Almost strongly zero-dimensional spaces

Olena Karlova
Chernivtsi National University, Ukraine

A subset A of a topological space X is called a C-set if there is a sequence $(U_n)_{n \in \omega}$ of clopen sets in X such that

$$A = \bigcap_{n \in \omega} U_n.$$

We say that A is a C_σ-set in X if it is a union of a sequence of C-sets.

A topological space X is

- strongly zero-dimensional if every zero set in X is a C-set;
- almost strongly zero-dimensional if every zero set in X is a C_σ-set.

Almost strongly zero-dimensional spaces arise naturally in questions concerning the Baire classification of F_σ-measurable functions.

Theorem 1. Let X, Y be metrizable spaces and Y is separable and disconnected. The following conditions are equivalent:

1) every F_σ-measurable function $f : X \to Y$ belongs to the first Baire class;
2) X is almost strongly zero-dimensional.

Clearly, each strongly zero-dimensional space is almost strongly zero-dimensional. Moreover, every absolutely analytic separable space or countably compact metric space is almost strongly zero-dimensional iff it is strongly zero-dimensional. However, the following question is open.

Question 1. Do there exits a completely regular almost strongly zero-dimensional space X with $\dim X > 0$?