BLOCK SEQUENCES WITH PROJECTIONS INTO A SEQUENCE OF HAPPY FAMILIES

HEIKE MILDENBERGER

Definition 1. Let $k \ge 1$. Fix $P_{\min}, P_{\max} \subseteq \{1, ..., k\}$. Let $PP = \{(i, x) : x \in \{\min, \max\}, i \in P_x\}$ and let

$$\bar{\mathcal{R}} = \{(\iota, \mathcal{R}_{\iota}) : \iota \in PP\}$$

be a PP-sequence of pairwise non-nearly coherent Ramsey ultrafilters.

We let $(\text{FIN}_k)^{\omega}(\bar{\mathcal{R}})$ denote the set of FIN_k -block sequences \bar{a} with the following properties:

$$(\forall i \in P_{\min})\{\min(a_n^{-1}[\{i\}]) : n \in \omega\} \in \mathcal{R}_{i,\min} \land (\forall i \in P_{\max})\{\max(a_n^{-1}[\{i\}]) : n \in \omega\} \in \mathcal{R}_{i,\max}.$$

Definition 2. The Tetris-finite-union closure of an element $\bar{a} \in (FIN_k)^{\omega}(\bar{\mathcal{R}})$ is the following set

$$TFU_k(\bar{a}) = \{ T^{(j_0)}(a_{n_0}) + \dots + T^{(j_{\ell})}(a_{n_{\ell}}) : \\ \ell \in \omega \setminus \{0\}, n_0 < \dots < n_{\ell}, j_i \in k, \exists r j_r = 0 \}$$

For $\bar{a}, \bar{b} \in (\mathrm{FIN}_k)^{\omega}$ we let $\bar{b} \sqsubseteq_k \bar{a}$ if $\bar{b} \subseteq \mathrm{TFU}_k(\bar{a})$.

We sketch a proof of a common strengthening of a Theorem of Blass for k = 1, $PP = \{(1, \min), (1, \max)\}$ and Gowers for $k \ge 1$, $PP = \emptyset$:

Theorem 3. Let $\bar{a} \in (\mathrm{FIN}_k)^{\omega}(\bar{\mathcal{R}})$ and let c be a colouring of $\mathrm{TFU}_k(\bar{a})$ into finitely many colours. Then there is a $\bar{b} \sqsubseteq_k \bar{a}$, $\bar{b} \in (\mathrm{FIN}_k)^{\omega}(\bar{\mathcal{R}})$ such that $\mathrm{TFU}_k(\bar{b})$ is c-monochromatic.

This theorem gives rise to a new proper non- σ -centred forcing with the pure decision property.

HEIKE MILDENBERGER, ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG, MATHEMATISCHES INSTITUT, ABTEILUNG FÜR MATH. LOGIK, ECKERSTR. 1, 79104 FREIBURG IM BREISGAU, GERMANY