A non-Hurewicz set of reals of size \mathfrak{d} with all its powers Menger

Shuguo Zhang
joint work with Jialiang He and Jiakui Yu

Department of Mathematics, Sichuan university

Winter School in Abstract Analysis 2018
Section: Set Theory and Topology
2018/01/29
(1). Basic definitions and background

(2). Main results

(3). Application
Definition (1924)

A set X has the *Menger* property if for each sequence
\[\{U_n : n \in \mathbb{N}\} \] of open covers of X there exist finite subsets
\[V_n \subset U_n, \; n \in \mathbb{N}, \] such that the collection \[\bigcup\{V_n : n \in \mathbb{N}\} \] is a cover of X.

Fact

\[\sigma \text{-compact} \implies \textit{Menger property} \implies \textit{Lindelöf}. \]

Example

$\mathbb{N}^\mathbb{N}$ is a Lindelöf space, and does not satisfy Menger property.
Menger’s Conjecture: Each separable metric Menger space is σ-compact.

Recall that $X \subset \mathbb{R}$ is a Lusin set if it is uncountable, and for every meager set (a union of countably many nowhere dense sets) $A \subset \mathbb{R}$, $X \cap A$ is countable.

Fact (Mahlo, Lusin)

(CH) There exists a Lusin set in \mathbb{R}.

Theorem (Hurewicz, 1925)

Every Lusin set has Menger property, and is not σ-compact.
Notations:

For $a, b \in \mathbb{N}^\mathbb{N}$, denote $a \leq^* b$ if $a(n) \leq b(n)$ for all but finitely many n. $a \nless^* b$ is denoted by $b <^\infty a$.

\mathcal{U} is an open cover of X if for every $U \in \mathcal{U}$, U is an open subset of X, and $\bigcup \mathcal{U} = X$, and $X \notin \mathcal{U}$.

\mathcal{U} is a γ-cover of X if for each $x \in X$, x is contained in all but finitely many elements of \mathcal{U}.

\mathcal{U} is a ω-cover of X if for each finite $F \subset X$, there exist a $U \in \mathcal{U}$ such that $F \subset U$.

S. Zhang A non-Hurewicz set of reals of size \mathfrak{d} with all its powers Menger
Definition (1925)

A space has *Hurewicz* property if for each sequence \(\{U_n : n \in \mathbb{N}\} \) of open covers of \(X \) there exist finite subsets \(V_n \subset U_n, n \in \mathbb{N}, \) such that the collection \(\{\bigcup V_n : n \in \mathbb{N}\} \) is a \(\gamma \)-cover of \(X \).

Fact: \(\sigma \)-compact \(\Rightarrow \) *Hurewicz* property \(\Rightarrow \) *Menger* property.

Hurewicz’s Conjecture: Each separable metric Hurewicz space is \(\sigma \)-compact.
A set $X \subset \mathbb{R}$ is called Sierpiński set if it is uncountable and for every Lebesgue measure zero set $M \subset \mathbb{R}$, $M \cap X$ is countable.

Fact (Sierpiński)

(CH) There exists a Sierpiński set in \mathbb{R}.

Theorem (folklore)

Every Sierpiński set has Hurewicz property, and is not σ-compact.
Notations: $\mathbb{N}^\uparrow \mathbb{N}$ stands for all increasing members of $\mathbb{N}^\mathbb{N}$.

$[\mathbb{N}]^{\mathbb{N}}$ stands for all infinite subsets of \mathbb{N}.

Fin stands for all finite subsets of \mathbb{N}.

For $a \in [\mathbb{N}]^{\mathbb{N}}$, $y \in \mathbb{N}^\uparrow \mathbb{N}$, denote $y/a = \{n : a \cap [y(n), y(n+1)) \neq \emptyset\}$.
The distinction of σ-compact and Hurewicz property, the distinction of σ-compact and Menger property in ZFC

A \mathfrak{d}-scale is a dominating family $\{s_\alpha : \alpha < \mathfrak{d}\} \subseteq [\mathbb{N}]^\mathbb{N}$ such that for all $\alpha < \beta < \mathfrak{d}$, $s_\beta \not\leq^* s_\alpha$; A \mathfrak{b}-scale is a unbounded family $\{b_\alpha : \alpha < \mathfrak{b}\} \subseteq [\mathbb{N}]^\mathbb{N}$ such that for all $\alpha < \beta < \mathfrak{b}$, $s_\alpha \leq^* s_\beta$.

Theorem (Bartoszyński-Tsaban, 2006, Proceedings of AMS)

1. For each \mathfrak{d}-scale S, $S \cup Fin$ has Menger property and is not σ-compact.
2. For each \mathfrak{b}-scale S, $S \cup Fin$ has Hurewicz property and is not σ-compact.
Definition

Let P be a topological property, let

$$non(P) = \min\{|X|, X \text{ not has property } P\}.$$

Lemma (Hurewicz, 1927, Fund. Math)

1. $non(Menger) = 0$.
2. $non(Hurewicz) = b$.

A non-Hurewicz set of reals of size \mathfrak{d} with all its powers Menger.
Theorem (J. Chaber, R. Pol, 2002)

$(\mathfrak{b} = \mathfrak{d})$ There is a space with size \mathfrak{d} such that X has Menger property and does not satisfies Hurewicz property.

Theorem (Tsaban, Zdomskyy, 2008, JEMS)

There is, in ZFC, a set of reals of cardinality \mathfrak{d} that is Menger but not Hurewicz.
Notations: \mathcal{O} denotes all open covers of X.

Ω denotes the collection of all ω-covers of X.

Γ denotes the collection of all γ-covers of X.

Definition $S_{fin}(\Omega, \Omega)$: For any sequence $\{U_n : n \in \mathbb{N}\} \subset \Omega$, there is $V_n \in [U_n]^{<\mathbb{N}}$ such that $\bigcup\{V_n : n \in \mathbb{N}\} \in \Omega$.
Notation: \(U_{fin}(\mathcal{O}, \Gamma) = \text{Hurewicz}; \ S_{fin}(\Omega, \Omega) = \text{Menger}. \)

Theorem (W. Just, A. Miller, M. Scheepers, P. Szeptycki, 1996, Topol Appl)

Let \(X \) be a separable metrizable space. Then \(X \) is \(S_{fin}(\Omega, \Omega) \) if and only if every finite power of \(X \) has Menger property.
How are $S_{fin}(\Omega, \Omega)$ and $U_{fin}(\mathcal{O}, \Gamma)$ different.

Theorem (Chaber-Pol, 2002)

(b = ℵ) *There is a space with size ℵ such that*

$X \in S_{fin}(\Omega, \Omega) \setminus U_{fin}(\mathcal{O}, \Gamma)$.

Theorem (Tsaban, Zdomskyy, 2008, JEMS)

If ℵ is regular, then there is a non-Hurewicz set of reals of size ℵ with all its powers Menger.
Question (Tsaban, 2009, Contemporary Math)

Is there, in ZFC, a space with size \mathfrak{d} such that $X \in S_{fin}(\Omega, \Omega) \setminus U_{fin}(\emptyset, \Gamma)$.

S. Zhang

A non-Hurewicz set of reals of size \mathfrak{d} with all its powers Menger
Main results

Definition

$X \subseteq \mathbb{N}^\mathbb{N}$ is called κ-	extit{unbounded} if for any $g \in \mathbb{N}^\mathbb{N}$,
\[|\{x \in X : x \leq^* g\}| < \kappa.\]

Notion: $X \subseteq [\mathbb{N}]^\mathbb{N}$ is called κ-	extit{unbounded} if the enumeration of its elements in $\mathbb{N}^\mathbb{N}$ is κ-	extit{unbounded}.

Definition

A set $X \subseteq [\mathbb{N}]^\mathbb{N}$ with $|X| \geq \kappa$ is called κ-	extit{concentrated} if it contains a countable set D such that $|X \setminus U| < \kappa$ for any open U containing D.
Main results

Lemma (folklore)

Each ϑ-concentrated space has Menger property.

The relation between the κ-concentrated sets and the κ-unbounded sets is as follows.

Lemma (P. Szewczak, B. Tsaban, 2017, Ann Pure and Appl Logic)

Let κ be an infinite cardinal number and $X \subseteq [\mathbb{N}]^\mathbb{N}$ with $|X| \geq \kappa$. The set X is κ-unbounded if and only if the set $X \cup \text{Fin}$ is κ-concentrated on Fin.
Main results

Definition

For any \(g \in \mathbb{N}^\mathbb{N} \), define \(\tilde{g} \) as follows.

\[
\tilde{g}(0) = g(0); \quad \tilde{g}(n + 1) = \tilde{g}(n) + g(\tilde{g}(n)).
\]

Notation: \(\chi_s \) stands for the characteristic function of \(s \), \(s \in P(\mathbb{N}) \).

Definition

For any \(s \in [\mathbb{N}]^\mathbb{N} \), \(f_s(n) = k \) if the length of 0s between the \(n \)-th '1' and the \((n + 1) \)-th '1' of \(\chi_s \) is equal to \(k \).

Well-known Fact: The map \(s \to f_s \) is a homeomorphism.
Main results

Lemma (J. He, J. Yu, S. Zhang)

Let $a \in \mathbb{N}^\mathbb{N}$, $g \in \mathbb{N}^{\uparrow \mathbb{N}}$ and a omits an interval I with at least two points from \tilde{g}. Then there exists a $k \in \mathbb{N}$ such that $g(k) < f_a(k)$.

Proof.

Assume that $i < j$ are consecutive elements of $I \cap \tilde{g}$.

Put $k = |a \cap \text{min} I|.$

Then $g(k) \leq g(i) = j - i < |I| < f_a(k).$
Main results

Lemma (folklore)

Let $Y \subset [\mathbb{N}]^\mathbb{N}$ with $|Y| < \mathfrak{d}$. Then there is a $b \in \mathbb{N}^\mathbb{N}$ such that for each $y \in Y$, the set $\{n : |y \cap (b(n), b(n+1)| \geq 2\}$ is infinite.

Lemma (J. He, J. Yu, S. Zhang)

For any $Y \subseteq \mathbb{N}^\mathbb{N}$ with $|Y| < \mathfrak{d}$, for any $a \in \mathbb{N}^\mathbb{N}$. $\exists I \in [\mathbb{N}]^\mathbb{N}$ such that $c = \bigcup_{n \in I} [a(n), a(n+1))$ satisfies that $Y < \infty f_c$.

Corollary (J. He, J. Yu, S. Zhang)

For any $Y \subseteq \mathbb{N}^\mathbb{N}$ with $|Y| < \mathfrak{d}$, for any $g \in \mathbb{N}^\mathbb{N}$. $\exists s \in [\mathbb{N}]^\mathbb{N}$ such that $Y < \infty f_s$ and $g < \infty f_{sc}$.
The following is our main result which answers the Tsaban’s question mentioned above:

Theorem (J. He, J. Yu, S. Zhang)

In ZFC, there exists a space $X \subset P(\mathbb{N})$ such that

1. $|X| = \mathfrak{d}$
2. X is not $U_{\text{fin}}(\mathcal{O}, \Gamma)$.
3. X^n has $S_{\text{fin}}(\mathcal{O}, \mathcal{O})$ for every n.

S. Zhang

A non-Hurewicz set of reals of size \mathfrak{d} with all its powers Menger
Proof.

Fix a dominating set \(\{d_\alpha : \alpha < \mathfrak{d}\} \subseteq [\mathbb{N}]^\mathbb{N} \) with size \(\mathfrak{d} \). Constructing inductively a family \(\{f_{s_\gamma} : \gamma < \mathfrak{d}\} \subseteq \mathbb{N}^\mathbb{N} \) such that the set

\[
X = \{s_\gamma : \gamma < \mathfrak{d}\} \cup \text{Fin}
\]

has Menger property but no Hurewicz property.

In step 0. We can choose a \(f_{s_0} \) such that the set \(f_{s_0} \in \mathbb{N}^\mathbb{N} \) and

\[
\{d_0\} \prec f_{s_0}, f_{s_0}.
\]

In step \(\alpha < \mathfrak{d} \). Note that \(|\{d_\beta : \beta < \alpha\}| < \mathfrak{d} \), there exists a \(f_{s_\alpha} \) such that \(f_{s_\alpha} \in \mathbb{N}^\mathbb{N} \) and

\[
\{d_\beta : \beta < \alpha\} \prec f_{s_\alpha}, f_{s_\alpha}.
\]
The sketch of the proof

Proof.

It is not hard to see that \(\{ f_{s, \gamma} : \gamma < d \} \) is \(d \)-unbounded, so is the set \(\{ s_\gamma : \gamma < d \} \)

Recall that the complement function \(\tau : \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N}) \)

\[\tau(A) = \mathbb{N} \setminus A \]

is a homeomorphism. We define the following map \(\psi : P(\mathbb{N}) \to \mathbb{N}^\mathbb{N} \)

such that

\[\psi : s \to s^c \to f_{s^c}. \]

\(\psi \) is a continuous function, and \(\psi(X \cup Fin) \) contains a unbounded family \(\{ f_{s^c, \gamma} : \gamma < d \} \).

Thus, \(X \cup Fin \) is not a Hurewicz space.
Fact

\((X \cup \text{Fin})^2 \text{ is Menger.}\)

Proof of the Fact

Proof.

Note that

\[
(X \cup \text{Fin})^2 = (X \times X) \cup (\text{Fin} \times \text{Fin}) \cup ((X \cup \text{Fin}) \times \text{Fin}) \cup (\text{Fin} \times (X \cup \text{Fin})).
\]

Define \(f: P(\mathbb{N}) \to P(\mathbb{N}) \times P(\mathbb{N}).\)

such that

\[
f(x) = (x_0, x_1).
\]

Where \(x_0 = \{x(2n) : n < \mathbb{N}\}, \ x_1 = \{x(2n + 1) : n < \mathbb{N}\}.
\]
Proof.

Then \(f \) is continuous and

\[
f((X \bigoplus X) \cup \text{Fin}) = (X \times X) \cup (\text{Fin} \times \text{Fin}).
\]

We need to show that

\[(X \bigoplus X) \cup \text{Fin} \text{ is } \mathfrak{d}\text{-concentrated on } \text{Fin}.
\]

Notice that \(X \bigoplus X \) homeomorphic to \(\{f_{s\alpha} \bigoplus f_{s\beta} : \alpha, \beta < \mathfrak{d}\} \).

we just need to show that

\[
\{f_{s\alpha} \bigoplus f_{s\beta} : \alpha, \beta < \mathfrak{d}\} \text{ is } \mathfrak{d}\text{-unbounded in } \mathbb{N}^\mathbb{N}.
\]
Proof.

Let b be any element of $\mathbb{N}^\mathbb{N}$ and $b = b_0 \oplus b_1$.

where $b_0 = \{b(2n) : n \in \mathbb{N}\}$ and $b_1 = \{b(2n + 1) : n \in \mathbb{N}\}$.

It is easy to see that

$$f_{s\alpha} \oplus f_{s\beta} \leq^* b \text{ if and only if } f_{s\alpha} \leq^* b_0 \text{ and } f_{s\beta} \leq^* b_1.$$

Then we have that

$$\{f_{s\alpha} \oplus f_{s\beta} : f_{s\alpha} \oplus f_{s\beta} \leq^* b, \alpha, \beta < \mathfrak{d}\}$$

$$= \{f_{s\alpha} : f_{s\alpha} \leq^* b_0, \alpha < \mathfrak{d}\} \cap \{f_{s\beta} : f_{s\alpha} \leq^* b_1, \beta < \mathfrak{d}\}.$$
Proof.

Note that

\[\left| \left\{ f_{s\alpha} : f_{s\alpha} \leq^* b_0, \alpha < \mathfrak{d} \right\} \right| < \mathfrak{d} ; \]

\[\left| \left\{ f_{s\beta} : f_{s\alpha} \leq^* b_1, \beta < \mathfrak{d} \right\} \right| < \mathfrak{d} ; \]

Thus,

\[\left| \left\{ f_{s\alpha} \oplus f_{s\beta} : f_{s\alpha} \oplus f_{s\beta} \leq^* b, \alpha, \beta < \mathfrak{d} \right\} \right| < \mathfrak{d}. \]

Then we have completed the proof of the Fact above.
Fact

For every \(n > 2 \), \((X \cup Fin)^n \) satisfies Menger property.

Proof.

For each \(n \), Notice that \(X \times Fin \times X \) is homeomorphic to \(X \times X \times Fin \). We have that

\[
(X \cup Fin)^k = \bigcup_{1 \leq k \leq n} C_n^k(X^k \times Fin^{n-k})
\]

\[
= \bigcup_{1 \leq k \leq n} C_n^k((X^k \times Fin^{n-k}) \cup Fin^n)
\]

\[
= \bigcup_{1 \leq k \leq n} C_n^k((X^k \cup Fin^k) \times Fin^{n-k})
\]

It is enough to show that \(X^k \cup Fin^k \) is Menger for each \(1 \leq k \leq n \), and the proof is similar to that of the case \(n = 2 \) above.
Proof.

Define a function

\[P(\mathbb{N}) \to (P(\mathbb{N}))^k. \]

such that

\[f(x) = \langle x(0), x(1), \ldots x(n - 1) \rangle. \]

Where \(x(i) = \langle x(k) : k \equiv i \mod(n) \rangle \) for each \(1 \leq i \leq n \).

It is clearly that \(f \) is continuous. Moreover.

\[f(\bigoplus_{1 \leq i \leq k} X_i \cup Fin) = X^k \cup Fin^k. \]

Where \(X = X_i \) for each \(i \leq k \).
Proof.

Observation: $\bigoplus_{1 \leq i \leq k} X_i \cup Fin$ is \mathcal{d}-concentrated on Fin.

To see this, recall that

$$\bigoplus_{1 \leq i \leq k} X_i \approx \{\bigoplus_{j \in F} f_{s_j} : f_{s_j} \in X, F \in [\mathcal{d}]^k\}.$$

Let b be any element of $\mathbb{N}^{\mathbb{N}}$ and $b = b_0 \oplus b_1 \oplus \cdots \oplus b(n-1)$. Where

$$b_i = \{b(k) : k \equiv i \mod(n)\}.$$

It is easy to see that

$$\bigoplus_{j \in F} f_{s_j} \leq^* b \text{ if and only if } f_{s_i} \leq^* b_i \text{ for each } i < n.$$
The sketch of the proof

Proof.

Then we have that

$$\left\{ \bigoplus_{j \in F} f_{s_j} : \bigoplus_{j \in F} f_{s_j} \leq^* b \right\} = \bigcap_{i \leq n-1} \left\{ f_{s_\alpha} : f_{s_\alpha} \leq^* b(i), \alpha < \varpi \right\}.$$

Note that the space X is ϖ-unbounded, so for all $i \leq n - 1$, both the cardinalities of $\left\{ f_{s_\alpha} : f_{s_\alpha} \leq^* b(i), \alpha < \varpi \right\}$ are less than ϖ. Therefore,

$$|\left\{ \bigoplus_{j \in F} f_{s_j} : \bigoplus_{j \in F} f_{s_j} \leq^* b, \bigoplus_{j \in F} f_{s_j} \in \bigoplus_{1 \leq i \leq k} X_i \right\}| < \varpi.$$

Thus, $\bigoplus_{1 \leq i \leq k} X_i$ is ϖ-unbounded, and then $\bigoplus_{1 \leq i \leq k} X_i \cup Fin$ is ϖ-concentrated on Fin as desired.
Application

Definition

A semi-filter on an infinite countable X is a non-empty family $\mathcal{F} \subseteq [X]^\mathbb{N}$ containing all almost-supersets of its elements. A filter is a semi-filter closed under finite intersections.

Definition

For a filter \mathcal{F} on X, $\mathcal{B} \subseteq \mathcal{F}$ is called a base of \mathcal{F} if for each $F \in \mathcal{F}$, there is a $B \in \mathcal{B}$ with $B \subseteq F$. The character of a filter is the minimal cardinality of its bases.
How are different among the property $S_{fin}(\mathcal{O}, \mathcal{O})$, $U_{fin}(\mathcal{O}, \Gamma)$, $U_{fin}(\mathcal{O}, \Omega)$ and $S_{fin}(\Omega, \Omega)$ in the realm of filters?

Recall that

Proposition (D. Chodounsky, D. Repovš, L. Zdomskky, 2014, J.S.L)

Let \mathcal{F} be a filter on \mathbb{N}. Then \mathcal{F} is Menger (Hurewicz) then for all $0 < n < \mathbb{N}$, \mathcal{F}^n is Menger (Hurewicz).

In the realm of filters,

\[U_{fin}(\mathcal{O}, \Gamma) \rightarrow U_{fin}(\mathcal{O}, \Omega) \leftarrow S_{fin}(\mathcal{O}, \mathcal{O}) \]

\[S_{fin}(\Omega, \Omega) \]
Lemma (R.Hernández-Gutiérrez, P. Szeptycki, 2015, Comm Math Universitatis Carolinae)

(1) \(b \) is the minimal character of a filter that is not Hurewicz.

(2) \(\delta \) is the minimal character of a filter that is not Menger.

Lemma (R.Hernández-Gutiérrez, P. Szeptycki, 2015, Comm Math Universitatis Carolinae)

\((b = \delta) \) There exist a Menger filter of character \(\delta \) that is not Hurewicz.
Question (R. Hernández-Gutiérrez, P. Szeptycki, 2015, Comm Math Universitatis Carolinae)

Is there, in ZFC, a Menger filter of character \mathfrak{d} that is not Hurewicz?
Given a set $X \subset 2^\mathbb{N}$, let \mathcal{I}_X be the ideal generated by finite union of branches $C_x = \{ x \mid n : n \in \mathbb{N} \}$ where $x \in X$ and \mathcal{F}_X be the dual filter.

Lemma (R. Hernández-Gutiérrez, P. Szeptycki, 2015, Comm Math Universitatis Carolinae)

Let $X \subset 2^\mathbb{N}$. Then

1. every finite power of X is Menger if and only if \mathcal{F}_X is Menger.
2. every finite power of X is Hurewicz if and only if \mathcal{F}_X is Hurewicz.

S. Zhang
A non-Hurewicz set of reals of size \mathfrak{d} with all its powers Menger
Application

Theorem (J. He, J. Yu, S. Zhang)

There exists, in ZFC, a Menger filter with character \(\mathfrak{c} \) that is not Hurewicz.

Proof.

Let \(X \) be a finite power Menger space with size \(\mathfrak{c} \) that is not Hurewicz (the existence was proved in the previous paragraph).

Note that the set \(\{(C_x)^c : x \in X\} \) is the filter base for \(\mathcal{F}_X \), and \(|\{(C_x)^c : x \in X\}| = \mathfrak{c} \).

By the lemma above, the filter \(\mathcal{F}_X \) meets the bill. \(\square \)
Thank you!