals \(\lambda \leq \omega_1 \).
 For every \(\alpha < \omega_1 \)
3. \(\mathcal{I}_{\alpha+1}/\mathcal{I}_\alpha \) is an essential ideal of \(\mathcal{A}/\mathcal{I}_\alpha \),
4. \(\mathcal{I}_{\alpha+1}/\mathcal{I}_\alpha \cong \mathcal{K}(\ell_2) \).

Theorem (G, Koszmider, 2017)

There are at least two non-isomorphic fully noncommutative thin-tall C*-algebra, a stable one and a non-stable one.
Definition

A C^*-algebra \mathcal{A} is called **fully noncommutative thin-tall** if there is a sequence of ideals $(\mathcal{I}_\alpha)_{\alpha \leq \omega_1}$ of \mathcal{A} is such that

1. $\mathcal{I}_0 = \{0\}$, $\mathcal{I}_{\omega_1} = \mathcal{A}$, $\mathcal{I}_\alpha \subset \mathcal{I}_{\alpha'}$ for $\alpha \leq \alpha' \leq \omega_1$,
2. $\mathcal{I}_\lambda = \bigcup_{\alpha < \lambda} \mathcal{I}_\alpha$ for all limit ordinals $\lambda \leq \omega_1$,
3. $\mathcal{I}_{\alpha+1}/\mathcal{I}_{\alpha}$ is an essential ideal of $\mathcal{A}/\mathcal{I}_{\alpha}$,
4. $\mathcal{I}_{\alpha+1}/\mathcal{I}_{\alpha} \cong K(\ell_2)$.

Theorem (G, Koszmider, 2017)

There are at least two non-isomorphic fully noncommutative thin-tall C^*-algebra, a stable one and a non-stable one.
Definition

A C^*-algebra \mathcal{A} is called **fully noncommutative thin-tall** if there is a sequence of ideals $(\mathcal{I}_\alpha)_{\alpha \leq \omega_1}$ of \mathcal{A} is such that

1. $\mathcal{I}_0 = \{0\}$, $\mathcal{I}_{\omega_1} = \mathcal{A}$, $\mathcal{I}_\alpha \subseteq \mathcal{I}_{\alpha'}$ for $\alpha \leq \alpha' \leq \omega_1$,
2. $\mathcal{I}_\lambda = \bigcup_{\alpha < \lambda} \mathcal{I}_\alpha$ for all limit ordinals $\lambda \leq \omega_1$,
 For every $\alpha < \omega_1$
3. $\mathcal{I}_{\alpha+1}/\mathcal{I}_\alpha$ is an essential ideal of $\mathcal{A}/\mathcal{I}_\alpha$,
4. $\mathcal{I}_{\alpha+1}/\mathcal{I}_\alpha \cong K(\ell_2)$.

Theorem (G, Koszmider, 2017)

There are at least two non-isomorphic fully noncommutative thin-tall C^*-algebra, a stable one and a non-stable one.
Definition

A C^*-algebra \mathcal{A} is called **fully noncommutative thin-tall** if there is a sequence of ideals $(\mathcal{I}_\alpha)_{\alpha \leq \omega_1}$ of \mathcal{A} is such that

1. $\mathcal{I}_0 = \{0\}$, $\mathcal{I}_{\omega_1} = \mathcal{A}$, $\mathcal{I}_\alpha \subseteq \mathcal{I}_{\alpha'}$ for $\alpha \leq \alpha' \leq \omega_1$,
2. $\mathcal{I}_\lambda = \bigcup_{\alpha < \lambda} \mathcal{I}_\alpha$ for all limit ordinals $\lambda \leq \omega_1$.
 For every $\alpha < \omega_1$
3. $\mathcal{I}_{\alpha+1}/\mathcal{I}_\alpha$ is an essential ideal of $\mathcal{A}/\mathcal{I}_\alpha$,
4. $\mathcal{I}_{\alpha+1}/\mathcal{I}_\alpha \cong K(\ell_2)$.

Theorem (G, Koszmider, 2017)

There are at least two non-isomorphic fully noncommutative thin-tall C^-algebra, a stable one and a non-stable one.*
Construct a **Luzin-like** sequence \((A_\alpha)_{\alpha < \omega_1}\) of \(C^*\)-subalgebras of \(B(\ell_2)\) such that

- \(A_\alpha \cong \mathcal{K}(\ell_2)\)
- they are pairwise almost orthogonal, i.e., \(AA' =^\mathcal{K} 0\) for all \(A \in A_\alpha\), \(A' \in A_{\alpha'}\) for any \(\alpha < \alpha' < \omega_1\),
- Given any two uncountable \(X, Y \subseteq \omega_1\) and any choice of \(A_\alpha \in A_\alpha\) for \(\alpha \in X\) and \(B_\beta \in A_\beta\) for \(\beta \in Y\) there is no projection \(P \in B(\ell_2)\) satisfying
 \[PA_\alpha =^\mathcal{K} A_\alpha\] for all \(\alpha \in X\) and \(PB_\beta =^\mathcal{K} 0\) for all \(\beta \in Y\).

 however, for every \(\alpha < \omega_1\) there is a projection \(P_\alpha \in B(\ell_2)\) such that
 \[PA_\alpha =^\mathcal{K} A_\alpha\] and \(PB_\beta =^\mathcal{K} 0\) for every \(A \in \bigcup_{\beta < \alpha} A_\beta\) and every \(B \in \bigcup_{\alpha < \beta < \omega_1} A_\beta\).
The idea

Construct a Luzin-like sequence \((\mathcal{A}_\alpha)_{\alpha<\omega_1}\) of \(C^*\)-subalgebras of \(B(\ell_2)\) such that

- \(\mathcal{A}_\alpha \cong \mathcal{K}(\ell_2)\)
- they are pairwise almost orthogonal, i.e., \(AA' =^K 0\) for all \(A \in \mathcal{A}_\alpha, A' \in \mathcal{A}_{\alpha'}\) for any \(\alpha < \alpha' < \omega_1\),
- Given any two uncountable \(X, Y \subseteq \omega_1\) and any choice of \(A_\alpha \in \mathcal{A}_\alpha\) for \(\alpha \in X\) and \(B_\beta \in \mathcal{A}_\beta\) for \(\beta \in Y\) there is no projection \(P \in B(\ell_2)\) satisfying

\[PA_\alpha =^K A_\alpha \text{ for all } \alpha \in X \text{ and } PB_\beta =^K 0 \text{ for all } \beta \in Y. \]

- however, for every \(\alpha < \omega_1\) there is a projection \(P_\alpha \in B(\ell_2)\) such that for every \(A \in \bigcup_{\beta<\alpha} \mathcal{A}_\beta\) and every \(B \in \bigcup_{\alpha<\beta<\omega_1} \mathcal{A}_\beta\) we have

\[PA_\alpha =^K A_\alpha \text{ and } PB_\beta =^K 0. \]
The idea

Construct a Luzin-like sequence \((\mathcal{A}_\alpha)_{\alpha<\omega_1}\) of \(C^*\)-subalgebras of \(B(\ell_2)\) such that

- \(\mathcal{A}_\alpha \cong \mathcal{K}(\ell_2)\)
- they are pairwise almost orthogonal, i.e., \(AA' =^\mathcal{K} 0\) for all \(A \in \mathcal{A}_\alpha, A' \in \mathcal{A}_{\alpha'}\) for any \(\alpha < \alpha' < \omega_1\),
- Given any two uncountable \(X, Y \subseteq \omega_1\) and any choice of \(A_\alpha \in \mathcal{A}_\alpha\) for \(\alpha \in X\) and \(B_\beta \in \mathcal{A}_\beta\) for \(\beta \in Y\) there is no projection \(P \in B(\ell_2)\) satisfying
 \[PA_\alpha =^\mathcal{K} A_\alpha\] for all \(\alpha \in X\) and \(PB_\beta =^\mathcal{K} 0\) for all \(\beta \in Y\).

- however, for every \(\alpha < \omega_1\) there is a projection \(P_\alpha \in B(\ell_2)\) such that for every \(A \in \bigcup_{\beta<\alpha} \mathcal{A}_\beta\) and every \(B \in \bigcup_{\alpha<\beta<\omega_1} \mathcal{A}_\beta\) we have
 \[PA_\alpha =^\mathcal{K} A_\alpha\] and \(PB_\beta =^\mathcal{K} 0\).
The idea

Construct a Luzin-like sequence \((\mathcal{A}_\alpha)_{\alpha < \omega_1}\) of \(C^*\)-subalgebras of \(\mathcal{B}(\ell_2)\) such that

- \(\mathcal{A}_\alpha \cong \mathcal{K}(\ell_2)\)
- they are pairwise almost orthogonal, i.e., \(AA' =^\mathcal{K} 0\) for all \(A \in \mathcal{A}_\alpha, A' \in \mathcal{A}_{\alpha'}\) for any \(\alpha < \alpha' < \omega_1\),
- Given any two uncountable \(X, Y \subseteq \omega_1\) and any choice of \(A_\alpha \in \mathcal{A}_\alpha\) for \(\alpha \in X\) and \(B_\beta \in \mathcal{A}_\beta\) for \(\beta \in Y\) there is no projection \(P \in \mathcal{B}(\ell_2)\) satisfying

\[
PA_\alpha =^\mathcal{K} A_\alpha \text{ for all } \alpha \in X \text{ and } PB_\beta =^\mathcal{K} 0 \text{ for all } \beta \in Y.
\]

- however, for every \(\alpha < \omega_1\) there is a projection \(P_\alpha \in \mathcal{B}(\ell_2)\) such that
for every \(A \in \bigcup_{\beta < \alpha} \mathcal{A}_\beta\) and every \(B \in \bigcup_{\alpha < \beta < \omega_1} \mathcal{A}_\beta\) we have

\[
PA_\alpha =^\mathcal{K} A_\alpha \text{ and } PB_\beta =^\mathcal{K} 0.
\]
The idea

Construct a Luzin-like sequence \((A_\alpha)_{\alpha<\omega_1}\) of \(C^*\)-subalgebras of \(B(\ell_2)\) such that

- \(A_\alpha \cong \mathcal{K}(\ell_2)\)
- they are pairwise almost orthogonal, i.e., \(AA' =^\mathcal{K} 0\) for all \(A \in A_\alpha, A' \in A_{\alpha'}\) for any \(\alpha < \alpha' < \omega_1\),
- Given any two uncountable \(X, Y \subseteq \omega_1\) and any choice of \(A_\alpha \in A_\alpha\) for \(\alpha \in X\) and \(B_\beta \in A_\beta\) for \(\beta \in Y\) there is no projection \(P \in B(\ell_2)\) satisfying
 \[PA_\alpha =^\mathcal{K} A_\alpha \text{ for all } \alpha \in X \text{ and } PB_\beta =^\mathcal{K} 0 \text{ for all } \beta \in Y. \]

- however, for every \(\alpha < \omega_1\) there is a projection \(P_\alpha \in B(\ell_2)\) such that for every \(A \in \bigcup_{\beta < \alpha} A_\beta\) and every \(B \in \bigcup_{\alpha < \beta < \omega_1} A_\beta\) we have
 \[PA_\alpha =^\mathcal{K} A_\alpha \text{ and } PB_\beta =^\mathcal{K} 0. \]
References:

2. S. Ghasemi, P. Koszmider; An extension of compact operators by compact operators with no nontrivial multipliers. Matharxiv.

Thank you