Large separated sets of unit vectors in Banach spaces of continuous functions

Ondřej Kurka

Charles University in Prague

based on a joint work with Marek Cúth and Benjamin Vejnar

Winter School in Abstract Analysis 2018
section Set Theory & Topology
Definition

We say that a set A in a Banach space X is r-separated (resp. (r^+)-separated) if

$$\|u - v\| \geq r \quad \text{(resp. } \|u - v\| > r)$$

for all distinct $u, v \in A$.
Definition

We say that a set A in a Banach space X is *r-separated* (resp. *$(r+)$-separated*) if

$$
\|u - v\| \geq r \quad \text{(resp. } \|u - v\| > r)$$

for all distinct $u, v \in A$.

Definition

We say that a set A in a Banach space X is *r-equilateral* if

$$
\|u - v\| = r
$$

for all distinct $u, v \in A$.
Question A

(i) If X is a real infinite-dimensional Banach space, can we find a $(1 + \varepsilon)$-separated (resp. $(1+)$-separated) subset A of the closed unit ball B_X whose cardinality is $\text{dens}(X)$?

(ii) If not, how big separated set A in B_X can we find?
Question A

(i) If X is a real infinite-dimensional Banach space, can we find a $(1 + \varepsilon)$-separated (resp. $(1+)$-separated) subset A of the closed unit ball B_X whose cardinality is $\text{dens}(X)$?
(ii) If not, how big separated set A in B_X can we find?
Question A

(i) If X is a real infinite-dimensional Banach space, can we find a $(1 + \varepsilon)$-separated (resp. $(1+\varepsilon)$-separated) subset A of the closed unit ball B_X whose cardinality is $\text{dens}(X)$?

(ii) If not, how big separated set A in B_X can we find?

Remark

The closed unit ball of $c_0(\Gamma)$ does not contain an uncountable $(1 + \varepsilon)$-separated set.
Question A

(i) If X is a real infinite-dimensional Banach space, can we find a $(1 + \varepsilon)$-separated (resp. $(1+)$-separated) subset A of the closed unit ball B_X whose cardinality is $\text{dens}(X)$?
(ii) If not, how big separated set A in B_X can we find?

Remark

The closed unit ball of $c_0(\Gamma)$ does not contain an uncountable $(1 + \varepsilon)$-separated set.

Remark

If K is an infinite compact Hausdorff space, then the density $\text{dens}(C(K))$ equals to its weight $w(K)$.

Question A

(i) If X is a real infinite-dimensional Banach space, can we find a $(1 + \varepsilon)$-separated (resp. $(1+)$-separated) subset A of the closed unit ball B_X whose cardinality is $\text{dens}(X)$?
(ii) If not, how big separated set A in B_X can we find?

Remark

The closed unit ball of $c_0(\Gamma)$ does not contain an uncountable $(1 + \varepsilon)$-separated set.

Question B

(i) If K is an infinite compact Hausdorff space, can we find a $(1 + \varepsilon)$-separated (resp. $(1+)$-separated) subset A of the closed unit ball $B_{C(K)}$ of the space $C(K)$ whose cardinality is $w(K)$?
Question A

(i) If X is a real infinite-dimensional Banach space, can we find a $(1 + \varepsilon)$-separated (resp. $(1+)$-separated) subset A of the closed unit ball B_X whose cardinality is $\text{dens}(X)$?

(ii) If not, how big separated set A in B_X can we find?

Remark

The closed unit ball of $c_0(\Gamma)$ does not contain an uncountable $(1 + \varepsilon)$-separated set.

Question B

(i) If K is an infinite compact Hausdorff space, can we find a $(1 + \varepsilon)$-separated (resp. $(1+)$-separated) subset A of the closed unit ball $B_{C(K)}$ of the space $C(K)$ whose cardinality is $w(K)$?

(ii) If not, how big separated set A in $B_{C(K)}$ can we find?

T. Kania and T. Kochanek, *Uncountable sets of unit vectors that are separated by more than 1*, Studia Math. **232** (2016), 19–44.

P. Koszmider, *Uncountable equilateral sets in Banach spaces of the form $C(K)$*, accepted in Israel J. Math.
Remark

If $B_{C(K)}$ contains a $(1 + \varepsilon)$-separated set of cardinality κ, then it contains a 2-equilateral set of cardinality κ.
The situation is clear if the density is countable:

Theorem (Elton, Odell)

If X *is an infinite-dimensional Banach space, then there is* $\varepsilon > 0$ *such that* B_X *contains an infinite* $(1 + \varepsilon)$-*separated set.*
The situation is clear if the density is countable:

Theorem (Elton, Odell)

If X *is an infinite-dimensional Banach space, then there is* $\varepsilon > 0$ *such that* B_X *contains an infinite* $(1 + \varepsilon)$-*separated set.*

Corollary

If K *is an infinite compact Hausdorff space, then* $B_{C(K)}$ *contains an infinite 2-equilateral set.*
The situation is clear if the density is countable:

Theorem (Elton, Odell)

If X is an infinite-dimensional Banach space, then there is $\varepsilon > 0$ such that B_X contains an infinite $(1 + \varepsilon)$-separated set.

Corollary

If K is an infinite compact Hausdorff space, then $B_{C(K)}$ contains an infinite 2-equilaterial set.

It is therefore possible to consider non-separable spaces only. In fact, we will focus on the $C(K)$ spaces only. So, from now, we assume that K is a non-metrizable compact Hausdorff space.
The situation is clear if the density is countable:

Theorem (Elton, Odell)

If X is an infinite-dimensional Banach space, then there is \(\varepsilon > 0 \) such that \(B_X \) contains an infinite \((1 + \varepsilon)\)-separated set.

Corollary

If K is an infinite compact Hausdorff space, then \(B_{C(K)} \) contains an infinite 2-equilateral set.

It is therefore possible to consider non-separable spaces only.

In fact, we will focus on the \(C(K) \) spaces only. So, from now, we assume that \(K \) is a non-metrizable compact Hausdorff space.

The situation is not clear if the density is uncountable:

Theorem (Koszmider)

It is undecidable in ZFC whether there exists an uncountable 2-equilateral set in \(B_{C(K)} \) for every such \(K \).
Remark

It is not difficult to show that $B_{C(K)}$ contains a 1-separated set of cardinality $w(K)$.
Remark
It is not difficult to show that $B_{C(K)}$ contains a 1-separated set of cardinality $w(K)$.

Question (Kania, Kochanek)
Does $B_{C(K)}$ always contain a (1+)-separated set of cardinality $w(K)$?
Remark
It is not difficult to show that $B_{C(K)}$ contains a 1-separated set of cardinality $w(K)$.

Question (Kania, Kochanek)
Does $B_{C(K)}$ always contain a $(1+)$-separated set of cardinality $w(K)$?

Theorem (Kania, Kochanek)
If K is perfectly normal, then $B_{C(K)}$ contains a $(1+)$-separated set of cardinality $w(K)$.
Remark
It is not difficult to show that $B_{C(K)}$ contains a 1-separated set of cardinality $w(K)$.

Question (Kania, Kochanek)
Does $B_{C(K)}$ always contain a $(1+)\text{-separated}$ set of cardinality $w(K)$?

Theorem (Kania, Kochanek)
If K is perfectly normal, then $B_{C(K)}$ contains a $(1+)\text{-separated}$ set of cardinality $w(K)$.

Theorem 1
If $w(K)$ is at most continuum, then $B_{C(K)}$ contains a $(1+)\text{-separated}$ set of cardinality $w(K)$.
Proposition 2

If K contains a zero-dimensional compact subspace of the same weight as K, then $B_{C(K)}$ contains a 2-equilateral set of cardinality $w(K)$.

Proof.
Let L be such a subspace and let f be a basis of L consisting of clopen sets (clearly $w(L) = w(K)$).

Then the system f given by $f(x) = \begin{cases} 1; & x \in U; \\ 1; & x \in L \cap U; \end{cases}$ forms a 2-equilateral set, and the Tietze theorem concludes the proof.
Proposition 2

If K contains a zero-dimensional compact subspace of the same weight as K, then $B_{C(K)}$ contains a 2-equilateral set of cardinality $w(K)$.

Proof.

Let L be such a subspace and let $\{U_\alpha\}_{\alpha < \kappa}$ be a basis of L consisting of clopen sets (clearly $\kappa \geq w(L) = w(K)$). Then the system $\{f_\alpha\}_{\alpha < w(K)}$ given by

$$f_\alpha(x) = \begin{cases} 1, & x \in U_\alpha, \\ -1, & x \in L \setminus U_\alpha, \end{cases}$$

forms a 2-equilateral set, and the Tietze theorem concludes the proof.
Proposition 3

If K contains a subset A with $\text{dens}(A) \geq w(K)$, then $B_{C(K)}$ contains a 2-equilateral set of cardinality $w(K)$.

Proof.

We inductively find points $x \in A$; $< w(K)$; such that $x = f(x) = g$. For each $< w(K)$, we pick a norm-one function f such that $f(x) = 1$ and $f(x) = 1$ for $< g$. Then $f f$ is a 2-equilateral set.

Remark

A similar proof works if there is a point $x \in K$ with $(x; K) = w(K)$.

Corollary 4

If K is a continuous image of a Valdivia compact space, then $B_{C(K)}$ contains a 2-equilateral set of cardinality $w(K)$.

Proposition 3

If K contains a subset A with $\text{dens}(A) \geq w(K)$, then $B_{\mathcal{C}(K)}$ contains a 2-equilateral set of cardinality $w(K)$.

Proof.

We inductively find points $x_\alpha \in A$, $\alpha < w(K)$, such that $x_\alpha \notin \{x_\beta : \beta < \alpha\}$.

For each $\alpha < w(K)$, we pick a norm-one function f_α such that $f_\alpha(x_\alpha) = 1$ and $f_\alpha(x_\beta) = -1$ for $\beta < \alpha$.

Then $\{f_\alpha : \alpha < w(K)\}$ is a 2-equilateral set.
Proposition 3

If K contains a subset A with $\text{dens}(A) \geq w(K)$, then $B_{C(K)}$ contains a 2-equilateral set of cardinality $w(K)$.

Proof.

We inductively find points $x_\alpha \in A$, $\alpha < w(K)$, such that $x_\alpha \notin \{x_\beta : \beta < \alpha\}$.

For each $\alpha < w(K)$, we pick a norm-one function f_α such that $f_\alpha(x_\alpha) = 1$ and $f_\alpha(x_\beta) = -1$ for $\beta < \alpha$.

Then $\{f_\alpha : \alpha < w(K)\}$ is a 2-equilateral set.

Remark

A similar proof works if there is a point $x \in K$ with $\chi(x, K) \geq w(K)$.
Proposition 3

If K contains a subset A with $\text{dens}(A) \geq w(K)$, then $B_{\mathcal{C}(K)}$ contains a 2-equilateral set of cardinality $w(K)$.

Proof.

We inductively find points $x_\alpha \in A, \alpha < w(K)$, such that $x_\alpha \notin \{x_\beta : \beta < \alpha\}$.

For each $\alpha < w(K)$, we pick a norm-one function f_α such that $f_\alpha(x_\alpha) = 1$ and $f_\alpha(x_\beta) = -1$ for $\beta < \alpha$.

Then $\{f_\alpha : \alpha < w(K)\}$ is a 2-equilateral set.

Remark

A similar proof works if there is a point $x \in K$ with $\chi(x, K) \geq w(K)$.

Corollary 4

If K is a continuous image of a Valdivia compact space, then $B_{\mathcal{C}(K)}$ contains a 2-equilateral set of cardinality $w(K)$.
Proposition 5

If K is a compact line (that is, a linearly ordered space with the order topology), then $B_{C(K)}$ contains a 2-equilateral set of cardinality $w(K)$.
Theorem 6

$B_{C(K\times 2)}$ contains a 2-equilateral set of cardinality $w(K)$.
Theorem 6

\(B_{C(K \times 2)} \) contains a 2-equilateral set of cardinality \(w(K) \).

Proof.

It is sufficient to find a \(\frac{3}{2} \)-separated set of cardinality \(w(K) \).

For \(f \in C(K \times 2) \) consider the following condition:

\[
\forall z \in K : \ |f(z, 0)| < \frac{1}{2} \implies f(z, 1) = -1. \tag{P}
\]

Take a maximal \(\frac{3}{2} \)-separated family \(\mathcal{F} \) (with respect to inclusion) of norm-one functions satisfying (P).

We claim that the cardinality of \(\mathcal{F} \) equals \(w(K) \). In order to get a contradiction, let us assume that \(\mathcal{F} \) does not separate the points of \(K \times \{0\} \). Thus, for some pair of distinct points \(x, y \in K \) and every \(g \in \mathcal{F} \), we have \(g(y, 0) = g(y, 0) \).

Now, consider any norm-one function \(f \in C(K \times 2) \) satisfying the condition (P) such that

\(f(y, 0) = -1 \) and \(f(x, 0) = f(x, 1) = 1 \). Such a function exists because we may pick any \(\tilde{f} \in B_{C(K)} \) with \(\tilde{f}(x) = 1 = -\tilde{f}(y) \) and take any continuous extension of a function defined on disjoint closed sets \(K \times \{0\}, \{(x, 1)\} \) and \(\tilde{f}^{-1}([\frac{-1}{2}, \frac{1}{2}]) \times \{1\} \) in the obvious way, that is, \(f(z, 0) = \tilde{f}(z) \) for every \(z \in K \), \(f(x, 1) = 1 \) and \(f(z, 1) = -1 \) for \(z \in \tilde{f}^{-1}([\frac{-1}{2}, \frac{1}{2}]) \).

Fix any \(g \in \mathcal{F} \).

If \(g(x, 0) = g(y, 0) \geq \frac{1}{2} \), then \(\|f - g\| \geq |1 - g(y, 0)| = 1 + g(y, 0) \geq \frac{3}{2} \).

If \(g(x, 0) = g(y, 0) \leq -\frac{1}{2} \), then \(\|f - g\| \geq |1 - g(x, 0)| = 1 - g(x, 0) \geq \frac{3}{2} \).

If \(|g(x, 0)| < \frac{1}{2} \), then since \(g \) satisfies (P) we have \(\|f - g\| \geq |f(x, 1) - g(x, 1)| = 1 - g(x, 1) = 2 \).

Therefore, we have \(\|f - g\| \geq \frac{3}{2} \) for any \(g \in \mathcal{F} \), which is a contradiction with the maximality of \(\mathcal{F} \). \(\square \)
Corollary 7

If K is a compact convex set in a locally convex space, then $B_{C(K)}$ contains a 2-equilateral set of cardinality $w(K)$.
Corollary 7

If K is a compact convex set in a locally convex space, then $B_{C(K)}$ contains a 2-equilateral set of cardinality $w(K)$.

Corollary 8

If $w(K) \geq (2^{<\kappa})^+$ for some cardinal κ, then $B_{C(K)}$ contains a 2-equilateral set of cardinality κ.
Corollary 7

If K is a compact convex set in a locally convex space, then $B_{C(K)}$ contains a 2-equilateral set of cardinality $w(K)$.

Corollary 8

If $w(K) \geq (2^{<\kappa})^+$ for some cardinal κ, then $B_{C(K)}$ contains a 2-equilateral set of cardinality κ.

Proof.

$(2^{<\kappa})^+ \rightarrow (\kappa)_2^2$ (Erdős, Rado).
Corollary 7

If K is a compact convex set in a locally convex space, then $B_{C(K)}$ contains a 2-equilateral set of cardinality $w(K)$.

Corollary 8

If $w(K) \geq (2^{<\kappa})^+$ for some cardinal κ, then $B_{C(K)}$ contains a 2-equilateral set of cardinality κ.

Proof.

$(2^{<\kappa})^+ \rightarrow (\kappa)^2_2$ (Erdős, Rado).

Corollary 9 (GCH)

1. If $w(K)$ is a limit cardinal, then $B_{C(K)}$ contains a 2-equilateral set of cardinality $w(K)$.

2. If $w(K) = \kappa^+$ for an infinite cardinal κ, then $B_{C(K)}$ contains a 2-equilateral set of cardinality κ.