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linear functionals on X

X** — the bidual space of X = the dual space of X*

Fact
@ If x € X, then the evaluation ev,: X* — R, where
evy(x*) = x*(x) for every x* € X*, is in X**.
Q@ X > x— evy € X — isometric embedding of X into X**.

Weak topologies on X*

@ weak topology on X* = the smallest topology such that every
x** € X** is continuous;

e weak* topology on X* = the smallest topology such that
every evy is continuous;
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Grothendieck spaces

Inclusions of the weak topologies on X*

weak® C  weak C norm

Is always a weak* convergent sequence (x;; € X*: n € w) weakly
convergent?

An infinite dimensional Banach space X is Grothendieck if every
weak* convergent sequence in the dual X* is weakly convergent.
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Examples of Grothendieck spaces

o reflexive spaces, so all £, for 1 < p < o0
o /s (Grothendieck '53)

@ the space H* of bounded analytic functions on the unit disc
(Bourgain '83)
@ von Neumann algebras (Pfitzner '94)

o C(St(A)) where A is a o-complete Boolean algebras
(Grothendieck '53)

Examples of non-Grothendieck spaces

@ /1 and ¢

@ separable C(K)-spaces, e.g. C([0,1]) or C(2¢)

e C(K) provided that K has a non-trivial convergent sequence
e C(K) such that C(K) = cp @ Y for some closed subspace Y
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The Grothendieck property

A Boolean algebra A has the Grothendieck property if the space
C(St(A)) is a Grothendieck space.

@ o-complete algebras

@ algebras with Haydon's Subsequential Completeness Property

(SCP)

@ algebras with Schachermayer's property (E), Seever's property
(1), Moltd's property (f)...

Non-examples
e A such that St(A) has a non-trivial convergent sequence
@ so countable Boolean algebras

@ algebra J of Jordan-measurable subsets of [0, 1]
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The Grothendieck number gt

gt = min {|A|: infinite A has the Grothendieck property}

wrSgr<c

Describe gt in terms of classical cardinal characteristics of the
continuum.



ZFC lower bounds

If St(.,A) has a non-trivial convergent sequence, then A does not
have the Grothendieck property.



ZFC lower bounds

If St(.,A) has a non-trivial convergent sequence, then A does not
have the Grothendieck property.

Theorem (Booth '74)

If w(K) < s, then K is sequentially compact.



ZFC lower bounds

If St(.,A) has a non-trivial convergent sequence, then A does not
have the Grothendieck property.

Theorem (Booth '74)

If w(K) < s, then K is sequentially compact.

Theorem (Geschke '06)

If w(K) < cov(M), then either K is scattered or there exists a
perfect subset L C K with a Gs-point x € L.




ZFC lower bounds

If St(.,A) has a non-trivial convergent sequence, then A does not
have the Grothendieck property.

Theorem (Booth '74)

If w(K) < s, then K is sequentially compact.

Theorem (Geschke '06)

If w(K) < cov(M), then either K is scattered or there exists a
perfect subset L C K with a Gs-point x € L.

Recall that: |A| = w(S5t(A)).

Corollary

If |A| < max(s,cov(M)), then A does not have the Grothendieck
property. Hence, gt > max(s, cov(M)).
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Theorem (Brech '06)

Let k be a regular cardinal number and S” denote the side-by-side
Sacks forcing. Then, if A is a o-complete Boolean algebra in a
ground model V and G is a S®-generic filter over V/, then A has
the Grothendieck property in V[G].

Corollary

If CH holds in V and G is a S*-generic filter over V/, then
gt =w; < k = ¢ holds in V[G].
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Generalization

Theorem (S.—Zdomskyy '17)

Let P € V be a notion of proper forcing having the Laver property
and preserving the ground model reals non-meager. Then, if A is a
o-complete Boolean algebra in V and G is a IP-generic filter over
V, then A has the Grothendieck property in V[G].

Corollary

Q in the Miller model: gt =w; <wr =0=g=c¢

@ in the Silver model: gt =wi <wr=t=u=c¢
Recall that: Con(r = u < s) and Con(g < cov(M))

Corollary

No ZFC inequality between gt and any of the numbers ¢, u and g.

Question
Con(d < gr)?
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A ZFC upper bound

Theorem (S. '18)

If k is a cardinal number such that cof([x]*) = k > cof(N), then
there exists a Boolean algebra A with the Grothendieck property
and of cardinality k.

Corollary

If cof ([cof (N)]¥) = cof (NV), then gr < cof (N).
Recall that Con(wp = cof(N) < a = w3) (Brendle '03).

Corollary

No ZFC inequality between gt and a.
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What's known:
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@ Con(gr <0)
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oA ] —— nom(A] —— CofM] —— CoHN] ——X

T T

B

.

g ——> BAHAT] —— B ] —> vt ] — | non(N) |

Questions:
@ Con(non(N) < gt)?
@ b < gr? (the Laver model?)
@ Con(gr < cov(N))? (the random model?)
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Van Douwen’s diagram and gt

What's known:

X © No ZFC ineq. between gt
and t, u, gand a

@ cov(M) < grand

! Con(s < cov(M))
/ @ Con(gr <)

i Q s<gr

\ Questions:
Q b < gr?

Q gr <07
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A word on the cofinality of gt

Theorem (Schachermayer '82)

cf(gr) > w.

gt may be either regular (CH) or singular (in every model where

cov(M) = ¢ > cf(c)).



Thank you for the attention!



