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Stationary Reflection
Definition

» If x is a cardinal and S C k a stationary set, then S reflects at
a if SN is stationary. We assume cf(a) > w at points of
reflection. Reflection holds at k if every stationary subset of x
reflects at some a < k.

Examples
» If C Cwyisacluband a € lim C N cof(wy), then C reflects
at a.

» If S = wyNcof(w) then S reflects at any ordinal of
uncountable cofinality.
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Stationary Reflection
Definition

» If x is a cardinal and S C k a stationary set, then S reflects at
a if SN is stationary. We assume cf(a) > w at points of
reflection. Reflection holds at k if every stationary subset of x
reflects at some a < k.

Examples

» If C Cwyisacluband a € lim C N cof(wy), then C reflects
at a.

» If S = wyNcof(w) then S reflects at any ordinal of
uncountable cofinality.

» If S = wyNcof(wy) then S does not reflect. (Given
a € wy N cof(wi), consider a club C C « of order-type w; and
observe that ImC NS =10.)
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Definition
» A sequence sequence (S; : i < \) of stationary subsets of x

reflect simultaneously if there is some o < k of uncountable
cofinality such that S; N « is stationary for all i < .

» If k is a singular cardinal of cofinality i then simultaneous
reflection holds for kT if for every sequence (S; : i < p) of
stationary subsets of kT M cof(u), there is some @ < Kk
where the S;'s reflect simultaneously.
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The Objects of Study 4/23

Simultaneous Reflection

Definition
» A sequence sequence (S; : i < \) of stationary subsets of x

reflect simultaneously if there is some o < k of uncountable
cofinality such that S; N « is stationary for all i < .

» If k is a singular cardinal of cofinality i then simultaneous
reflection holds for kT if for every sequence (S; : i < p) of
stationary subsets of kT M cof(u), there is some @ < Kk
where the S;'s reflect simultaneously.

Fact
If § is supercompact and cf k < § < k* then simultaneous
stationary reflection holds for k™.
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Square Sequences

Definition (Jensen, Schimmerling)

We say that [J,; \ holds if there is a sequence (C, : @ € lim(k™))
such that for all a € limx™:

» 1G] <N

» VC € G, Cisaclubin « such that ot C < k;

» VC € Cy, B €limC implies CN B € Cg.
We denote [, 1 as [, and [, .. as L%;. The notation [, ) has
the obvious meaning.
Proposition

Given a O, \-sequence, there is no club D C k™ such that
Va € limD, DNa € C,.
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Uses of [J,; and LI}

Facts (Jensen)

» L =0, for all cardinals k.

» [, implies that every stationary subset S of k* has a
stationary subset T C S that does not reflect for any o < k™.

Examples

» GCH + [, implies that there is a k™-Suslin tree.
» [J* is equivalent to existence of a special k*-Aronszajn tree.

» If 0% holds then there is a second-countable non-metrizable
topological space X such that |X| = x™ and every subspace
of X of cardinality < k™ is metrizable.
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If f,g: 7+ ON, then f <* g if there is a j < 7 such that
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Scales

Definition
If f,g: 7+ ON, then f <* g if there is a j < 7 such that
i>j = f(i) <g(i).

If  is a singular cardinal and (k; : i < cf k) is a sequence of
regular cardinals converging to k, a scale on k is a sequence of
functions (f, : @ < k) such that:

» The fy'sarein [[; ¢,

» The f,'s are <*-increasing;

Kij;

» The sequence is cofinal in the product [, ¢, #i with respect
to <*.
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Scales

Definition
If f,g: 7+ ON, then f <* g if there is a j < 7 such that
i>j = f(i) <g(i).

If  is a singular cardinal and (k; : i < cf k) is a sequence of
regular cardinals converging to k, a scale on k is a sequence of
functions (f, : @ < k) such that:

» The fy'sarein [[; ¢,

» The f,'s are <*-increasing;

Kij;

» The sequence is cofinal in the product []
to <*.

iccfr li With respect

Theorem (Shelah)
If k is a singular cardinal then there is a product of regular
cardinals [ [; . ki with sup; ., ki = K that carries a scale.
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Definition

A scale (f, : o < k™) at & (in a product [];_, ki) is very good if
for all o € lim k™ such that cf o > cf K, thereis a j < cf x and a
club C C «a such that (f3(i) : 8 € C) is increasing for i > j.
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Very Good Scales

Definition

A scale (f, : o < k™) at & (in a product [];_, ki) is very good if
for all o € lim k™ such that cf o > cf K, thereis a j < cf x and a
club C C «a such that (f3(i) : 8 € C) is increasing for i > j.

Fact (Cummings, Foreman, Magidor)

If there is a very good scale at k then simultaneous stationary
reflection fails for k.

Sketch of Proof.

If (f, : o < k) is a very good scale in a product []; . ~i,
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Very Good Scales

Definition

A scale (f, : o < k™) at & (in a product [];_, ki) is very good if
for all o € lim k™ such that cf o > cf K, thereis a j < cf x and a
club C C «a such that (f3(i) : 8 € C) is increasing for i > j.

Fact (Cummings, Foreman, Magidor)

If there is a very good scale at k then simultaneous stationary
reflection fails for k.

Sketch of Proof.

If (f, : o < k™) is a very good scale in a product [];_, xi, then
let S; C kT be a stationary set on which a — £, (i) < & is
constant.
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Very Good Scales

Definition

A scale (f, : o < k™) at & (in a product [];_, ki) is very good if
for all o € lim k™ such that cf o > cf K, thereis a j < cf x and a
club C C «a such that (f3(i) : 8 € C) is increasing for i > j.

Fact (Cummings, Foreman, Magidor)

If there is a very good scale at k then simultaneous stationary
reflection fails for k.

Sketch of Proof.

If (f, : o < k™) is a very good scale in a product [];_, xi, then
let S; C kT be a stationary set on which a — (i) < k; is
constant. The S;'s do not simultaneously reflect. O
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Facts (Cummings, Foreman, Magidor)

> Fix a singular k.

» If A <k and O » holds, then there is a very good scale on k.*
» Hence, if \ < k and U, » holds then simultaneous reflection at
k1 fails.

» Assume the existence of countably-many supercompact
cardinals.

» Con((JX A “simultaneous reflection at k™ holds”)
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> Fix a singular k.
» If A <k and O » holds, then there is a very good scale on k.*
» Hence, if \ < k and U, » holds then simultaneous reflection at
k1 fails.
» Assume the existence of countably-many supercompact
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» Hence, Con(J% A “k does not carry a very good scale”)

Maxwell Levine Kurt Gédel Research Center



The Objects of Study 9/23

Connections

Facts (Cummings, Foreman, Magidor)

> Fix a singular k.

» If A <k and O » holds, then there is a very good scale on k.*
» Hence, if \ < k and U, » holds then simultaneous reflection at
k1 fails.

» Assume the existence of countably-many supercompact
cardinals.

» Con((JX A “simultaneous reflection at k™ holds”)
» Hence, Con(J% A “k does not carry a very good scale”)

Question (Cummings, Foreman, Magidor)

Does [, <. imply the existence of a very good scale?
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Connections

Facts (Cummings, Foreman, Magidor)

> Fix a singular k.

» If A <k and O » holds, then there is a very good scale on k.*
» Hence, if \ < k and U, » holds then simultaneous reflection at
k1 fails.

» Assume the existence of countably-many supercompact
cardinals.

» Con((JX A “simultaneous reflection at k™ holds”)
» Hence, Con(J% A “k does not carry a very good scale”)

Question (Cummings, Foreman, Magidor)

Does [, <. imply the existence of a very good scale?

Theorem (L.)
Nope!
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Connections

Facts (Cummings, Foreman, Magidor)

> Fix a singular k.

» If A <k and O » holds, then there is a very good scale on k.*
» Hence, if \ < k and U, » holds then simultaneous reflection at
k1 fails.

» Assume the existence of countably-many supercompact
cardinals.

» Con((JX A “simultaneous reflection at k™ holds”)
» Hence, Con(J% A “k does not carry a very good scale”)

Question (Cummings, Foreman, Magidor)

Does [, <. imply the existence of a very good scale?
Theorem (L.)
Nope! (Assuming the existence of a supercompact cardinal.)

Maxwell Levine Kurt Gédel Research Center
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The Forcing Poset

We introduce a poset S(x, < A), which adds OJ,; <.
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The Forcing Poset

We introduce a poset S(x, < A), which adds OJ,; <.

Definition (Jensen)
For 1 < A < k™, let S(k, < \) be the poset of all p such that:
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The Forcing Poset

We introduce a poset S(x, < A), which adds OJ,; <.

Definition (Jensen)
For 1 < A < k™, let S(k, < \) be the poset of all p such that:

» domp={B8 < a:f alimit} for some o € limk™;
» Yo € dom p,
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The Construction 11/23

The Forcing Poset

We introduce a poset S(x, < A), which adds OJ,; <.

Definition (Jensen)
For 1 < A < k™, let S(k, < \) be the poset of all p such that:
» domp={B8 < a:f alimit} for some o € limk™;
» Yo € dom p,
> 1< |p(a)] < A;
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The Forcing Poset

We introduce a poset S(x, < A), which adds OJ,; <.
Definition (Jensen)
For 1 < A < k™, let S(k, < \) be the poset of all p such that:
» domp={B8 < a:f alimit} for some o € limk™;
» Yo € dom p,

> 1< [p(a)l <A
» p(a) is a set of clubs in « of order-type < k;
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The Construction 11/23

The Forcing Poset

We introduce a poset S(x, < A), which adds OJ,; <.

Definition (Jensen)
For 1 < A < k™, let S(k, < \) be the poset of all p such that:

» domp={B8 < a:f alimit} for some o € limk™;
» Yo € dom p,

> 1< [p(a)l <A
» p(a) is a set of clubs in « of order-type < k;
» VC € p(a), VB €limC, CN S € p(B).
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Properties of S(k, < \)

Facts
> S(k, < A) is (k + 1)-strategically closed
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Properties of S(k, < \)

Facts

» S(k,< A) is (k + 1)-strategically closed and hence
kT -distributive.
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Facts

» S(k,< A) is (k + 1)-strategically closed and hence
kT -distributive.

> ks Di,<n-
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The Construction 12/23

Properties of S(k, < \)

Facts

» S(k,< A) is (k + 1)-strategically closed and hence
kT -distributive.

> ks Di,<n-

...and
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The Construction 12/23

Properties of S(k, < \)

Facts

» S(k,< A) is (k + 1)-strategically closed and hence
kT -distributive.

> ks Di,<n-

...and

Fact
S(k, < \) adds non-reflecting stationary sets in ™ N cof (u) for
every u < K.
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The Threading Poset

Definition
Let G be S(k, < A)-generic with | J G = (€, : @ € limk™), and let
6 be an uncountable regular cardinal less than k.
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The Threading Poset

Definition

Let G be S(k, < A)-generic with | J G = (€, : @ € limk™), and let
d be an uncountable regular cardinal less than . In V[G] we can
define the poset T of closed bounded sets ¢ C k' of order-type
less than ¢ such that Va € lime, cNa € C,.
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The Construction 13/23

The Threading Poset

Definition

Let G be S(k, < A)-generic with | J G = (€, : @ € limk™), and let
d be an uncountable regular cardinal less than . In V[G] we can
define the poset T of closed bounded sets ¢ C k' of order-type
less than ¢ such that Va € lime, cNa € C,.

Definition _
Let D(S(k, < A) x Ts) be the set of pairs (p, &) € S(k, < A) * T;
where ¢ € V and maxdom p = maxc.
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The Threading Poset

Definition

Let G be S(k, < A)-generic with | J G = (€, : @ € limk™), and let
d be an uncountable regular cardinal less than . In V[G] we can
define the poset T of closed bounded sets ¢ C k' of order-type
less than ¢ such that Va € lime, cNa € C,.

Definition _
Let D(S(k, < A) x Ts) be the set of pairs (p, &) € S(k, < A) * T;
where ¢ € V and maxdom p = maxc.

Proposition
D(S(k, < \) * T5) is dense in S(k, < \) * Ts and is d-directed
closed.
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The Construction 13/23

The Threading Poset

Definition

Let G be S(k, < A)-generic with | J G = (€, : @ € limk™), and let
d be an uncountable regular cardinal less than . In V[G] we can
define the poset T of closed bounded sets ¢ C k' of order-type
less than ¢ such that Va € lime, cNa € C,.

Definition _
Let D(S(k, < A) x Ts) be the set of pairs (p, &) € S(k, < A) * T;
where ¢ € V and maxdom p = maxc.

Proposition
D(S(k, < \) * T5) is dense in S(k, < \) * Ts and is d-directed
closed.

Fact
Ts destroys some of the stationary sets added by S(k, < \).
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The Key Lemma

Lemma

Let G be S-generic and let v = (k)Y If f : k* — u is a partition
in V[G] for some i < k and T < ¢ are regular cardinals, then there
is some £ <  such that I, “f~1(&) Ncof(7) is stationary in v".
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The Key Lemma

Lemma

Let G be S-generic and let v = (k)Y If f : k* — u is a partition
in V[G] for some i < k and T < ¢ are regular cardinals, then there
is some £ <  such that I, “f~1(&) Ncof(7) is stationary in v".

Outline.
» Work in V using D(S x ']1‘5)_
> Let (p,0) IF “f : Kt — pand f € VS(B<r)",

» We want to show that there is some p* < p and some £ < 1
such that (p*,0) I “f~1(&) N cof(7) is stationary”.

Otherwise, there are C; forced to avoid f~1(£) N cof(7).

v

Find p*, a* of cofinality 7, and t¢ for & < p such that
(p*, &) IF “a* € Ce".

v
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The Key Lemma

Lemma

Let G be S-generic and let v = (k)Y If f : k* — u is a partition
in V[G] for some i < k and T < ¢ are regular cardinals, then there
is some £ <  such that I, “f~1(&) Ncof(7) is stationary in v".

Outline.
» Work in V using D(S x ']1‘5)_
> Let (p,0) IF “f : Kt — pand f € VS(B<r)",

» We want to show that there is some p* < p and some £ < 1
such that (p*,0) I “f~1(&) N cof(7) is stationary”.

> Otherwise, there are C; forced to avoid £~1(¢) N cof(7).

» Find p*, a* of cofinality 7, and t¢ for & < p such that
(p*, &) IF “a* € Ce".

» If (q,0) < (p*,0) and (q,0) IF “f(a*) = ¢, then this
contradicts the previous point.
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Assuming the existence of a supercompact cardinal §, there is a
model in which the supercompactness of § is preserved by any
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The Model with UJ,; -, and no Very Good Scale [L.]
Fact (Laver)

Assuming the existence of a supercompact cardinal §, there is a
model in which the supercompactness of § is preserved by any
d-directed closed forcing.

QOutline for the Construction.

> Let 0 be “indestructibly supercompact” as above.

v

Force with S(k, < k) for some « such that cf K < § < k.
Suppose (f, : a < T is a scale in VS5 <%) in T],_ ¢ &

For all i < cfr let S; C k1 N cof(w) be such that f,(7) is
constant on S; and the stationarity of S; is preserved by Tjy.

v
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Assuming the existence of a supercompact cardinal §, there is a
model in which the supercompactness of § is preserved by any
d-directed closed forcing.

QOutline for the Construction.

> Let 0 be “indestructibly supercompact” as above.
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Force with S(k, < k) for some « such that cf K < § < k.
Suppose (f, : a < T is a scale in VS5 <%) in T],_ ¢ &

For all i < cfr let S; C k1 N cof(w) be such that f,(7) is
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The Model with UJ,; -, and no Very Good Scale [L.]

Fact (Laver)

Assuming the existence of a supercompact cardinal §, there is a
model in which the supercompactness of § is preserved by any
d-directed closed forcing.

QOutline for the Construction.

> Let 0 be “indestructibly supercompact” as above.

v

Force with S(k, < k) for some « such that cf K < § < k.
Suppose (f, : a < T is a scale in VS5 <%) in T],_ ¢ &

For all i < cfr let S; C k1 N cof(w) be such that f,(7) is
constant on S; and the stationarity of S; is preserved by Tjy.

v

v

k is still supercompact in VS(5:<#)*Ts o5 the S;'s
simultaneously reflect at some « of cofinality > cf x in
VS(s:<k)xTs hence also in V/S(5:<r),
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The Model with UJ,; -, and no Very Good Scale [L.]
Fact (Laver)

Assuming the existence of a supercompact cardinal §, there is a
model in which the supercompactness of § is preserved by any
d-directed closed forcing.

QOutline for the Construction.

> Let 0 be “indestructibly supercompact” as above.

» Force with S(k, < k) for some « such that cfx < § < k.

> Suppose (f, : o < 1) is a scale in VES<K) in [T, _, k.

» Forall i <cfklet S; C k™ Ncof(w) be such that £, (/) is
constant on S; and the stationarity of S; is preserved by Tjy.

> & is still supercompact in VS(5:<#)*Ts o5 the S;'s
simultaneously reflect at some « of cofinality > cf x in
VS(5:<w)Ts hence also in VS(F:<r),

» Very goodness for this scale fails at the point of reflection a.
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...and kK can be N,

Theorem (L.)

Assuming the existence of a supercompact cardinal there is a model
in which Uy, <x,, holds but there is no very good scale at N,,.
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Theorem (Cummings, Schimmerling)

If K is a singular strong limit and U, <, holds, then there is a
sequence (S; : i < cf k) of stationary subsets of Kt and some
1 < K such that if the S;'s reflect simultaneously at o then
cfa > pu.
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. <, and Simultaneous Reflection
Recall:

» [\ for A < & implies failure of simultaneous reflection at k.

» [J* does not.

Theorem (Cummings, Schimmerling)

If K is a singular strong limit and U, <, holds, then there is a
sequence (S; : i < cf k) of stationary subsets of Kt and some
1 < K such that if the S;'s reflect simultaneously at o then
cfa > pu.

Question

For singular k, is U, <, consistent with simultaneous stationary
reflection at k™7

Theorem (L.)
Nope!
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Better Scales

Definition
A scale (f, : o < k™) is a better scale if for every a < k™ with
cf o > cf K, there is a club C C « such that for every 5 € lim C,

there is some j < cf k such that for all i > j, v € C N B implies
fa(i) < £,(7).
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A scale (f, : o < k™) is a better scale if for every a < k™ with

cf o > cf K, there is a club C C « such that for every 5 € lim C,
there is some j < cf k such that for all i > j, v € C N B implies

fa(i) < £,(i).
Facts

» Very good scales are better scales.

» [ implies the existence of a better scale.
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Approachability
Definition
If k is a singular cardinal, then approachability holds at  if there is
a sequence (C, : a < k™) such that:
» If o € limk™T then C, is a club in a such that ot C, = cfo;

» There is a club D C k1 such that
Vaoe D,V <a,Iy<a,NB=C,.

Fact
If k is singular then LI}, implies that approachability holds at k.

Question
Does approachability at k imply the existence of a better scale?
Fact (Hayut)

If k is singular and (kT)<"" = k™ then there is a < r™-strongly
strategically closed poset that forces approachability at k™.

<kt
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sequence of regular cardinals converging to k.

Maxwell Levine Kurt Gédel Research Center



Further Questions 21/23

Defining the CMB Poset

Let k be a singular strong limit and let (x; : i < cf k) be a
sequence of regular cardinals converging to k.

Definition
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Let k be a singular strong limit and let (x; : i < cf k) be a
sequence of regular cardinals converging to k.

Definition
» C; is the poset of closed bounded subsets of xT of order-type
less than x;, where p <¢, g if maxp > maxgq and
pN(maxq) = q.
» We let C =[], ., Ci/ ~ where f ~ g if 3j < cfr such that
i > j implies (i) = g(i). We use [f] to refer to the

equivalence class of f. [f] < [g] refers to eventual domination.

Facts (L.)

» C is (k + 1)-strategically closed and hence k™ -distributive.
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Theorem (L.)

» C adds a non-reflecting stationary subset of k™t N cof(7)
where T = cf k.
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Theorem (L.)

» C adds a non-reflecting stationary subset of k™t N cof(7)
where T = cf k.

» [fcf kK > w then it is consistent that C does not add
non-reflecting stationary subsets in k* N cof (1) for 7 < cf k.
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Further Questions

The CMB Poset and Reflection

Theorem (L.)

» C adds a non-reflecting stationary subset of k™ N cof ()
where T = cf k.

> Ifcf k > w then it is consistent that C does not add
non-reflecting stationary subsets in k* N cof (1) for 7 < cf k.
(Assuming the existence of a supercompact cardinal.)

Question

Does C add non-reflecting stationary subsets of k™ N cof(7) for
T>cfr?
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