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Weak topologies

X — an infinite-dimensional Banach space

X ∗ — the dual space of X = the Banach space of all continuous
linear functionals on X

X ∗∗ — the bidual space of X = the dual space of X ∗

Fact
1 If x ∈ X , then the evaluation evx : X

∗ → R, where
evx(x

∗) = x∗(x) for every x∗ ∈ X ∗, is in X ∗∗.
2 X 3 x 7→ evx ∈ X ∗∗ — isometric embedding of X into X ∗∗.

Weak topologies on X ∗

weak topology on X ∗ = the smallest topology such that every
x∗∗ ∈ X ∗∗ is continuous;

weak* topology on X ∗ = the smallest topology such that
every evx is continuous;
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Grothendieck spaces

Inclusions of the weak topologies on X ∗

weak∗ ⊆ weak ⊆ norm

Question

Is always a weak* convergent sequence
〈
x∗n ∈ X ∗ : n ∈ ω

〉
weakly

convergent?

Definition

An infinite dimensional Banach space X is Grothendieck if every
weak* convergent sequence in the dual X ∗ is weakly convergent.
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Grothendieck spaces

Examples of Grothendieck spaces

reflexive spaces, so all `p for 1 < p <∞

`∞ (Grothendieck ’53)

the space H∞ of bounded analytic functions on the unit disc
(Bourgain ’83)

von Neumann algebras (Pfitzner ’94)

C (St(A)) where A is a σ-complete Boolean algebras
(Grothendieck ’53)

Examples of non-Grothendieck spaces

`1 and c0

separable C (K )-spaces, e.g. C ([0, 1]) or C (2ω)

C (K ) provided that K has a non-trivial convergent sequence

C (K ) such that C (K ) = c0 ⊕ Y for some closed subspace Y
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The Grothendieck property

Definition

A Boolean algebra A has the Grothendieck property if the space
C (St(A)) is a Grothendieck space.

Examples

σ-complete algebras

algebras with Haydon’s Subsequential Completeness Property
(SCP)

algebras with Schachermayer’s property (E), Seever’s property
(I), Moltó’s property (f)...

Non-examples

A such that St(A) has a non-trivial convergent sequence

so countable Boolean algebras

algebra J of Jordan-measurable subsets of [0, 1]
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The Grothendieck number

The Grothendieck number gr

gr = min
{
|A| : infinite A has the Grothendieck property

}
ω1 ¬ gr ¬ c

Problem

Describe gr in terms of classical cardinal characteristics of the
continuum.
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ZFC lower bounds

If St(A) has a non-trivial convergent sequence, then A does not
have the Grothendieck property.

Theorem (Booth ’74)

If w(K ) < s, then K is sequentially compact.

Theorem (Geschke ’06)

If w(K ) < cov(M), then either K is scattered or there exists a
perfect subset L ⊆ K with a Gδ-point x ∈ L.

Recall that: |A| = w(St(A)).

Corollary

If |A| < max(s, cov(M)), then A does not have the Grothendieck
property. Hence, gr ­ max(s, cov(M)).
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Con(gr < c)

Theorem (Brech ’06)

Let κ be a regular cardinal number and Sκ denote the side-by-side
Sacks forcing.

Then, if A is a σ-complete Boolean algebra in a
ground model V and G is a Sκ-generic filter over V , then A has
the Grothendieck property in V [G ].

Corollary

If CH holds in V and G is a Sκ-generic filter over V , then
gr = ω1 < κ = c holds in V [G ].
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Generalization

Definition

A forcing P ∈ V has the Laver property if for every P-generic filter
G over V , every f ∈ ωω ∩V and g ∈ ωω ∩V [G ] such that g ¬∗ f ,
there exists H : ω → [ω]<ω such that g(n) ∈ H(n) and
|H(n)| ¬ n + 1 for every n ∈ ω.

Examples: Sacks, side-by-side Sacks, Laver, Mathias, Miller,
Silver(-like)

Definition

A forcing P ∈ V preserves the ground model reals non-meager if
R ∩ V is a non-meager subset of R ∩ V [G ] for any P-generic filter
G .

Examples: Sacks, side-by-side Sacks, Miller, Silver(-like)
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Generalization

Theorem (S.–Zdomskyy ’17)

Let P ∈ V be a notion of proper forcing having the Laver property
and preserving the ground model reals non-meager.

Then, if A is a
σ-complete Boolean algebra in V and G is a P-generic filter over
V , then A has the Grothendieck property in V [G ].

Corollary
1 in the Miller model: gr = ω1 < ω2 = d = g = c

2 in the Silver model: gr = ω1 < ω2 = r = u = c

Recall that: Con(r = u < s) and Con(g < cov(M))

Corollary

No ZFC inequality between gr and any of the numbers r, u and g.

Question

Con(d < gr)?
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A ZFC upper bound

Theorem (S. ’18)

If κ is a cardinal number such that cof([κ]ω) = κ ­ cof(N ),

then
there exists a Boolean algebra A with the Grothendieck property
and of cardinality κ.

Corollary

If cof([cof(N )]ω) = cof(N ), then gr ¬ cof(N ).

Recall that Con(ω2 = cof(N ) < a = ω3) (Brendle ’03).

Corollary

No ZFC inequality between gr and a.
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No ZFC inequality between gr and a.
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What’s known:

1 gr ­ cov(M) and Con(cov(M) > non(M))

2 gr ­ s and Con(s > cov(M))

3 Con(gr < d)
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A word on the cofinality of gr

Theorem (Schachermayer ’82)

cf(gr) > ω.

Fact

gr may be either regular (CH) or singular (in every model where
cov(M) = c > cf(c)).
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The end

Thank you for the attention!


