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Cichon's Diagram

M = the ideal of meager subsets of R.
N = the ideal of Lebesgue null sets of R.

cov(N') — non(M) — cof (M) — cof (N) — 2%
} T
b——m—

f T
R; — add(N') — add(M) — cov(M) — non(N)

Are these cardinals different?
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Examples

» CH < all these cardinals are equal.
» MA + —CH = 2 values: ®; < add(N) = 2%,
» Many other consistency results for 2 values. e.g.

O0—-—N— —1—-1

(R
| [ |
(R
—-0— -—0O0—=0

» Many consistency results for more than 2 values.
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cov(N') — non(M) — cof (M) —= cof (N') — 2%
} T
b ——
! T
R; — add(N') — add(M) — cov(M) — non(N)
In ZFC:

add(M) = min(b, cov(M))
cof(M) = max(non(M),d)
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The left side

A—=\g— —H0—1

b

A3 — 1

|

AN—N\— —01—->1

General strategy: E.g., to get cov(N') > )y, iterate (with finite
support) for a long time, and make sure to take care of all “small”
families F of measure zero sets by adding a random real over F.
(“small"” means: < Ay.)

Hopefully, will not make cov(N) > Ap.

For simplicity, we will today only consider cov(/N') and b on the left
side, 0 and non(/\) on the right side.
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Main theorem

(G-Kellner-Shelah 2017, arXiv:1708.03691 )

Starting from a universe with 4 strongly compact cardinals, we
construct a universe in which 10 values R; = Mg < -+ < Ag = 280
appear in Cichon's diagram:

Ao —>= g —>=-—>= g — Ao

bl

A3 —= Xg

f
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A fragment of the main theorem

cov(N) = X2 7?7 : 77 77
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How to make b large, say: b > \?

— lterate a long time.
In each step add a real dominating some set of size < A.
Use bookkeeping.
So every small set will be dominated.

How to make b small, say: b < A.

— lterate \ steps (or at least with cofinality \).
In each step add an unbounded real.
The generic reals will be an unbounded set.
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How to ensure b > A3

A “standard” iteration is a FS (finite support) iteration

P = (Pay Qo = v < 0) of ccc forcing notions together with a
bookkeeping device w = (w, : « < §), where:

w is cofinal in [0]<%, and Yo < 6: w, C

v

v

@, adds a new generic ¢, over vPIwa.
(A dominating real if we want to get b > \3)

v

VPIwe is the model computed from (cs : 3 € wy).

To get b > )3 and cov(N) > Ay, let § = S21U S3, use cofinal
families {w? : a € S?} C [6]72, {w?3: € S3} C [§]~7, add
random reals on S? and dominating reals on S3.

WARNING: This is not trivial. Usually we want =, not >. Some
work is needed to ensure b < A3, cov(N) < \j.

Use/Develop “preservation theorems” .
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Witnesses

> A witness for 0 < X is a family (gi : i < A) € (w*) of
functions g; € w* such that Vf e w¥ di < A : f < g;.

» A witness for b > X is a family (fi : i < A) € (w*) of functions
fiewsuchthatVg e w di<A: f; £ g.

Similar definitions can be made for the other characteristics. For
example, a witness for non(M) < A is a family (x; : i < \) of reals
which is not meager (equivalently: for every code y of a meager
Borel set M, there is i < A such that x; ¢ M,).

In the following slides we will only deal with b and 9; obvious (or
at least: routine) modifications will yield appropriate definitions
dealing with the other characteristics.
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Strong witnesses (for b small and 0 large): linear witnesses
Recall: F = (fi : i < A) is a witness for b < X\ iff F is unbounded:

Vgew’:difiL g

A linear A-witness is a family F = (f; : i < \) of elements of w*
such that any g can only bound an initial segment of F:

Vgew Vi< \: fi£g

(Vi < X :--- means “eventually”, i.e., JigVi € (ip, A) : --+)
LCUpo(A): “there is a linear witness of length \".

FACT: LCUpo(A) = b < A, 0 > A.

FACT: LCU(X) < LCU(cf(N)).

Similarly LCUcov(N),non(N)-
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Strong witnesses (for b large and 0 small): cone witnesses

Recall: G = (gj:j < A) is a witness for 9 < X iff G dominates:
View?: 3 fF <M g

Let X, uu be regular uncountable. COBy (A, ;1) means that there is
a (A, p)-cone witness: a <A-directed partial order (S, <) of size i
together with a sequence (gs : s € S) of functions gs € w* such
that

VEew VseS:f<gs

As above, V*°s € S means “eventually”, i.e., 3sp € S Vs > sp...
FACT: COBpo(A, 1) = b > A0 < pu.

We call the set {s € S| s > s} the “cone with tip sp”. If S is
< A-directed, then the cones generate a <A-closed filter.
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Strong witnesses, example 1 (b < \)

Example

Let X be regular uncountable. Let (P, Q, : a < ) be a finite
support ccc iteration which adds (among other things) an
unbounded real ¢, at every step. Then P, (the FS limit of this
iteration) forces that € = (¢, : @ < A) is a linear A-witness.
(Hence, P, forces that b < A and 0 > \.)

Moreover: If A’ > ), and we extend (P,, Qq : o < ) to a longer
iteration (P, Qu : a < )\'), and the forcings Q, are “sufficiently
nice”, then Py, will force that (¢, : @@ < ) remains a linear
A-witness, and also (¢, : @ < \') becomes a linear \'-witness.
(So Py forces LCUp () and LCUp5(N), so b < Xand 2 > )\.)

: :
Cichort’'s Maximum Technische Universitat Wien




Background Generics over subuniverses Linear witnesses and cone witnesses Boolean ultrapowers Proof ideas
:

Strong witnesses, example 2 (b > )

Example

Let (wy : @ < §) be a family of sets which is cofinal in [6]<*, with
W, C «a for all a.

Let (Pa, Qo : v < §) be a “standard” finite support ccc iteration
designed to make b > ), based on (w, :a € S) C[§]<*, SC o
(each Q, introduces a dominating c,) over VPIwa,

Then in VFs, the sequence (c, : @ € S) is a (), |S|)-cone witness.
So we have COB;5(A,|S]), so b> A, and 0 < |S|.

(We order S by o C 8 < w, C wg. This partial order is clearly
<A-directed. Every Ps-name of a real uses only few coordinates, hence
will be in “almost all” VPIWa  therefore dominated by almost all c,.)
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Boolean ultrapowers (bups)

Let B be a x-distributive Boolean algebra with the x™-cc.

A B-bup-name is an pair (A, f), where A is a maximal antichain in
Band f: A= V.

Essentially: A B-bup-name is the same as a name of an element of
V, using B as a forcing notion. If 7 and o are B-names we write
[T = o] for the Boolean value of the statement 7 = 0.

Let U be a <k-complete ultrafilter on B. (So U meets all maximal
antichains of B of size < k, but in general not all those of size k.)
Then U defines an equivalence relation 7 ~y o < [ = o] € U.
The Boolean ultrapower M = VB /U is the set of all
~y-equivalence classes (after the Mostowski collapse). There is a
natural embedding j : V — M using standard names.
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Boolean ultrapowers, examples

Example

Let B be a complete Boolean algebra, and let U C B be a
V-generic ultrafilter.

Then every element of M is of the form j(x), for some x € V. So
M=V,j=id.

Example

Let B = P(k) be the powerset of k. Then every antichain can be
refined to the antichain ({a} : a € k), so every B-bup-name is
equivalent to a function f : Kk — V.

In this case M is the “traditional” ultrapower V*/U.
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Boolean ultrapower embeddings

Assume GCH. Assume that « is strongly compact. Then for every
regular 6 > k there is an elementary embedding j : V — M with
the following properties:

o k= cp(j)

e 0<j(k) < ot.

o (Every x € M is described by some (A, f) of size k)

o If (S5,<) is <xT-directed in V, then j’S is cofinal in j(S).
o If X # K is regular, then cf(j(\)) = A.
e If P=(P,,Qu:<d)isaFS ccc iteration, then j(P) is a FS

ccc iteration of length j(J) not only in M, but also in V.
Note: M is < k-closed. Contains all reals, even all names for reals.

REMARK: Moti Gitik suggested an extender ultrapower with a smaller
large cardinal.
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A —= 77— . —> dg— )¢ A —77— . —> A7 — A7
b P
A3 — Xg A3 — A6
! P
Ny —=77— . —77>77 Ny —=77—> . —=77—>)\;

Assume P forces not only cov(N) = Ay, b = A3, 0 =\, but

moreover:
LCUb,D()‘3)7 LCUb,D()‘6)7 VA e ()‘27>\3) : LCUcov(N),non(N)()‘)
b<A3 0>X6 non(N)>cf (\)
COBs,5(A35A6), COBoy(A) non(A) (A2, A6)
b>A3, 0<X¢ cov(N) >Nz, non(N)< g

Assume that « is strongly compact, \p < Kk < A3. Letj:V = M
be elementary with cp(j) = x and cf(j(k)) = A7.
Then j(P) IF non(N) = A7. (And the other cardinals stay.)
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Proof sketch

A2 < K < Az, Cf(j(fi)) = A7.
> b stays < A3:
P IF LCUp5(A3), so j(P) forces LCUp(j(A3)).
b<A3 bgj()\:';)
But LCUp (1) © LCUpo(cf(pe)), so j(P) IFb < As.
> b stays > A3:
P I COBy (A3, A6), so j(P) IF COBy5(A3, A6).
[12)\3 bZA:%
(Use j” S as a witness! Isomorphic to S, hence same size Ag.)

» non(/N\) becomes large:

P IFVX € (A2, A3) @ ..., in particular
P LCUcov(N'),non(/\/')(K)v SO J(P) I- LCUcov(N),non(N)(K’)'
non(N')>cf (k) non(N)>cf (j(k))
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