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Ideal version of b

Z C P(w) is an ideal if it is closed under subsets and finite unions,
contains Fin = [w]<¥ and w ¢ T.
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Ideal version of b

Z C P(w) is an ideal if it is closed under subsets and finite unions,
contains Fin = [w]<¥ and w ¢ T.

Let Pz denote the family of all partitions of w into sets from Z.
Z is a weak P-ideal if for each (A,) € Pz we can find M ¢ Z with
M N A, finite for each n.

non(ZQN-space) (non(ZwQN-space)) denotes the minimal
cardinality of a perfectly normal space which is not ZQN (ZwQN).

Theorem (Filipéw and Staniszewski; Supina)
non(ZQN-space) =

min {|A| : AC Fin” A V(Dn)GPI El(An)e.A U A, N D, §é I} .

new
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Ideal version of b

non(ZwQN-space) =

new

min {|A| : ACFin® A Vaewp Yoners Janea | e 1Al N Dy ¢ I},

where eg: w — B is an increasing enumeration of B.

Adam Kwela Ideal weak QN-spaces



Ideal version of b

non(ZwQN-space) =
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where eg: w — B is an increasing enumeration of B.

Theorem (Bukovsky, Rectaw and Repicky)

non(FinQN-space) = non(FinwQN-space) = b.
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Ideal version of b

non(ZwQN-space) =

min {|A| : ACFin® A Vaewp Yoners Janea | e 1Al N Dy ¢ I} :

new

where eg: w — B is an increasing enumeration of B.

Theorem (Bukovsky, Rectaw and Repicky)

non(FinQN-space) = non(FinwQN-space) = b.

b < non(ZQN-space) < non(ZwQN-space) < 0 for all weak
P-ideals.
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non(Z QN-space) = non(ZwQN-space) = b for all F, ideals.
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non(Z QN-space) = non(ZwQN-space) = b for all F, ideals.

non(Z QN-space) = non(ZwQN-space) = b for every ideal
contained in some F, ideal.
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non(Z QN-space) = non(ZwQN-space) = b for all F, ideals.

non(Z QN-space) = non(ZwQN-space) = b for every ideal
contained in some F, ideal.

By a result of Solecki, each analytic P-ideal is of the form Exh(¢)
for some lower semi-continuous submeasure ¢. Fin(¢) is F, and we
have Exh(¢) C Fin(¢). If ¢(w) = oo, then Fin(¢) becomes an ideal
and we obtain non(Exh(¢)QN-space) = b.
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non(Z QN-space) = non(ZwQN-space) = b for all F, ideals.

non(Z QN-space) = non(ZwQN-space) = b for every ideal
contained in some F, ideal.

By a result of Solecki, each analytic P-ideal is of the form Exh(¢)
for some lower semi-continuous submeasure ¢. Fin(¢) is F, and we
have Exh(¢) C Fin(¢). If ¢(w) = oo, then Fin(¢) becomes an ideal
and we obtain non(Exh(¢)QN-space) = b.

This class contains all density ideals (in the sense of Farah), which
are not EU.
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Bad ideals

If b < by for some J, then there is a weak P-ideal Z with
non(ZwQ@N-space) > b.
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Bad ideals

If b < by for some J, then there is a weak P-ideal Z with
non(ZwQ@N-space) > b.

Show that

Z=(Fin®Fin)N (0 ®J)
is a weak P-ideal and non(ZwQN-space) > b . O
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Bad ideals

If b < by for some J, then there is a weak P-ideal Z with
non(ZwQ@N-space) > b.

Show that

Z=(Fin®Fin)N (0 ®J)
is a weak P-ideal and non(ZwQN-space) > b . O

Theorem (Canjar)
There is a maximal ideal J with by = c£(?).
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Ideal convergence

Suppose that (x,) C R, x € R, (f,) C RX and f € RX.

ox,,£>xif{n:]xn—xlze}EIfora||€>0;
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Ideal convergence

Suppose that (x,) C R, x € R, (f,) C RX and f € RX.
° xn£>xif{n: |xn — x| > €} € T for all € > 0;
o f, —— f (Z-quasi-normal convergence) if there exists a

sequence of positive reals ¢, —> 0 such that
{n:|fa(x) — F(x)| > ep} € T for all x € X.
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Ideal convergence

Suppose that (x,) C R, x € R, (f,) CRX and f € RX.
° x,,£>xif{n:]x,,—x]Ze}eIforal|5>0;

o f, —— f (Z-quasi-normal convergence) if there exists a

sequence of positive reals ¢, —> 0 such that
{n:|fa(x) — F(x)| > ep} € T for all x € X.

FinQN convergence is the g-uniform convergence.
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Ideal QN-spaces

e X is QN if any sequence (f,) C RX of continuous functions
converging to zero FinQN converges to zero.

Adam Kwela Ideal weak QN-spaces



Ideal QN-spaces

o X is QN if any sequence (f,) € RX of continuous functions
converging to zero FinQN converges to zero.

o X is wQN if for any sequence (f,) C RX of continuous
functions converging to zero there is a subsequence (fp, )
FinQN converging to zero.
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Ideal QN-spaces

o X is QN if any sequence (f,) € RX of continuous functions
converging to zero FinQN converges to zero.

o X is wQN if for any sequence (f,) C RX of continuous
functions converging to zero there is a subsequence (fp, )
FinQN converging to zero.

o X is ZQN if any sequence (f,) C RX of continuous functions
converging to zero ZQN converges to zero.

o X is ZwQN if for any sequence (f,) € RX of continuous
functions converging to zero there is a subsequence (f,,) ZQN
converging to zero.

QN wQN
ZQN ZwQN
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Ideal QN-spaces

Theorem (Supina)

For a non-weak P-ideal every topological space is ZQN and ZwQN.
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QN-space.
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If p = ¢, then there is a weak P-ideal T and an ZQN but not
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If b < by for some J, then there are a weak P-ideal 7 and an
ZwQ@N but not wQN-space.
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Ideal QN-spaces

Theorem (Supina)

For a non-weak P-ideal every topological space is ZQN and ZwQN.

Theorem (Supina)

If p = ¢, then there is a weak P-ideal T and an ZQN but not
QN-space.

This space is wQN, so we still need to distinguish wQN and ZwQN.

If b < by for some J, then there are a weak P-ideal 7 and an
ZwQ@N but not wQN-space.

Take Z = (Fin ® Fin) N (0 ® J). We have:
non(ZwQN-space) > b = non(wQN-space). O

o
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Additivity

Corollary (from the previous slides)

non(ZQN-space) = b for every ideal contained in some F, ideal.
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Additivity

Corollary (from the previous slides)

non(ZQN-space) = b for every ideal contained in some F, ideal.

Theorem (Das and Chandra)
add(Z @N-space) > b for every P-ideal.
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Additivity

Corollary (from the previous slides)

non(ZQN-space) = b for every ideal contained in some F, ideal.

Theorem (Das and Chandra)
add(Z @N-space) > b for every P-ideal.

add(Z Q@N-space) = b for every P-ideal contained in some F, ideal. I

Adam Kwela Ideal weak QN-spaces




Tall ideals

7 is tall if any infinite set contains an infinite subset from Z.

Theorem (Bukovsky, Das and Supina)

For non-tall ideals the notions of ZQN-space (ZwQN-space) and
Q@N-space (wQN-space) coincide.
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Tall ideals

7 is tall if any infinite set contains an infinite subset from Z.

Theorem (Bukovsky, Das and Supina)

For non-tall ideals the notions of ZQN-space (ZwQN-space) and
Q@N-space (wQN-space) coincide.

v
Theorem

Let T be tall. Then any TwQN-space of cardinality < cov*(Z) is
wQN.

Adam Kwela Ideal weak QN-spaces



Tall ideals

7 is tall if any infinite set contains an infinite subset from Z.

Theorem (Bukovsky, Das and Supina)

For non-tall ideals the notions of ZQN-space (ZwQN-space) and
Q@N-space (wQN-space) coincide.

v
Theorem

Let T be tall. Then any TwQN-space of cardinality < cov*(Z) is
wQN.

cov*(Z) =min {|A]: ACT A Vxep)e Jaca IANX =w}

Adam Kwela Ideal weak QN-spaces



Tall ideals

7 is tall if any infinite set contains an infinite subset from Z.

Theorem (Bukovsky, Das and Supina)

For non-tall ideals the notions of ZQN-space (ZwQN-space) and
Q@N-space (wQN-space) coincide.

v
Theorem

Let T be tall. Then any TwQN-space of cardinality < cov*(Z) is
wQN.

cov*(Z) =min {|A]: ACT A Vxep)e Jaca IANX =w}
o p < cov*(Z) < ¢ for any tall ideal;

Adam Kwela Ideal weak QN-spaces



Tall ideals

7 is tall if any infinite set contains an infinite subset from Z.

Theorem (Bukovsky, Das and Supina)

For non-tall ideals the notions of ZQN-space (ZwQN-space) and
Q@N-space (wQN-space) coincide.

v
Theorem

Let T be tall. Then any TwQN-space of cardinality < cov*(Z) is
wQN.

cov*(Z) =min {|A]: ACT A Vxep)e Jaca IANX =w}
o p < cov*(Z) < ¢ for any tall ideal;
o Meza: cov*(conv) = ¢, where conv is the ideal on QN [0, 1]
generated by sequences in Q N [0, 1] convergent in [0, 1]; conv
is Fooo;
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Tall ideals

7 is tall if any infinite set contains an infinite subset from Z.

Theorem (Bukovsky, Das and Supina)

For non-tall ideals the notions of ZQN-space (ZwQN-space) and
Q@N-space (wQN-space) coincide.

v
Theorem

Let T be tall. Then any TwQN-space of cardinality < cov*(Z) is
wQN.

cov*(Z) =min {|A]: ACT A Vxep)e Jaca IANX =w}

o p < cov*(Z) < ¢ for any tall ideal;

o Meza: cov*(conv) = ¢, where conv is the ideal on QN [0, 1]
generated by sequences in Q N [0, 1] convergent in [0, 1]; conv
is Foso;

o Meza: cov*(ED) = non(M), where ED is the ideal on w x w
generated by vertical lines and graphs of functions from w®
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Ideal version of Scheepers’ Conjecture

A sequence (U,) of subsets of a topological space X is an
Z-vy-cover if U, # X for all nand {n:x ¢ Up} € T for all x € X.
Z-T is the family of all open Z-v-covers. Moreover, Fin-I =T.
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Ideal version of Scheepers’ Conjecture

A sequence (U,) of subsets of a topological space X is an
Z-vy-cover if U, # X for all nand {n:x ¢ Up} € T for all x € X.
Z-T is the family of all open Z-v-covers. Moreover, Fin-I =T.

Conjecture (Scheepers)
FinwQN-space is S1(I',T).

Theorem (Supina)

If T is not a weak P-ideal, then there is a perfectly normal
ZwQ@N-space which is not S51(I',Z-T).

Recall that for non-weak P-ideals every topological space is ZwQN.
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Ideal version of Scheepers’ Conjecture

Consistently, the ideal version of Scheepers’ Conjecture does not
hold even for some weak P-ideals:

If b < by for some J, then there are a weak P-ideal 7 and a
perfectly normal ZwQN-space which is not S1(I',Z-T).
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Ideal version of Scheepers’ Conjecture

Consistently, the ideal version of Scheepers’ Conjecture does not
hold even for some weak P-ideals:

Corollary

If b < by for some J, then there are a weak P-ideal 7 and a
perfectly normal ZwQN-space which is not S1(I',Z-T).

Take Z = (Fin ® Fin) N (d ® J). Then non(ZwQN-space) > b.
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Ideal version of Scheepers’ Conjecture

Consistently, the ideal version of Scheepers’ Conjecture does not
hold even for some weak P-ideals:

Corollary

If b < by for some J, then there are a weak P-ideal 7 and a
perfectly normal ZwQN-space which is not S1(I',Z-T).

Take Z = (Fin ® Fin) N (0 ® J). Then non(ZwQN-space) > b.
Supina proved that non(S3 (T, Z-T)) = bz. As Fin C Z C Fin @ Fin,
b < bz < bringFin- By a result of Farkas and Soukup,

bFingFin = b. 0

y
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