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Basic definitions and background

Definition (1924)

A set X has the Menger property if for each sequence
{Un : n ∈ N} of open covers of X there exist finite subsets
Vn ⊂ Un, n ∈ N, such that the collection

⋃
{Vn : n ∈ N} is a cover

of X.

Fact

σ-compact ⇒ Menger property ⇒ Lindelöff.

Example

NN is a Lindelöff space, and does not satisfy Menger property.
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Basic definitions and background

Menger’s Conjecture: Each separable metric Menger space is
σ-compact.

Recall that X ⊂ R is a Lusin set if it is uncountable, and for
every meager set (a union of countably many nowhere dense sets)
A ⊂ R, X ∩A is countable.

Fact (Mahlo, Lusin)

(CH) There exists a Lusin set in R.

Theorem (Hurewicz, 1925)

Every Lusin set has Menger property, and is not σ-compact.
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Basic definitions and background

Notations:

For a, b ∈ NN, denote a ≤∗ b if a(n) ≤ b(n) for all but finitely
many n. a 6≤∗ b is denoted by b <∞ a.

U is an open cover of X if for every U ∈ U , U is an open subset of
X, and

⋃
U = X, and X 6∈ U .

U is a γ-cover of X if for each x ∈ X, x is contained in all but
finitely many elements of U .

U is a ω-cover of X if for each finite F ⊂ X, there exist a U ∈ U
such that F ⊂ U .
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Basic definitions and background

Definition (1925)

A space has Hurewicz property if for each sequence {Un : n ∈ N}
of open covers of X there exist finite subsets Vn ⊂ Un, n ∈ N,
such that the collection {∪Vn : n ∈ N} is a γ-cover of X

Fact: σ-compact ⇒ Hurewicz property ⇒ Menger property.

Hurewicz’s Conjecture: Each separable metric Hurewicz space is
σ-compact.
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Basic definitions and background

A set X ⊂ R is called Sierpiński set if it is uncountable and for
every Lebesgue measure zero set M ⊂ R, M ∩X is countable.

Fact (Sierpiński)

(CH) There exists a Sierpiński set in R.

Theorem (folklore)

Every Sierpiński set has Hurewicz property, and is not σ-compact.
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Notations: N↑N stands for all increasing members of NN.

[N]N stands for all infinite subsets of N.

Fin stands for all finite subsets of N.

For a ∈ [N]N, y ∈ N↑N, denote y/a= {n : a∩ [y(n), y(n+ 1)) 6= ∅}.
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Basic definitions and background

The distinction of σ-compact and Hurewicz property, the
distinction of σ-compact and Menger property in ZFC

A d-scale is a dominating family {sα : α < d} ⊆ [N]N such that for
all α < β < d, sβ 6≤∗ sα; A b-scale is a unbounded family
{bα : α < b} ⊆ [N]N such that for all α < β < d, sα ≤∗ sβ.

Theorem (Bartoszyński-Tsaban, 2006, Proceedings of AMS)

(1) For each d-scale S, S
⋃
Fin has Menger property and is not

σ-compact.

(2) For each b-scale S, S
⋃
Fin has Hurewicz property and is not

σ-compact.
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Basic definitions and background

Definition

Let P be a topological property, let
non(P ) = min{|X|, X not has property P}.

Lemma (Hurewicz, 1927, Fund. Math)

(1) non(Menger) = d.
(2) non(Hurewicz) = b.
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Basic definitions and background

Theorem (J. Chaber, R. Pol, 2002)

(b = d) There is a space with size d such that X has Menger
property and does not satisfies Hurewicz property.

Theorem (Tsaban, Zdomskyy, 2008, JEMS)

There is, in ZFC, a set of reals of cardinality d that is Menger
but not Hurewicz.
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Basic definitions and background

Notations: O denotes all open covers of X.

Ω denotes the collection of all ω-covers of X.

Γ denotes the collection of all γ-covers of X.

Definition

Sfin(Ω,Ω): For any sequence {Un : n ∈ N} ⊂ Ω, there is
Vn ∈ [Un]<N such that

⋃
{Vn : n ∈ N} ∈ Ω.
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Basic definitions and background

Notation: Ufin(O,Γ)=Hurewicz; Sfin(Ω,Ω)=Menger.

Theorem (W. Just, A. Miller, M. Scheepers, P. Szeptycki, 1996,
Topol Appl)

Let X be a separable metrizable space. Then X is Sfin(Ω,Ω) if
and only if every finite power of X has Menger property.
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Basic definitions and background

How are Sfin(Ω,Ω) and Ufin(O,Γ) different.

Theorem (Chaber-Pol, 2002)

(b = d) There is a space with size d such that
X ∈ Sfin(Ω,Ω) \ Ufin(O,Γ).

Theorem (Tsaban, Zdomskyy, 2008, JEMS)

If d is regular, then there is a non-Hurewicz set of reals of size d
with all its powers Menger.
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Basic definitions and background

Question (Tsaban, 2009, Contemporary Math)

Is there, in ZFC, a space with size d such that
X ∈ Sfin(Ω,Ω) \ Ufin(O,Γ).
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Main results

Definition

X ⊆ NN is called κ-unbounded if for any g ∈ NN,
|{x ∈ X : x ≤∗ g}| < κ.

Notion: X ⊆ [N]N is called κ-unbounded if the enumeration of its
elements in NN is κ-unbounded.

Definition

A set X ⊆ [N]N with |X| ≥ κ is called κ-concentrated if it
contains a countable set D such that |X\U | < κ for any open U
containing D.
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Main results

Lemma (folklore)

Each d-concentrated space has Menger property.

The relation between the κ-concentrated sets and the
κ-unbounded sets is as follows.

Lemma (P. Szewczak, B. Tsaban, 2017, Ann Pure and Appl Logic)

Let κ be a infinite cardinal number and X ⊆ [N]N with |X| ≥ κ.
The set X is κ-unbounded if and only if the set X ∪ Fin is
κ-concentrated on Fin.
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Main results

Definition

For any g ∈ NN, define g̃ as follows.

g̃(0) = g(0); g̃(n+ 1) = g̃(n) + g(g̃(n)).

Notation:χs stands for the characteristic function of s, s ∈ P (N).

Definition

For any s ∈ [N]N, fs(n) = k if the length of 0s between the n-th
’1’ and the (n+ 1)-th ’1’ of χs is equal to k.

Well-known Fact: The map s→ fs is a homeomorphism.
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Main results

Lemma (J. He, J. Yu, S. Zhang)

Let a ∈ [N]N, g ∈ N↑N and a omits an interval I with at least two
points from g̃. Then there exists a k ∈ N such that g(k) < fa(k).

Proof.

Assume that i < j are consecutive elements of I ∩ g̃.

Put k = |a ∩minI|.

Then g(k) ≤ g(i) = j − i < |I| < fa(k).
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Main results

Lemma (folklore)

Let Y ⊂ [N]N with |Y | < d. Then there is a b ∈ N↑N such that for
each y ∈ Y , the set {n : |y ∩ (b(n), b(n+ 1)| ≥ 2} is infinite.

Lemma (J. He, J. Yu, S. Zhang)

For any Y ⊆ N↑N with |Y | < d, for any a ∈ N↑N. ∃I ∈ [N]N such
that c =

⋃
n∈I [a(n), a(n+ 1)) satisfies that Y <∞ fc.

Corollary (J. He, J. Yu, S. Zhang)

For any Y ⊆ N↑N with |Y | < d, for any g ∈ N↑N. ∃s ∈ [N]N such
that Y <∞ fs and g <∞ fsc .
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Main results

The following is our main result which answers the Tsaban’s
question mentioned above:

Theorem (J. He, J. Yu, S. Zhang)

In ZFC, there exists a space X ⊂ P (N) such that

(1). |X| = d

(2). X is not Ufin(O,Γ).

(3). Xn has Sfin(O,O) for every n.
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The sketch of the proof

Proof.

Fix a dominating set {dα : α < d} ⊆ [N]N with size d. Constructing
inductively a family {fsγ : γ < d} ⊆ NN such that the set

X = {sγ : γ < d}
⋃
Fin

has Menger property but no Hurewicz property.

In step 0. We can choose a fs0 such that the set fsc0 ∈ NN and

{d0} <∞ fs0 , fsc0 .

In step α < d. Note that |{dβ : β < α}| < d, there exists a fsα
such that fscα ∈ NN and

{dβ : β < α} <∞ fsα , fscα .
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The sketch of the proof

Proof.

It is not hard to see that {fsγ : γ < d} is d-unbounded, so is the
set {sγ : γ < d}

Recall that the complement function τ : P(N)→ P(N)

τ(A) = N \A

is a homeomorphism. We define the following map ψ: P (N)→ NN

such that

ψ: s→ sc → fsc .

ψ is a continuous function, and ψ(X ∪ Fin) contains a unbounded
family {fscγ : γ < d}.

Thus, X ∪ Fin is not a Hurewicz space.
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The sketch of the proof

Fact

(X ∪ Fin)2 is Menger.

Proof of the Fact

Proof.

Note that

(X ∪ Fin)2= (X ×X) ∪ (Fin× Fin)
⋃

((X ∪ Fin)× Fin)
⋃

(Fin× (X ∪ Fin)).

Define f : P (N) → P (N)× P (N).
such that

f(x) = (x0, x1).

Where x0 = {x(2n) : n < N}, x1 = {x(2n+ 1) : n < N}.
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The sketch of the proof

Proof.

Then f is continuous and

f((X
⊕
X) ∪ Fin) = (X ×X) ∪ (Fin× Fin).

We need to show that

(X
⊕
X) ∪ Fin is d-concentrated on Fin.

Notice that X
⊕
X homeomorphic to {fsα

⊕
fsβ : α, β < d}.

we just need to show that

{fsα
⊕
fsβ : α, β < d} is d-unbounded in NN.
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The sketch of the proof

Proof.

Let b be any element of NN and b = b0 ⊕ b1.

where b0 = {b(2n) : n ∈ N} and b1 = {b(2n+ 1) : n ∈ N}.
It is easy to see that

fsα ⊕ fsβ ≤∗ b if and only if fsα ≤∗ b0 and fsβ ≤∗ b1.

Then we have that
{fsα ⊕ fsβ : fsα ⊕ fsβ ≤∗ b, α, β < d}
= {fsα : fsα ≤∗ b0, α < d}

⋂
{fsβ : fsα ≤∗ b1, β < d}.
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The sketch of the proof

Proof.

Note that

|{fsα : fsα ≤∗ b0, α < d}| < d;
|{fsβ : fsα ≤∗ b1, β < d}| < d ;

Thus,

|{fsα ⊕ fsβ : fsα ⊕ fsβ ≤∗ b, α, β < d}| < d.

Then we have completed the proof of the Fact above.
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The sketch of the proof

Fact

For every n > 2, (X
⋃
Fin)n satisfies Menger property.

Proof.

For each n, Notice that X × Fin×X is homeomorphic to
X ×X × Fin. We have that

(X ∪ Fin)k=
⋃

1≤k≤nC
k
n(Xk × Finn−k)

=
⋃

1≤k≤nC
k
n((Xk × Finn−k) ∪ Finn)

=
⋃

1≤k≤nC
k
n((Xk ∪ Fink)× Finn−k)

It is enough to show that Xk ∪Fink is Menger for each 1 ≤ k ≤ n,
and the proof is similar to that of the case n = 2 above.
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The sketch of proof

Proof.

Define a function

P (N) → (P (N))k.

such that

f(x) = 〈x(0), x(1), · · ·x(n− 1)〉.

Where x(i) = 〈x(k) : k ≡ i mod(n)〉 for each 1 ≤ i ≤ n.

It is clearly that f is continuous.
Moreover.

f(
⊕

1≤i≤kXi ∪ Fin) = Xk ∪ Fink.

Where X = Xi for each i ≤ k.
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The sketch of proof

Proof.

Observation:
⊕

1≤i≤kXi ∪ Fin is d-concentrated on Fin.

To see this, recall that⊕
1≤i≤kXi ≈ {⊕j∈F fsj : fsj ∈ X,F ∈ [d]k}.

Let b be any element of N↑N and b = b0 ⊕ b1 ⊕ · · · ⊕ b(n− 1).
Where

bi = {b(k) : k ≡ i mod(n)}.

It is easy to see that⊕
j∈F fsj ≤∗ b if and only if fsi ≤∗ bi for each i < n.
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The sketch of the proof

Proof.

Then we have that

{⊕j∈F fsj : ⊕j∈F fsj ≤∗ b} =
⋂
i≤n−1{fsα : fsα ≤∗ b(i), α < d}.

Note that the space X is d-unbounded, so for all i ≤ n− 1, both
the cardinalities of {fsα : fsα ≤∗ b(i), α < d}are less than d.
Therefore,

|{⊕j∈F fsj : ⊕j∈F fsj ≤∗ b, ⊕j∈F fsj ∈
⊕

1≤i≤kXi}| < d.

Thus,
⊕

1≤i≤kXi is d-unbounded, and then
⊕

1≤i≤kXi
⋃
Fin is

d-concentrated on Fin as desired.
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Application

Definition

a semifilter on an infinite countable X is a non-empty family F
⊆ [X]N containing all almost-supersets of its elements. A filter is
a semifilter closed under finite intersections.

Definition

For a filter F on X, B ⊆ F is called a base of F if for each F ∈
F , these is a B ∈ B with B ⊆ F . The character of a filter is the
minimal cardinality of its bases.
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Application

How are different among the property Sfin(O,O), Ufin(O,Γ),
Ufin(O,Ω) and Sfin(Ω,Ω) in the realm of filters?
Recall that

Proposition (D. Chodounsky, D. Repovš, L. Zdomskky, 2014,
J.S.L)

Let F be a filter on N. Then F is Menger (Hurewicz) then for
all 0 < n < N, Fn is Menger (Hurewicz).

In the realm of filters,

Ufin(O,Ω)Ufin(O,Γ) Sfin(O,O)

Sfin(Ω,Ω)
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Application

Lemma (R.Hernández-Gutiérrez, P. Szeptycki, 2015, Comm Math
Universitatis Carolinae)

(1) b is the minimal character of a filter that is not Hurewicz.

(2) d is the minimal character of a filter that is not Menger.

Lemma (R.Hernández-Gutiérrez, P. Szeptycki, 2015, Comm Math
Universitatis Carolinae)

(b = d) There exist a Menger filter of character d that is not
Hurewicz.
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Application

Question (R.Hernández-Gutiérrez, P. Szeptycki, 2015, Comm Math
Universitatis Carolinae)

Is there, in ZFC, a Menger filter of character d that is not
Hurewicz?
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Application

Given a set X ⊂ 2N, let IX be the ideal generated by finite union
of branches Cx = {x|n : n ∈ N} where x ∈ X and FX be the dual
filter.

Lemma (R. Hernández-Gutiérrez, P. Szeptycki, 2015, Comm Math
Universitatis Carolinae)

Let X ⊂ 2N. Then

(1) every finite power of X is Menger if and only if FX is Menger.

(2) every finite power of X is Hurewicz if and only if FX is
Hurewicz.
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Application

Theorem (J. He, J. Yu, S. Zhang)

There exists, in ZFC, a Menger filter with character d that is not
Hurewicz.

Proof.

Let X be a finite power Menger space with size d that is not
Hurewicz( the existence was proved in the previous paragraph).

Note that the set {(Cx)c : x ∈ X} is the filter base for FX , and
|{(Cx)c : x ∈ X}| = d.

By the lemma above, the filter FX meets the bill.
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Thank you!
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