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Ideal version of b

I ⊆ P(ω) is an ideal if it is closed under subsets and finite unions,
contains Fin = [ω]<ω and ω /∈ I.

Let PI denote the family of all partitions of ω into sets from I.
I is a weak P-ideal if for each (An) ∈ PI we can find M /∈ I with
M ∩ An finite for each n.

non(IQN-space) (non(IwQN-space)) denotes the minimal
cardinality of a perfectly normal space which is not IQN (IwQN).

Theorem (Filipów and Staniszewski; Šupina)

non(IQN-space) =

min

{
|A| : A ⊆ Finω ∧ ∀(Dn)∈PI ∃(An)∈A

⋃
n∈ω

An ∩ Dn /∈ I

}
.
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Ideal version of b

Theorem

non(IwQN-space) =

min

{
|A| : A ⊆ Finω ∧ ∀B∈[ω]ω ∀(Dn)∈PI ∃(An)∈A

⋃
n∈ω

e−1
B [An] ∩ Dn /∈ I

}
,

where eB : ω → B is an increasing enumeration of B.

Theorem (Bukovský, Rec law and Repický)

non(FinQN-space) = non(FinwQN-space) = b.

Theorem

b ≤ non(IQN-space) ≤ non(IwQN-space) ≤ d for all weak
P-ideals.
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Nice ideals

Theorem

non(IQN-space) = non(IwQN-space) = b for all Fσ ideals.

Corollary

non(IQN-space) = non(IwQN-space) = b for every ideal
contained in some Fσ ideal.

By a result of Solecki, each analytic P-ideal is of the form Exh(φ)
for some lower semi-continuous submeasure φ. Fin(φ) is Fσ and we
have Exh(φ) ⊆ Fin(φ). If φ(ω) =∞, then Fin(φ) becomes an ideal
and we obtain non(Exh(φ)QN-space) = b.

This class contains all density ideals (in the sense of Farah), which
are not EU.
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Bad ideals

Theorem

If b < bJ for some J , then there is a weak P-ideal I with
non(IwQN-space) > b.

Proof.

Show that
I = (Fin⊗ Fin) ∩ (∅ ⊗ J )

is a weak P-ideal and non(IwQN-space) ≥ bJ .

Theorem (Canjar)

There is a maximal ideal J with bJ = cf(d).
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Ideal convergence

Suppose that (xn) ⊆ R, x ∈ R, (fn) ⊆ RX and f ∈ RX .

xn
I−→ x if {n : |xn − x | ≥ ε} ∈ I for all ε > 0;

fn
IQN−−−→ f (I-quasi-normal convergence) if there exists a

sequence of positive reals εn
I−→ 0 such that

{n : |fn(x)− f (x)| ≥ εn} ∈ I for all x ∈ X .

FinQN convergence is the σ-uniform convergence.
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Ideal QN-spaces

X is QN if any sequence (fn) ⊆ RX of continuous functions
converging to zero FinQN converges to zero.

X is wQN if for any sequence (fn) ⊆ RX of continuous
functions converging to zero there is a subsequence (fnk )
FinQN converging to zero.

X is IQN if any sequence (fn) ⊆ RX of continuous functions
converging to zero IQN converges to zero.

X is IwQN if for any sequence (fn) ⊆ RX of continuous
functions converging to zero there is a subsequence (fnk ) IQN
converging to zero.

QN wQN

IQN IwQN
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Ideal QN-spaces

Theorem (Šupina)

For a non-weak P-ideal every topological space is IQN and IwQN.

Theorem (Šupina)

If p = c, then there is a weak P-ideal I and an IQN but not
QN-space.

This space is wQN, so we still need to distinguish wQN and IwQN.

Theorem

If b < bJ for some J , then there are a weak P-ideal I and an
IwQN but not wQN-space.

Proof.

Take I = (Fin⊗ Fin) ∩ (∅ ⊗ J ). We have:
non(IwQN-space) > b = non(wQN-space).
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If p = c, then there is a weak P-ideal I and an IQN but not
QN-space.

This space is wQN, so we still need to distinguish wQN and IwQN.

Theorem

If b < bJ for some J , then there are a weak P-ideal I and an
IwQN but not wQN-space.

Proof.

Take I = (Fin⊗ Fin) ∩ (∅ ⊗ J ). We have:
non(IwQN-space) > b = non(wQN-space).

Adam Kwela Ideal weak QN-spaces



Additivity

Corollary (from the previous slides)

non(IQN-space) = b for every ideal contained in some Fσ ideal.

Theorem (Das and Chandra)

add(IQN-space) ≥ b for every P-ideal.

Corollary

add(IQN-space) = b for every P-ideal contained in some Fσ ideal.
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Tall ideals

I is tall if any infinite set contains an infinite subset from I.

Theorem (Bukovský, Das and Šupina)

For non-tall ideals the notions of IQN-space (IwQN-space) and
QN-space (wQN-space) coincide.

Theorem

Let I be tall. Then any IwQN-space of cardinality < cov∗(I) is
wQN.

cov∗(I) = min
{
|A| : A ⊆ I ∧ ∀X∈[ω]ω ∃A∈A |A ∩ X| = ω

}
p ≤ cov∗(I) ≤ c for any tall ideal;
Meza: cov∗(conv) = c, where conv is the ideal on Q ∩ [0, 1]
generated by sequences in Q ∩ [0, 1] convergent in [0, 1]; conv
is Fσδσ;
Meza: cov∗(ED) = non(M), where ED is the ideal on ω × ω
generated by vertical lines and graphs of functions from ωω;
ED is Fσ.
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For non-tall ideals the notions of IQN-space (IwQN-space) and
QN-space (wQN-space) coincide.

Theorem

Let I be tall. Then any IwQN-space of cardinality < cov∗(I) is
wQN.

cov∗(I) = min
{
|A| : A ⊆ I ∧ ∀X∈[ω]ω ∃A∈A |A ∩ X| = ω

}
p ≤ cov∗(I) ≤ c for any tall ideal;
Meza: cov∗(conv) = c, where conv is the ideal on Q ∩ [0, 1]
generated by sequences in Q ∩ [0, 1] convergent in [0, 1]; conv
is Fσδσ;
Meza: cov∗(ED) = non(M), where ED is the ideal on ω × ω
generated by vertical lines and graphs of functions from ωω;
ED is Fσ.

Adam Kwela Ideal weak QN-spaces



Tall ideals

I is tall if any infinite set contains an infinite subset from I.

Theorem (Bukovský, Das and Šupina)
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Ideal version of Scheepers’ Conjecture

A sequence (Un) of subsets of a topological space X is an
I-γ-cover if Un 6= X for all n and {n : x /∈ Un} ∈ I for all x ∈ X .
I-Γ is the family of all open I-γ-covers. Moreover, Fin-Γ = Γ.

Conjecture (Scheepers)

FinwQN-space is S1(Γ, Γ).

Theorem (Šupina)

If I is not a weak P-ideal, then there is a perfectly normal
IwQN-space which is not S1(Γ, I-Γ).

Recall that for non-weak P-ideals every topological space is IwQN.
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If I is not a weak P-ideal, then there is a perfectly normal
IwQN-space which is not S1(Γ, I-Γ).

Recall that for non-weak P-ideals every topological space is IwQN.

Adam Kwela Ideal weak QN-spaces



Ideal version of Scheepers’ Conjecture

A sequence (Un) of subsets of a topological space X is an
I-γ-cover if Un 6= X for all n and {n : x /∈ Un} ∈ I for all x ∈ X .
I-Γ is the family of all open I-γ-covers. Moreover, Fin-Γ = Γ.

Conjecture (Scheepers)

FinwQN-space is S1(Γ, Γ).

Theorem (Šupina)
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Ideal version of Scheepers’ Conjecture

Consistently, the ideal version of Scheepers’ Conjecture does not
hold even for some weak P-ideals:

Corollary

If b < bJ for some J , then there are a weak P-ideal I and a
perfectly normal IwQN-space which is not S1(Γ, I-Γ).

Proof.

Take I = (Fin⊗ Fin) ∩ (∅ ⊗ J ). Then non(IwQN-space) > b.
Šupina proved that non(S1(Γ, I-Γ)) = bI . As Fin ⊆ I ⊆ Fin⊗ Fin,
b ≤ bI ≤ bFin⊗Fin. By a result of Farkas and Soukup,
bFin⊗Fin = b.
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