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Parallel sets in metric spaces

In this talk I shall present a solution of one question asked on
Mathoverflow by user116515.

The question concerns parallel sets in metric spaces.

Definition

Two non-empty sets A,B in a metric space (X , d) are called
parallel if

d(a,B) = d(A,B) = d(A, b) for any a ∈ A and b ∈ B.

Here d(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}
and d(x ,B) = d(B, x) := d({x},B) for x ∈ X .

Observe that two closed parallel sets A,B is a metric space are
either disjoint or coincide.
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A MO problem on parallel metrics

Definition

Let C be a family of closed subsets of a topological space X .
A metric d on X is called C-parallel if any two sets A,B ∈ C are
parallel with respect to the metric d .

A family C of subsets of X is called a compact cover of X if
X =

⋃
C and each set C ∈ C is compact.

Problem (MO)

For which compact covers C of a topological space X the topology
of X is generated by a C-parallel metric?

Example

The Euclidean metric on the unit disk D = {z ∈ C : |z | ≤ 1} is
parallel with respect to the cover C = {Cr : r ∈ [0, 1]} of D by
circles Cr = {z ∈ C : |z | = r}.
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Continuity of families

A metric generating the topology of a given topological space is
called admissible.

Let C be a cover C of a set X . A subset A ⊂ X is called
C-saturated if A coincides with its C-saturation

[A]C :=
⋃
{C ∈ C : A ∩ C 6= ∅}.

A family C of subsets of a topological space X is called

lower semicontinuous if for any open set U ⊂ X its
C-saturation [U]C is open in X ;

upper semicontinuous if for any closed set F ⊂ X its
C-saturation [F ]C is closed in X ;

continuous if C is both lower and upper semicontinuous;

disjoint if any distinct sets A,B ∈ C are disjoint.

T.Banakh A Parallel Metrization Theorem



Continuity of families

A metric generating the topology of a given topological space is
called admissible.

Let C be a cover C of a set X . A subset A ⊂ X is called
C-saturated if A coincides with its C-saturation

[A]C :=
⋃
{C ∈ C : A ∩ C 6= ∅}.

A family C of subsets of a topological space X is called

lower semicontinuous if for any open set U ⊂ X its
C-saturation [U]C is open in X ;

upper semicontinuous if for any closed set F ⊂ X its
C-saturation [F ]C is closed in X ;

continuous if C is both lower and upper semicontinuous;

disjoint if any distinct sets A,B ∈ C are disjoint.

T.Banakh A Parallel Metrization Theorem



Continuity of families

A metric generating the topology of a given topological space is
called admissible.

Let C be a cover C of a set X . A subset A ⊂ X is called
C-saturated if A coincides with its C-saturation

[A]C :=
⋃
{C ∈ C : A ∩ C 6= ∅}.

A family C of subsets of a topological space X is called

lower semicontinuous if for any open set U ⊂ X its
C-saturation [U]C is open in X ;

upper semicontinuous if for any closed set F ⊂ X its
C-saturation [F ]C is closed in X ;

continuous if C is both lower and upper semicontinuous;

disjoint if any distinct sets A,B ∈ C are disjoint.

T.Banakh A Parallel Metrization Theorem



Continuity of families

A metric generating the topology of a given topological space is
called admissible.

Let C be a cover C of a set X . A subset A ⊂ X is called
C-saturated if A coincides with its C-saturation

[A]C :=
⋃
{C ∈ C : A ∩ C 6= ∅}.

A family C of subsets of a topological space X is called

lower semicontinuous if for any open set U ⊂ X its
C-saturation [U]C is open in X ;

upper semicontinuous if for any closed set F ⊂ X its
C-saturation [F ]C is closed in X ;

continuous if C is both lower and upper semicontinuous;

disjoint if any distinct sets A,B ∈ C are disjoint.

T.Banakh A Parallel Metrization Theorem



Continuity of families

A metric generating the topology of a given topological space is
called admissible.

Let C be a cover C of a set X . A subset A ⊂ X is called
C-saturated if A coincides with its C-saturation

[A]C :=
⋃
{C ∈ C : A ∩ C 6= ∅}.

A family C of subsets of a topological space X is called

lower semicontinuous if for any open set U ⊂ X its
C-saturation [U]C is open in X ;

upper semicontinuous if for any closed set F ⊂ X its
C-saturation [F ]C is closed in X ;

continuous if C is both lower and upper semicontinuous;

disjoint if any distinct sets A,B ∈ C are disjoint.

T.Banakh A Parallel Metrization Theorem



Continuity of families

A metric generating the topology of a given topological space is
called admissible.

Let C be a cover C of a set X . A subset A ⊂ X is called
C-saturated if A coincides with its C-saturation

[A]C :=
⋃
{C ∈ C : A ∩ C 6= ∅}.

A family C of subsets of a topological space X is called

lower semicontinuous if for any open set U ⊂ X its
C-saturation [U]C is open in X ;

upper semicontinuous if for any closed set F ⊂ X its
C-saturation [F ]C is closed in X ;

continuous if C is both lower and upper semicontinuous;

disjoint if any distinct sets A,B ∈ C are disjoint.

T.Banakh A Parallel Metrization Theorem



A parallel metrization theorem

Main Theorem

For a compact cover C of a metrizable topological space X the
following conditions are equivalent:

1 the topology of X is generated by a C-parallel metric;

2 the family C is disjoint and continuous.

https://mathoverflow.net/questions/284544/making-compact-
subsets-parallel
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Proof of the parallel metrization theorem

Main Theorem

For a compact cover C of a metrizable topological space X the
following conditions are equivalent:

1 the topology of X is generated by a C-parallel metric;

2 the family C is disjoint and continuous.

Proof. (1)⇒ (2) Assume that d is an admissible C-parallel metric
on X . The disjointness of the cover C follows from the obvious
observation that two closed parallel sets in a metric space are
either disjoint or coincide.
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Proof of Main Theorem (1)⇒ (2)

To see that C is lower semicontinuous, fix any open set U ⊂ X and
consider its C-saturation [U]C . To see that [U]C is open, take any point
s ∈ [U]C and find a set C ∈ C such that s ∈ C and C ∩ U 6= ∅. Fix a
point u ∈ U ∩ C and find ε > 0 such that the ε-ball
B(u, ε) = {x ∈ X : d(x , u) < ε} is contained in U. We claim that
B(s, ε) ⊂ [U]C . Indeed, for any x ∈ B(s, ε) we can find a set Cx ∈ C
containing x and conclude that d(Cx , u) = d(Cx ,C ) ≤ d(x , s) < ε and
hence Cx ∩ U 6= ∅ and x ∈ Cx ⊂ [U]C .

To see that F is lower semicontinuous, fix any closed set F ⊂ X and

consider its C-saturation [F ]C . To see that [F ]C is closed, take any point

s ∈ X \ [F ]C and find a set C ∈ C such that s ∈ C . It follows from

s /∈ [F ]C that C ∩ F = ∅ and hence ε := d(C ,F ) > 0 by the compactness

of C . We claim that B(s, ε) ∩ [F ]C = ∅. Assuming the opposite, we can

find a point x ∈ B(s, ε) ∩ [F ]C and a set Cx ∈ C such that x ∈ Cx and

Cx ∩ F 6= ∅. Fix a point z ∈ Cx ∩ F and observe that

d(C ,F ) ≤ d(C , z) = d(C ,Cx) ≤ d(s, x) < ε = d(C ,F ),

which is a desired contradiction.
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Proof of Theorem (2)⇒ (1)

The proof of the implication (2)⇒ (1) is more difficult.

Assume that C is disjoint and continuous.

Fix any admissible metric ρ ≤ 1 on X .

Let U0(C ) = {X} for every C ∈ C.

Claim

For every n ∈ N and every C ∈ C there exists a finite cover Un(C )
of C by open subsets of X such that

(i) each set U ∈ Un(C ) has ρ-diameter ≤ 1
2n ;

(ii) if a set A ∈ C meets some set U ∈ Un(C ), then A ⊂
⋃
Un(C )

and A meets each set U ′ ∈ Un(C ).
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Proof of the Claim

The paracompactness of the metrizable space X yields a locally
finite cover V of X by open sets of ρ-diameter < 1

2n .

For every compact set C ∈ C consider the finite subfamily
V(C ) := {V ∈ V : V ∩ C 6= ∅} of the locally finite cover V.

Since the cover C is upper semicontinuous, the C-saturated set
FC = [X \

⋃
V(C )]C is closed and disjoint with the set C .

Since C is lower semi-continuous, for any open set V ∈ V(C ) the
set [V ]C is open and hence W [C ] :=

⋂
V∈V(C)[V ]C \ FC is an open

C-saturated neighborhood of C in X .

Put Un(C ) := {W (C ) ∩ V : V ∈ V(C )} and observe that Un
satisfies the condition

(i) each set U ∈ Un(C ) has ρ-diameter ≤ 1
2n .
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Proof of the Claim (continuation)

Let us show that the cover Un(C ) satisfies the condition

(ii) if a set A ∈ C meets some set U ∈ Un(C ), then A ⊂
⋃
Un(C )

and A meets each set U ′ ∈ Un(C ).

Assume that a set A ∈ C meets some set U ∈ Un(C ).

First we show that A ⊂
⋃
Un(C ).

Find a set V ∈ V(C ) such that U = W (C ) ∩ V .

It follows from ∅ 6= A ∩ U ⊂ A ∩W (C ) that the set A meets
W (C ) and hence is contained in W (C ) and is disjoint with
FC = [X \

⋃
V(C )]C . Hence

A ⊂W (C ) ∩
(⋃
V(C )

)
=
⋃

V∈V(C) W (C ) ∩ V =
⋃
Un(C ).

Next, take any set U ′ ∈ Un(C ) and find a set V ′ ∈ V(C ) with
U ′ = W (C ) ∩ V ′. The (in)equality A ∩W (C ) ∩ V = A ∩ U 6= ∅
and the definition of the set W (C ) ⊃ A implies that A intersects
V ′ ∈ V(C ) and hence intersects U ′ = W (C ) ∩ V ′. This completes
the proof of Claim.
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Proof of Theorem (cotinuation)

Given two points x , y ∈ X let

δ(x , y) := inf
{

1
2n : ∃C ∈ C and U ∈ Un(C ) such that (x , y) ∈ U

}
.

Adjust the function δ to a pseudometric d letting

d(x , y) = inf
m∑
i=1

δ(xi−1, xi )

where the infimum is taken over all sequences x = x0, . . . , xm = y .

The condition (i) of Claim implies that ρ(x , y) ≤ δ(x , y) and hence
ρ(x , y) ≤ d(x , y) for any x , y ∈ X . So, the pseudometric d is a
metric on X such that the identity map (X , d)→ (X , ρ) is
continuous. To see that this map is a homeomorphism, take any
point x ∈ X and ε > 0. Find n ∈ N such that 1

2n < ε and choose a
set C ∈ C with x ∈ C and a set U ∈ Un(C ) with x ∈ U.

Then for any y ∈ U we get d(y , x) ≤ δ(x , y) ≤ 1
2n < ε, which

means that the map X → (X , d) is continuous.
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Proof of Theorem (continuation)

We claim that the metric d is C-parallel.

Given two distinct compact sets A,B ∈ C, we need to show that
d(a,B) = d(A,B) = d(A, b) for any a ∈ A, b ∈ B.

Assuming that this inequality is not true, we conclude that either
d(a,B) > d(A,B) > 0 or d(A, b) > d(A,B) > 0

for some a ∈ A and b ∈ B.

First assume that d(a,B) > d(A,B) for some a ∈ A. Choose
points a′ ∈ A, b′ ∈ B ′ such that d(a′, b′) = d(A,B) < d(a,B).

By the definition of the distance d(a′, b′) < d(a,B), there exists a
chain a′ = x ′0, x

′
1, . . . , x

′
m = b′ such that∑m
i=1 δ(x ′i−1, x

′
i ) < d(a,B).

We can assume that the points x ′0, . . . , x
′
m are pairwise distinct, so

for every i ≤ m there exist ni ≥ 0 such that δ(x ′i−1, x
′
i ) = 1

2ni and
hence x ′i−1, x

′
i ∈ U ′i for some Ci ∈ C and U ′i ∈ Uni (Ci ). For every

i ≤ m let Ai ∈ C be the unique set containing x ′i . Then A0 = A
and Am = B.
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Proof of Theorem (the end)

Using the condition

(ii) if a set A ∈ C meets some set U ∈ Un(C ), then A ⊂
⋃
Un(C )

and A meets each set U ′ ∈ Un(C ).

of Claim, we can inductively construct a sequence of points
a = x0, x1, . . . , xm such that for every positive i ≤ m the point xi
belongs to Ai and the points xi−1, xi belong to some set
Ui ∈ Uni (Ci ). Then xm ∈ Am = B.

The chain a = x0, x1, . . . , xm witnesses that

d(a,B)≤d(a, xm)≤
m∑
i=1

δ(xi−1, xi )≤
m∑
i=1

1
2ni =

m∑
i=1

δ(x ′i−1, x
′
i )<d(a,B),

which is a desired contradiction.

By analogy we can prove that the case d(A,B) < d(A, b) leads to
a contradiction.
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and A meets each set U ′ ∈ Un(C ).
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Thank You!

Děkuji!
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