Nonmeasurable images in Polish space with respect to σ-ideals with Borel base

Aleksander Cieślak and Robert Rałowski
Wrocław University of Science and Technology

Winter School in Abstract Analysis
Section: Set Theory & Topology
Hejnice, February 2018
Let X is a Polish space and $I \subseteq \mathcal{P}(X)$ s.t

- I is σ-ideal with a Borel base and
- I contains all singletons,

then (X, I) is Polish ideal space.

Let $\mathcal{B}_+(I) = \text{Borel}(X) \setminus I$ be set of all I-positive Borel sets.

$\text{Perf}(X)$ stands for set of all perfect subsets of X.
Notation and Terminology

Let X is a Polish space and $I \subseteq \mathcal{P}(X)$ s.t
- I is σ-ideal with a Borel base and
- I contains all singletons,
then (X, I) is Polish ideal space

Let $\mathcal{B}_+(I) = \text{Borel}(X) \setminus I$ be set of all I-positive Borel sets.

$\text{Perf}(X)$ stands for set of all perfect subsets of X
Let X is a Polish space and $I \subseteq \mathcal{P}(X)$ s.t
- I is σ-ideal with a Borel base and
- I contains all singletons,
then (X, I) is Polish ideal space
Let $\mathcal{B}_+(I) = \text{Borel}(X) \setminus I$ be set of all I-positive Borel sets.
$\text{Perf}(X)$ stands for set of all perfect subsets of X
Notation and Terminology

Let X is a Polish space and $I \subseteq \mathcal{P}(X)$ s.t
- I is σ-ideal with a Borel base and
- I contains all singletons,
then (X, I) is Polish ideal space

Let $\mathcal{B}_+(I) = \text{Borel}(X) \setminus I$ be set of all I-positive Borel sets.

$\text{Perf}(X)$ stands for set of all perfect subsets of X
Notation and Terminology

Let X is a Polish space and $I \subseteq \mathcal{P}(X)$ s.t

- I is σ-ideal with a Borel base and
- I contains all singletons,

then (X, I) is Polish ideal space

Let $\mathcal{B}_+(I) = \text{Borel}(X) \setminus I$ be set of all I-positive Borel sets.

$\text{Perf}(X)$ stands for set of all perfect subsets of X
Definition (Cardinal coefficients)

Let X - Polish space and $I \subseteq \mathcal{P}(X)$ be σ-ideal and $\mathcal{F} \subset I$ let

\[
cov(\mathcal{F}) = \min\{|\mathcal{A}| : \mathcal{A} \subset \mathcal{F} \land \bigcup \mathcal{A} = X\}
\]

\[
cov_h(\mathcal{F}) = \min\{|\mathcal{A}| : \mathcal{A} \subset \mathcal{F} \land (\exists B \in \mathcal{B}_+(I)) \bigcup \mathcal{A} = B\}
\]

\[
cof(I) = \min\{|\mathcal{B}| : \mathcal{B} \subseteq I \land (\forall A \in I)(\exists B \in \mathcal{B}) A \subseteq B\}
\]

\[
Cof(I) = \min\{|\mathcal{B}| : \mathcal{B} \subseteq \mathcal{B}_+(I) \land (\forall A \in \mathcal{B}_+(I))(\exists B \in \mathcal{B})(B \subseteq A)\}
\]

\mathcal{N} σ-ideal of null sets and \mathcal{M} σ-ideal of all meager subsets of X.

$\text{cov}(\mathcal{M}) = \text{cov}_h(\mathcal{M}), \text{cov}(\mathcal{N}) = \text{cov}_h(\mathcal{N})$.

Theorem (Cichoń-Kamburelis-Pawlikowski)

If I is c.c.c. σ-ideal with Borel base then $\text{cof}(I) = \text{Cof}(I)$
Definition (Cardinal coefficients)

Let X - Polish space and $I \subseteq \mathcal{P}(X)$ be σ-ideal and $\mathcal{F} \subset I$ let

$$cov(\mathcal{F}) = \min\{|A| : A \subset \mathcal{F} \land \bigcup A = X\}$$

$$cov_h(\mathcal{F}) = \min\{|A| : A \subset \mathcal{F} \land (\exists B \in \mathcal{B}_+(I)) \bigcup A = B\}$$

$$cof(I) = \min\{|B| : B \subset I \land (\forall A \in I)(\exists B \in \mathcal{B}) A \subset B\}$$

$$\text{Cof}(I) = \min\{|B| : B \subset \mathcal{B}_+(I) \land (\forall A \in \mathcal{B}_+(I))(\exists B \in \mathcal{B})(B \subset A)\}$$

N σ-ideal of null sets and M σ-ideal of all meager subsets of X. $cov(M) = cov_h(M)$, $cov(N) = cov_h(N)$.

Theorem (Cichoń-Kamburelis-Pawlikowski)

If I is c.c.c. σ-ideal with Borel base then $cof(I) = \text{Cof}(I)$
Definition (Cardinal coefficients)
Let X - Polish space and $I \subseteq \mathcal{P}(X)$ be σ-ideal and $\mathcal{F} \subset I$ let
\[
\text{cov}(\mathcal{F}) = \min\{|\mathcal{A}| : \mathcal{A} \subset \mathcal{F} \land \bigcup \mathcal{A} = X\}
\]
\[
\text{cov}_h(\mathcal{F}) = \min\{|\mathcal{A}| : \mathcal{A} \subset \mathcal{F} \land (\exists B \in \mathcal{B}_+(I)) \bigcup \mathcal{A} = B\}
\]
\[
\text{cof}(I) = \min\{|\mathcal{B}| : \mathcal{B} \subseteq I \land (\forall A \in I)(\exists B \in \mathcal{B}) A \subseteq B\}
\]
\[
\text{Cof}(I) = \min\{|\mathcal{B}| : \mathcal{B} \subseteq \mathcal{B}_+(I) \land (\forall A \in \mathcal{B}_+(I))(\exists B \in \mathcal{B})(B \subseteq A)\}
\]
\mathcal{N} σ-ideal of null sets and \mathcal{M} σ-ideal of all meager subsets of X.
\[
\text{cov}(\mathcal{M}) = \text{cov}_h(\mathcal{M}), \text{ cov}(\mathcal{N}) = \text{cov}_h(\mathcal{N}).
\]

Theorem (Cichoń-Kamburelis-Pawlikowski)
If I is c.c.c. σ-ideal with Borel base then $\text{cof}(I) = \text{Cof}(I)$
Complete I-nonmeasurability

Definition
Let (X, I) be Polish ideal space. We say that $A \subseteq X$ is completely I-nonmeasurable in X iff

$$(\forall B \in B_+(I)) \ A \cap B \neq \emptyset \land A^c \cap B \neq \emptyset.$$

- $A \subseteq X$ is complete $[X]^{\leq \omega}$-nonmeasurable iff A is Bernstein subset of X,
- $A \subseteq [0, 1]$ is complete \mathcal{N}-nonmeasurable iff $\lambda^*(A) = 0$ and $\lambda^*(B) = 1$,
- $A \subseteq X$ is complete \mathcal{M}-nonmeasurable if $\emptyset \neq U \subseteq X$ then $A \cap U$ does not have Baire property.
Complete I-nonmeasurability

Definition
Let (X, I) be Polish ideal space. We say that $A \subseteq X$ is completely I-nonmeasurable in X iff

$$(\forall B \in \mathcal{B}_+(I)) \ A \cap B \neq \emptyset \land A^c \cap B \neq \emptyset.$$

- $A \subseteq X$ is complete $[X]^{<\omega}$-nonmeasurable iff A is Bernstein subset of X,
- $A \subseteq [0, 1]$ is complete \mathcal{N}-nonmeasurable iff $\lambda^*(A) = 0$ and $\lambda^*(B) = 1$,
- $A \subseteq X$ is complete \mathcal{M}-nonmeasurable if $\emptyset \neq U \subseteq X$ then $A \cap U$ does not have Baire property.
Theorem
Let $X \subseteq X_0$ and \{ $Y_\alpha : \alpha < c$ \} be a Polish subspaces
Assume that c is regular cardinal number.
If \{ $f_\alpha : \alpha < c$ \} be a family of functions such that for any $\alpha < c$
1. $f_\alpha[X] = Y_\alpha$,
2. for any $y \in \bigcup_{\alpha < c} Y_\alpha$ we have $f_\alpha^{-1}[y] \in [X]<c$.
Then there exists a subset $A \subseteq X$ such that for any $\alpha < c$ $f_\alpha[A]$ is a Bernstein set in Y_α.
Theorem

Let $X \subseteq X_0$ and $\{ Y_\alpha : \alpha < c \}$ be a Polish subspaces

Assume that c is regular cardinal number.

If $\{ f_\alpha : \alpha < c \}$ be a family of functions such that for any $\alpha < c$

1. $f_\alpha[X] = Y_\alpha$,
2. for any $y \in \bigcup_{\alpha < c} Y_\alpha$ we have $f_\alpha^{-1}[y] \in [X]^{<c}$.

Then there exists a subset $A \subseteq X$ such that for any $\alpha < c$ $f_\alpha[A]$ is

a Bernstein set in Y_α.
Theorem

Let $X \subseteq X_0$ and $\{Y_\alpha : \alpha < c\}$ be a Polish subspaces.

Assume that c is regular cardinal number.

If $\{f_\alpha : \alpha < c\}$ be a family of functions such that for any $\alpha < c$

1. $f_\alpha[X] = Y_\alpha$,

2. for any $y \in \bigcup_{\alpha < c} Y_\alpha$ we have $f_\alpha^{-1}[y] \in [X]^{< c}$.

Then there exists a subset $A \subseteq X$ such that for any $\alpha < c$ $f_\alpha[A]$ is a Bernstein set in Y_α.
Theorem

Let $X \subseteq X_0$ and $\{ Y_\alpha : \alpha < \mathfrak{c} \}$ be a Polish subspaces. Assume that \mathfrak{c} is regular cardinal number.

If $\{ f_\alpha : \alpha < \mathfrak{c} \}$ be a family of functions such that for any $\alpha < \mathfrak{c}$

1. $f_\alpha[X] = Y_\alpha$,

2. for any $y \in \bigcup_{\alpha < \mathfrak{c}} Y_\alpha$ we have $f_\alpha^{-1}[y] \in [X]^{<\mathfrak{c}}$.

Then there exists a subset $A \subseteq X$ such that for any $\alpha < \mathfrak{c}$ $f_\alpha[A]$ is a Bernstein set in Y_α.
Theorem

Let $X \subseteq X_0$ and $\{ Y_\alpha : \alpha < \mathfrak{c} \}$ be a Polish subspaces
Assume that \mathfrak{c} is regular cardinal number.
If $\{ f_\alpha : \alpha < \mathfrak{c} \}$ be a family of functions such that for any $\alpha < \mathfrak{c}$

1. $f_\alpha [X] = Y_\alpha$,

2. for any $y \in \bigcup_{\alpha < \mathfrak{c}} Y_\alpha$ we have $f_\alpha^{-1}[y] \in [X]^{<\mathfrak{c}}$.

Then there exists a subset $A \subseteq X$ such that for any $\alpha < \mathfrak{c}$ $f_\alpha[A]$ is a Bernstein set in Y_α.
Theorem

Let $X \subseteq X_0$ and $\{Y_\alpha : \alpha < \mathfrak{c}\}$ be a Polish subspaces
Assume that \mathfrak{c} is regular cardinal number.
If $\{f_\alpha : \alpha < \mathfrak{c}\}$ be a family of functions such that for any $\alpha < \mathfrak{c}$

1. $f_\alpha[X] = Y_\alpha$,
2. for any $y \in \bigcup_{\alpha < \mathfrak{c}} Y_\alpha$ we have $f_\alpha^{-1}[y] \in [X]^{<\mathfrak{c}}$.

Then there exists a subset $A \subseteq X$ such that for any $\alpha < \mathfrak{c}$ $f_\alpha[A]$ is a Bernstein set in Y_α.
Corollary

There is subset $A \subset S^1$ of the unit circle that for any projection π on real line $l \subseteq \mathbb{R}^2$ on the real plane of the set A is a Bernstein set in $\pi[S^1]$.

Thus we have negative answer for

[asked Aug 3 ’11 at 7:51 simon 162] Suppose A is contained in the unit square of \mathbb{R}^2, and the projection of A on any line outside the unit square is not Lebesgue measurable in \mathbb{R}. Does that imply that A is not Lebesgue measurable in the plane?

Moreover, our answer is valid for measure and category simultaneously.
Corollary

There is subset $A \subset S^1$ of the unit circle that for any projection π on real line $l \subseteq \mathbb{R}^2$ on the real plane of the set A is a Bernstein set in $\pi[S^1]$.

Thus we have negative answer for

[asked Aug 3 ’11 at 7:51 simon 162] Suppose A is contained in the unit square of \mathbb{R}^2, and the projection of A on any line outside the unit square is not Lebesgue measurable in \mathbb{R}. Does that imply that A is not Lebesgue measurable in the plane?

Moreover, our answer is valid for measure and category simultaneously.
Corollary

There is subset $A \subset S^1$ of the unit circle that for any projection π on real line $l \subseteq \mathbb{R}^2$ on the real plane of the set A is a Bernstein set in $\pi[S^1]$.

Thus we have negative answer for

[asked Aug 3 '11 at 7:51 simon 162] Suppose A is contained in the unit square of \mathbb{R}^2, and the projection of A on any line outside the unit square is not Lebesgue measurable in \mathbb{R}. Does that imply that A is not Lebesgue measurable in the plane?

Moreover, our answer is valid for measure and category simultaneously.
Example

Let

- $\mathcal{F} \subseteq P(\omega)$ - Frechet filter,
- $X = \omega^\omega$, $Y_C = \omega^C$ where $C \in \mathcal{F}$,
- $\omega^\omega \ni x \mapsto f_C(x) = x \upharpoonright C \in \omega^C$.

Then by the Theorem there is $A \subseteq \omega^\omega$ such that each image $f_C[A]$ is a Bernstein subset of ω^C.
Example

Let

- $\mathcal{F} \subseteq P(\omega)$ - Frechet filter,
- $X = \omega^\omega$, $Y_C = \omega^C$ where $C \in \mathcal{F}$,
- $\omega^\omega \ni x \mapsto f_C(x) = x \upharpoonright C \in \omega^C$.

Then by the Theorem there is $A \subset \omega^\omega$ such that each image $f_C[A]$ is a Bernstein subset of ω^C.
Remark

If we consider any function \(f : X \to X_0 \) such that \(f[X] \) is a Polish space, \(A \subseteq X \) Bernstein set then

1. if preimage of any singleton of \(f[X] \) contains a perfect set then \(f[A] = f[X] \),

2. if \(f \) is continuous then \(f[A] \) contains some Bernstein set in \(f[X] \) (because any preimage of perfect set in \(f[X] \) contains perfect set in \(X \)).
Remark

If we consider any function $f : X \to X_0$ such that $f[X]$ is a Polish space, $A \subseteq X$ Bernstein set then

1. if preimage of any singleton of $f[X]$ contains a perfect set then $f[A] = f[X]$,

2. if f is continuous then $f[A]$ contains some Bernstein set in $f[X]$ (because any preimage of perfect set in $f[X]$ contains perfect set in X).
Remark
If we consider any function $f : X \to X_0$ such that $f[X]$ is a Polish space, $A \subseteq X$ Bernstein set then

1. if preimage of any singleton of $f[X]$ contains a perfect set then $f[A] = f[X]$,

2. if f is continuous then $f[A]$ contains some Bernstein set in $f[X]$ (because any preimage of perfect set in $f[X]$ contains perfect set in X).
Theorem

Let (X_0, I) be Polish ideal space and let $X \subseteq X_0$ be I-positive Borel subset. Let \mathcal{F} be a family with the following properties:

1. $(\forall f \in \mathcal{F})(f[X] \subseteq X_0$ is Polish space),
2. $(\forall f \in \mathcal{F})(f : X \to X_0 \land I_f \subseteq P(f[X])$ be σ-ideal with Borel base on $f[X])$,
3. $|\mathcal{F}| \leq \sup\{\text{Cof}(I_f) : f \in \mathcal{F}\}$,
4. $\sup\{\text{Cof}(I_f) : f \in \mathcal{F}\} \leq \min\{|Z| : Z \subseteq X_0 \land (\exists f \in \mathcal{F})(\exists B \in \text{Bor}(f[X]) \setminus I_f)(\exists \mathcal{F}_0 \subseteq \mathcal{F})(|\mathcal{F}_0| \leq |Z| \land f^{-1}[B] \subseteq \bigcup\{h^{-1}[Z] : h \in \mathcal{F}_0\})\}$.

Then there exists subset A of X such that for any $f \in \mathcal{F}$ the image $f[A]$ is completely I_f-nonmeasrable in $f[X]$.
Theorem

Let \((X_0, I)\) be Polish ideal space and let \(X \subseteq X_0\) be \(I\)-positive Borel subset. Let \(\mathcal{F}\) be a family with the following properties:

1. \((\forall f \in \mathcal{F})(f[X] \subseteq X_0\) is Polish space),
2. \((\forall f \in \mathcal{F})(f : X \to X_0 \land I_f \subseteq P(f[X])\) be \(\sigma\)-ideal with Borel base on \(f[X]\)),
3. \(|\mathcal{F}| \leq \sup\{\text{Cof}(I_f) : f \in \mathcal{F}\},
4. \sup\{\text{Cof}(I_f) : f \in \mathcal{F}\} \leq \min\{|Z| : Z \subseteq X_0 \land (\exists f \in \mathcal{F})(\exists B \in \text{Bor}(f[X]) \setminus I_f)(\exists \mathcal{F}_0 \subseteq \mathcal{F})(|\mathcal{F}_0| \leq |Z| \land f^{-1}[B] \subseteq \bigcup\{h^{-1}[Z] : h \in \mathcal{F}_0\})\}.

Then there exists subset \(A\) of \(X\) such that for any \(f \in \mathcal{F}\) the image \(f[A]\) is completely \(I_f\)-nonmeasurable in \(f[X]\).
Theorem

Let \((X_0, I)\) be Polish ideal space and let \(X \subseteq X_0\) be \(I\)-positive Borel subset. Let \(\mathcal{F}\) be a family with the following properties:

1. \((\forall f \in \mathcal{F})(f[X] \subseteq X_0 \text{ is Polish space}),\)

2. \((\forall f \in \mathcal{F})(f : X \to X_0 \land I_f \subseteq P(f[X]) \text{ be } \sigma\text{-ideal with Borel base on } f[X]),\)

3. \(|\mathcal{F}| \leq \sup \{\text{Cof}(I_f) : f \in \mathcal{F}\},\)

4. \(\sup \{\text{Cof}(I_f) : f \in \mathcal{F}\} \leq \min \{|Z| : Z \subseteq X_0 \land (\exists f \in \mathcal{F})(\exists B \in \text{Bor}(f[X]) \setminus I_f)(\exists \mathcal{F}_0 \subseteq \mathcal{F})(|\mathcal{F}_0| \leq |Z| \land f^{-1}[B] \subseteq \bigcup \{h^{-1}[Z] : h \in \mathcal{F}_0\})\}.)

Then there exists subset \(A\) of \(X\) such that for any \(f \in \mathcal{F}\) the image \(f[A]\) is completely \(I_f\)-nonmeasurable in \(f[X]\).
Theorem
Let \((X_0, I)\) be Polish ideal space and let \(X \subseteq X_0\) be \(I\)-positive Borel subset. Let \(\mathcal{F}\) be a family with the following properties:

1. \((\forall f \in \mathcal{F})(f[X] \subseteq X_0\) is Polish space),
2. \((\forall f \in \mathcal{F})(f : X \rightarrow X_0 \land I_f \subseteq P(f[X])\) be \(\sigma\)-ideal with Borel base on \(f[X]\)),
3. \(|\mathcal{F}| \leq \sup\{\text{Cof}(I_f) : f \in \mathcal{F}\}\),
4. \(\sup\{\text{Cof}(I_f) : f \in \mathcal{F}\} \leq \min\{|Z| : Z \subseteq X_0 \land (\exists f \in \mathcal{F})(\exists B \in \text{Bor}(f[X]) \setminus I_f)(\exists \mathcal{F}_0 \subseteq \mathcal{F})(|\mathcal{F}_0| \leq |Z| \land f^{-1}[B] \subseteq \bigcup\{h^{-1}[Z] : h \in \mathcal{F}_0\})\}\).

Then there exists subset \(A\) of \(X\) such that for any \(f \in \mathcal{F}\) the image \(f[A]\) is completely \(I_f\)-nonmeasurable in \(f[X]\).
Theorem

Let \((X_0, I)\) be Polish ideal space and let \(X \subseteq X_0\) be \(I\)-positive Borel subset. Let \(\mathcal{F}\) be a family with the following properties:

1. \((\forall f \in \mathcal{F})(f[X] \subseteq X_0 \text{ is Polish space}),\)
2. \((\forall f \in \mathcal{F})(f : X \rightarrow X_0 \land I_f \subseteq P(f[X]) \text{ be } \sigma\text{-ideal with Borel base on } f[X]),\)
3. \(|\mathcal{F}| \leq \sup\{ \text{Cof}(I_f) : f \in \mathcal{F} \},\)
4. \(\sup\{ \text{Cof}(I_f) : f \in \mathcal{F} \} \leq \min\{|Z| : Z \subseteq X_0 \land (\exists f \in \mathcal{F})(\exists B \in \text{Bor}(f[X]) \setminus I_f)(\exists \mathcal{F}_0 \subseteq \mathcal{F})(|\mathcal{F}_0| \leq |Z| \land f^{-1}[B] \subseteq \bigcup\{ h^{-1}[Z] : h \in \mathcal{F}_0 \})\} \)

Then there exists subset \(A\) of \(X\) such that for any \(f \in \mathcal{F}\) the image \(f[A]\) is completely \(I_f\)-nonmeasurable in \(f[X]\).
Theorem

Let \((X_0, I)\) be Polish ideal space and let \(X \subseteq X_0\) be \(I\)-positive Borel subset. Let \(\mathcal{F}\) be a family with the following properties:

1. \((\forall f \in \mathcal{F})(f[X] \subseteq X_0 \text{ is Polish space}),\)

2. \((\forall f \in \mathcal{F})(f : X \to X_0 \land I_f \subseteq P(f[X]) \text{ be } \sigma\text{-ideal with Borel base on } f[X]),\)

3. \(|\mathcal{F}| \leq \sup\{\text{Cof}(I_f) : f \in \mathcal{F}\},\)

4. \(\sup\{\text{Cof}(I_f) : f \in \mathcal{F}\} \leq \min\{|Z| : Z \subseteq X_0 \land (\exists f \in \mathcal{F})(\exists B \in \text{Bor}(f[X]) \setminus I_f)(\exists \mathcal{F}_0 \subseteq \mathcal{F})(|\mathcal{F}_0| \leq |Z| \land f^{-1}[B] \subseteq \bigcup\{h^{-1}[Z] : h \in \mathcal{F}_0\})\} \).

Then there exists subset \(A\) of \(X\) such that for any \(f \in \mathcal{F}\) the image \(f[A]\) is completely \(I_f\)-nonmeasurable in \(f[X]\).
Theorem
Let (X_0, I) be Polish ideal space and let $X \subseteq X_0$ be I-positive Borel subset. Let \mathcal{F} be a family with the following properties:

1. $(\forall f \in \mathcal{F})(f[X] \subseteq X_0$ is Polish space),
2. $(\forall f \in \mathcal{F})(f : X \to X_0 \land I_f \subseteq P(f[X])$ be σ-ideal with Borel base on $f[X]),$
3. $|\mathcal{F}| \leq \sup\{\text{Cof}(I_f) : f \in \mathcal{F}\},$
4. $\sup\{\text{Cof}(I_f) : f \in \mathcal{F}\} \leq \min\{|Z| : Z \subseteq X_0 \land (\exists f \in \mathcal{F})(\exists B \in \text{Bor}(f[X]) \setminus I_f)(\exists \mathcal{F}_0 \subseteq \mathcal{F})(|\mathcal{F}_0| \leq |Z| \land f^{-1}[B] \subseteq \bigcup\{h^{-1}[Z] : h \in \mathcal{F}_0\})\}.$

Then there exists subset A of X such that for any $f \in \mathcal{F}$ the image $f[A]$ is completely I_f-nonmeasurable in $f[X]$.
Theorem
Assume that \((X_0, I)\) is Polish ideal space and let \(X \subseteq X_0\) be \(I\)-positive Borel subset. Let \(\mathcal{F}\) be a family of functions such that

1. for every \(f \in \mathcal{F}\) the image \(f[X]\) is Borel subset of \(X_0\) and \(I_f \subseteq P([f[X]])\) is \(\sigma\)-ideal with Borel base in \(f[X]\),
2. \(|\mathcal{F}| \leq \max\{\text{Cof}(I), \sup\{\text{Cof}(I_f) : f \in \mathcal{F}\}\}\),
3. there is set \(Z \in I\) such that \(\text{Cof}(I) \leq \text{cov}\(\{f^{-1}[\{d]\}] : f \in \mathcal{F} \land d \in X_0 \setminus Z\}, I)\),
4. \(\max\{\text{Cof}(I), \sup\{\text{Cof}(I_f) : f \in \mathcal{F}\}\} \leq \min\{|Z| : Z \subseteq X_0 \land (\exists f \in \mathcal{F})(\exists B \in \text{Bor}(f[X]) \setminus I_f)(\exists \mathcal{F}_0 \subseteq \mathcal{F})(|\mathcal{F}_0| \leq |Z| \land f^{-1}[B] \subseteq \bigcup\{h^{-1}[Z] : h \in \mathcal{F}_0\})\}\).

Then there exists \(A \subseteq X\) which is completely \(I\)-nonmeasurable in \(X\) such that for every \(f \in \mathcal{F}\) the image \(f[A]\) is completely \(I_f\)-nonmeasurable in \(f[X]\).
Corollary

Assume MA. If $I \in \{\mathcal{N}, \mathcal{M}\}$ is a σ-ideal defined on Cantor space and $X \subset 2^\omega$ be a Borel I-positive. If \mathcal{F} with at most size equal to \mathfrak{c} and for any $f \in \mathcal{F}$ $\text{rng}(f)$ is Borel and $I_f \in \{\mathcal{N}, \mathcal{M}\}$ then the above two Theorems are true.
In the Mathoverflow webpage [2] the user Gowers gives positive answer for the following question

[Gerald Edgar Aug 3 ’11 at 13:57] (a) All projections but two are non-measurable? Or: (b) Projections in uncountably many directions measurable and projections in uncountably many other directions non-measurable?

The user of Mathoverflow asked:

[answered Aug 3 ’11 at 14:47 gowers] I don’t know what happens if we ask for continuum many measurable projections and continuum many non-measurable projections ...
Theorem

Let c be regular, X, Y be Polish spaces and

- $\{Y_\alpha : \alpha \in Y\}$ be a family of Polish spaces,
- $\{f_\alpha : \alpha \in Y\}$ be a family functions such that for all distinct $\alpha, \beta \in Y$
 - $\forall y \in Y_\alpha |f_\alpha^{-1}[y]| = c$
 - $\forall y \in Y_\alpha$ and $y' \in Y_\beta$ $|f_\alpha[y] \cap f_\beta[y']| < c$.

Then there exists a subset $A \subseteq X$ and disjoint Bernstein sets $F, G \subseteq Y$ such that $Y = F \cup G$ and

$$F = \{\alpha \in Y : f_\alpha[A] = Y_A\}$$

$$G = \{\alpha \in Y : f_\alpha[A] \text{ is Bernstein in } Y_\alpha\}.$$
Theorem

Let c be regular, X, Y be Polish spaces and

- $\{Y_\alpha : \alpha \in Y\}$ be a family of Polish spaces,
- $\{f_\alpha : \alpha \in Y\}$ be a family functions such that for all distinct $\alpha, \beta \in Y$
 - $\forall y \in Y_\alpha \ |f_\alpha^{-1}[y]| = c$
 - $\forall y \in Y_\alpha$ and $y' \in Y_\beta \ |f_\alpha[y] \cap f_\beta[y']| < c$.

Then there exists a subset $A \subseteq X$ and disjoint Bernstein sets $F, G \subseteq Y$ such that $Y = F \cup G$ and

$$F = \{\alpha \in Y : f_\alpha[A] = Y_A\}$$

$$G = \{\alpha \in Y : f_\alpha[A] \text{ is Bernstein in } Y_\alpha\}.$$
Theorem

Let c be regular, X, Y be Polish spaces and

1. $\{Y_\alpha : \alpha \in Y\}$ be a family of Polish spaces,
2. $\{f_\alpha : \alpha \in Y\}$ be a family functions such that for all distinct $\alpha, \beta \in Y$
 1. $\forall y \in Y_\alpha \ |f_\alpha^{-1}[y]| = c$
 2. $\forall y \in Y_\alpha$ and $y' \in Y_\beta \ |f_\alpha[y] \cap f_\beta[y']| < c$.

Then there exists a subset $A \subseteq X$ and disjoint Bernstein sets $F, G \subseteq Y$ such that $Y = F \cup G$ and

$$F = \{\alpha \in Y : f_\alpha[A] = Y_A\}$$

$$G = \{\alpha \in Y : f_\alpha[A] \text{ is Bernstein in } Y_\alpha\}.$$
Fact

Let $n \geq 2$ be a fixed integer then every projection π of the Lusin set $A \subseteq B(0, 1) \subseteq \mathbb{R}^n$ into tangent hyperplane l to $B(0, 1)$ is Lusin set in $\pi[B(0, 1)]$. The same result is true if we replace Lusin set by Sierpiński set.
Fact

It is relatively consistent with ZFC theory that $\neg CH$ and for every integer $n \geq 2$ there exists Baire nonmeasurable subset A of the cardinality less than \mathfrak{c} of the unit ball $B \subseteq \mathbb{R}^n$ such that projection $\pi[A]$ into any tangent to B hyperplane has not Baire property. The same result is true in the case of Lebesgue measure.
Fact

It is relatively consistent with ZFC theory that $\neg\text{CH}$ and for every integer $n \geq 2$ there exists Baire nonmeasurable subset A of the cardinality less than \mathfrak{c} of the unit ball $B \subseteq \mathbb{R}^n$ such that projection $\pi[A]$ into any tangent to B hyperplane has not Baire property. The same result is true in the case of Lebesgue measure.
Theorem

Let X be a compact Polish space and $G \subseteq \mathcal{H}(X)$ be uncountable G_δ subset of $\mathcal{H}(X)$. Let $B \subseteq X$ be a comeager subset of X. Then there are perfect subsets $P \subseteq X$ and $Q \subseteq G$ such that for every homeomorphism $f \in Q$ of X we have $P \subseteq f[B]$.

Theorem
Let \(D \subseteq \mathbb{R}^2 \) be a unit disc with center in origin coordinates and \(B \subseteq D \) a comeager (or \(D \setminus B \) is null) set in \(D \). Then there are perfect set of directions \(R \) on \(\text{bd}(D) \) and \(P, Q \subseteq [-1, 1] \) such that

\[
(\forall \alpha \in R) \ (r_\alpha[P \times Q] \subseteq B),
\]

where \(r_\alpha \) is rotation by \(\alpha \) over origin of the real plane \(\mathbb{R}^2 \).

Theorem
Let \(n \geq 2 \) and \(B_n \subseteq \mathbb{R}^n \) be a \(n \)-dimensional unit ball. Let us assume that \(E \subseteq B \) a comeager (or \(B_n \setminus E \) is null) set in \(B_n \). Then there are perfect set \(R \) in \(D = \text{bd}(B_n) \), non-meager (non-null) \(P \subseteq B_{n-1} \) and \(Q \subseteq [-1, 1] \) such that

\[
(\forall \alpha \in R) \ (r_\alpha[P \times Q] \subseteq B_n),
\]

where \(r_\alpha \) is rotation of \(\alpha \) to the vector \((1, 0, \ldots, 0) \in \mathbb{R}^n \) over origin of the euclidean space \(\mathbb{R}^n \).
Theorem
Let \(D \subseteq \mathbb{R}^2 \) be a unit disc with center in origin coordinates and \(B \subseteq D \) a comeager (or \(D \setminus B \) is null) set in \(D \). Then there are perfect set of directions \(R \) on \(\text{bd}(D) \) and \(P, Q \subseteq [-1, 1] \) such that

\[
(\forall \alpha \in R) \ (r_\alpha[P \times Q] \subseteq B),
\]

where \(r_\alpha \) is rotation by \(\alpha \) over origin of the real plane \(\mathbb{R}^2 \).

Theorem
Let \(n \geq 2 \) and \(B_n \subseteq \mathbb{R}^n \) be a \(n \)-dimensional unit ball. Let us assume that \(E \subseteq B \) a comeager (or \(B_n \setminus E \) is null) set in \(B_n \). Then there are perfect set \(R \) in \(D = \text{bd}(B_n) \), non-meager (non-null) \(P \subseteq B_{n-1} \) and \(Q \subseteq [-1, 1] \) such that

\[
(\forall \alpha \in R) \ (r_\alpha[P \times Q] \subseteq B_n),
\]

where \(r_\alpha \) is rotation of \(\alpha \) to the vector \((1, 0, \ldots, 0) \in \mathbb{R}^n\) over origin of the euclidean space \(\mathbb{R}^n \).
Thank You

Mathoverflow: mathoverflow.net/questions/71976/lebesgue-non-measurability-in-the-plane
Thank You