Products of CW complexes

Andrew Brooke-Taylor

Supported by EPSRC fellowship EP/K035703/2

Bringing set theory and algebraic topology together
For algebraic topology, even spheres are hard.
CW complexes

For algebraic topology, even spheres are hard.

So, focus on CW complexes: spaces built up by gluing on Euclidean discs of higher and higher dimension.
For algebraic topology, even spheres are hard.

So, focus on **CW complexes**: spaces built up by gluing on Euclidean discs of higher and higher dimension.

For \(n \in \mathbb{N} \), let

- \(D^n \) denote the closed ball of radius 1 about the origin in \(\mathbb{R}^n \) (the \(n \)-disc),
- \(\overset{\circ}{D^n} \) its interior (the open ball of radius 1 about the origin), and
- \(S^{n-1} \) its boundary (the \(n - 1 \)-sphere).
Definition

A Hausdorff space X is a **CW complex** if there exists a set of continuous functions $\varphi^\alpha_n : D^n \to X$ (characteristic maps), for α in an arbitrary index set and $n \in \mathbb{N}$ a function of α, such that:

1. $\varphi^\alpha_n \upharpoonright D^n$ is a homeomorphism to its image, and X is the disjoint union as α varies of these homeomorphic images $\varphi^\alpha_n[D^n]$ (“cells”).

Closure-finiteness:

For each φ^α_n, $\varphi^\alpha_n[S^n - S^{n-1}]$ is contained in finitely many cells all of dimension less than n.

Weak topology:

A set is closed if and only if its intersection with each closed cell $\varphi^\alpha_n[D^n]$ is closed.

We often denote $\varphi^\alpha_n[D^n]$ by e^α_n.
CW complexes

Definition

A Hausdorff space X is a CW complex if there exists a set of continuous functions $\varphi^n_\alpha : D^n \to X$ (characteristic maps), for α in an arbitrary index set and $n \in \mathbb{N}$ a function of α, such that:

1. $\varphi^n_\alpha \upharpoonright D^n$ is a homeomorphism to its image, and X is the disjoint union as α varies of these homeomorphic images $\varphi^n_\alpha[D^n]$ (“cells”).

2. Closure-finiteness: For each φ^n_α, $\varphi^n_\alpha[S^{n-1}]$ is contained in finitely many cells all of dimension less than n.
CW complexes

Definition

A Hausdorff space X is a CW complex if there exists a set of continuous functions $\varphi^n_\alpha : D^n \to X$ (characteristic maps), for α in an arbitrary index set and $n \in \mathbb{N}$ a function of α, such that:

1. $\varphi^n_\alpha \upharpoonright \partial D^n$ is a homeomorphism to its image, and X is the disjoint union as α varies of these homeomorphic images $\varphi^n_\alpha[D^n]$ (“cells”).

2. Closure-finiteness: For each φ^n_α, $\varphi^n_\alpha[S^{n-1}]$ is contained in finitely many cells all of dimension less than n.

3. Weak topology: A set is closed if and only if its intersection with each closed cell $\varphi^n_\alpha[D^n]$ is closed.
Definition

A Hausdorff space X is a CW complex if there exists a set of continuous functions $\varphi^n_\alpha : D^n \to X$ (characteristic maps), for α in an arbitrary index set and $n \in \mathbb{N}$ a function of α, such that:

1. $\varphi^n_\alpha \upharpoonright D^n$ is a homeomorphism to its image, and X is the disjoint union as α varies of these homeomorphic images $\varphi^n_\alpha [D^n]$ ("cells").

2. **Closure-finiteness:** For each φ^n_α, $\varphi^n_\alpha [S^{n-1}]$ is contained in finitely many cells all of dimension less than n.

3. **Weak topology:** A set is closed if and only if its intersection with each closed cell $\varphi^n_\alpha [D^n]$ is closed.

We often denote $\varphi^n_\alpha [D^n]$ by e^n_α.

Let X be the “star” with a central vertex x_0 and countably many edges e_1, e_2, \ldots emanating from it (and the countably many “other end” vertices of those edges).

X is not metrizable, as x_0 does not have a countable neighbourhood base.

Proof

Identify each edge with the unit interval, with x_0 at 0. Then for every $f: \mathbb{N} \to \mathbb{N}$, consider the open neighbourhood $U(x_0; f)$ of x_0 whose intersection with e_1, e_2, \ldots is the interval $[0, 1/(f(n) + 1)]$.

These form a neighbourhood base, but for any countably many f_i, there is a g that eventually dominates each of them, so $U(x_0; g)$ does not contain any of the $U(x_0; f_i)$.
Let X be the “star” with a central vertex x_0 and countably many edges $e_{X,n}^1$ ($n \in \mathbb{N}$) emanating from it (and the countably many “other end” vertices of those edges).

Not necessarily metrizable.
Not necessarily metrizable

Let X be the “star” with a central vertex x_0 and countably many edges $e_{X,n}^1$ ($n \in \mathbb{N}$) emanating from it (and the countably many “other end” vertices of those edges).

X is not metrizable, as x_0 does not have a countable neighbourhood base.
Let X be the “star” with a central vertex x_0 and countably many edges $e_{X,n}^1$ ($n \in \mathbb{N}$) emanating from it (and the countably many “other end” vertices of those edges).

X is not metrizable, as x_0 does not have a countable neighbourhood base.

Proof

Identify each edge with the unit interval, with x_0 at 0. Then for every $f : \mathbb{N} \to \mathbb{N}$, consider the open neighbourhood $U(x_0; f)$ of x_0 whose intersection with $e_{X,n}^1$ is the interval $[0, 1/(f(n) + 1))$.
Let X be the “star” with a central vertex x_0 and countably many edges $e_{X,n}^1$ ($n \in \mathbb{N}$) emanating from it (and the countably many “other end” vertices of those edges).

X is not metrizable, as x_0 does not have a countable neighbourhood base.

Proof

Identify each edge with the unit interval, with x_0 at 0. Then for every $f : \mathbb{N} \to \mathbb{N}$, consider the open neighbourhood $U(x_0; f)$ of x_0 whose intersection with $e_{X,n}^1$ is the interval $[0, 1/(f(n) + 1))$.

These form a neighbourhood base, but for any countably many f_i, there is a g that eventually dominates each of them, so $U(x_0; g)$ does not contain any of the $U(x_0; f_i)$.

\[\square \]
The Cartesian product of two CW complexes X and Y, with the product topology, need not be a CW complex. Since $D^m \times D^n \cong D^{m+n}$, there is a natural cell structure on $X \times Y$, which satisfies closure-finiteness, but the product topology is generally not as fine as the weak topology.

Convention
In this talk, $X \times Y$ is always taken to have the product topology, so "$X \times Y$ is a CW complex" means "the product topology on $X \times Y$ is the same as the weak topology".
Trouble in paradise

Issue:
The Cartesian product of two CW complexes X and Y, with the product topology, need not be a CW complex.
Issue:
The Cartesian product of two CW complexes X and Y, with the product topology, need not be a CW complex.

Since $D^m \times D^n \cong D^{m+n}$, there is a natural cell structure on $X \times Y$,

Issue:
The Cartesian product of two CW complexes X and Y, with the product topology, need not be a CW complex.

Since $D^m \times D^n \cong D^{m+n}$, there is a natural cell structure on $X \times Y$, which satisfies closure-finiteness,
Trouble in paradise

Issue:
The Cartesian product of two CW complexes X and Y, with the product topology, need not be a CW complex.

Since $D^m \times D^n \cong D^{m+n}$, there is a natural cell structure on $X \times Y$, which satisfies closure-finiteness, but the product topology is generally not as fine as the weak topology.
Trouble in paradise

Issue:
The Cartesian product of two CW complexes X and Y, with the product topology, need not be a CW complex.

Since $D^m \times D^n \cong D^{m+n}$, there is a natural cell structure on $X \times Y$, which satisfies closure-finiteness, but the product topology is generally not as fine as the weak topology.

Convention
In this talk, $X \times Y$ is always taken to have the product topology, so “$X \times Y$ is a CW complex” means “the product topology on $X \times Y$ is the same as the weak topology”.
Let X be the “star” with a central vertex x_0 and countably many edges $e_{X,n}^1$ ($n \in \mathbb{N}$) emanating from it (and the countably many “other end” vertices of those edges).
Example (Dowker, 1952)

Let X be the “star” with a central vertex x_0 and countably many edges $e_{X,n}^1$ ($n \in \mathbb{N}$) emanating from it (and the countably many “other end” vertices of those edges).

Let Y be the “star” with a central vertex y_0 and 2^{\aleph_0} many edges $e_{Y,f}^1$ ($f \in \mathbb{N}^\mathbb{N}$) emanating from it (and the other ends).

Consider the subset of $X \times Y$:

$$H = \{ (1^n + 1, 1^n + 1) \in e_{X,n}^1 \times e_{Y,f}^1 : n \in \mathbb{N}, f \in \mathbb{N}^\mathbb{N} \}$$

where we have identified each edge with the unit interval, with 0 at the centre vertex.

Since every cell of $X \times Y$ contains at most one point of H, H is closed in the weak topology.
Example (Dowker, 1952)

Let X be the “star” with a central vertex x_0 and countably many edges $e^{1}_{X,n} (n \in \mathbb{N})$ emanating from it (and the countably many “other end” vertices of those edges).

Let Y be the “star” with a central vertex y_0 and 2^{\aleph_0} many edges $e^{1}_{Y,f} (f \in \mathbb{N}^\mathbb{N})$ emanating from it (and the other ends).

Consider the subset of $X \times Y$

$$H = \left\{ \left(\frac{1}{f(n) + 1}, \frac{1}{f(n) + 1} \right) \in e^{1}_{X,n} \times e^{1}_{Y,f} : n \in \mathbb{N}, f \in \mathbb{N}^\mathbb{N} \right\}$$

where we have identified each edge with the unit interval, with 0 at the centre vertex.
Example (Dowker, 1952)

Let X be the “star” with a central vertex x_0 and countably many edges $e_{X,n}^1$ ($n \in \mathbb{N}$) emanating from it (and the countably many “other end” vertices of those edges).

Let Y be the “star” with a central vertex y_0 and 2^{\aleph_0} many edges $e_{Y,f}^1$ ($f \in \mathbb{N}^\mathbb{N}$) emanating from it (and the other ends).

Consider the subset of $X \times Y$

$$H = \left\{ \left(\frac{1}{f(n)+1}, \frac{1}{f(n)+1} \right) \in e_{X,n}^1 \times e_{Y,f}^1 : n \in \mathbb{N}, f \in \mathbb{N}^\mathbb{N} \right\}$$

where we have identified each edge with the unit interval, with 0 at the centre vertex.

Since every cell of $X \times Y$ contains at most one point of H, H is closed in the weak topology.
Example (Dowker, 1952)

\[H = \left\{ \left(\frac{1}{f(n) + 1}, \frac{1}{f(n) + 1} \right) \in e_{X,n}^1 \times e_{Y,f}^1 : n \in \mathbb{N}, f \in \mathbb{N}^\mathbb{N} \right\} \]
Example (Dowker, 1952)

\[H = \left\{ \left(\frac{1}{f(n) + 1}, \frac{1}{f(n) + 1} \right) : n \in \mathbb{N}, f \in \mathbb{N}^\mathbb{N} \right\} \]

Let \(U \times V \) be a member of the open neighbourhood base about \((x_0, y_0)\) in the product topology on \(X \times Y\) — so \(x_0 \in U\) an open subset of \(X\), and \(y_0 \in V\) an open subset of \(Y\).
Example (Dowker, 1952)

\[H = \left\{ \left(\frac{1}{f(n) + 1}, \frac{1}{f(n) + 1} \right) \in e_{X,n}^1 \times e_{Y,f}^1 : n \in \mathbb{N}, f \in \mathbb{N}^\mathbb{N} \right\} \]

Let \(U \times V \) be a member of the open neighbourhood base about \((x_0, y_0)\) in the product topology on \(X \times Y \) — so \(x_0 \in U \) an open subset of \(X \), and \(y_0 \in V \) an open subset of \(Y \).

Consider the edges \(e_{X,n}^1 \) of \(X \):

Let \(g : \mathbb{N} \to \mathbb{N}^+ \) be an increasing function such that \([0, 1/g(n)) \subset e_{X,n}^1 \cap U\) for every \(n \in \mathbb{N} \).
Example (Dowker, 1952)

\[H = \left\{ \left(\frac{1}{f(n)+1}, \frac{1}{f(n)+1} \right) : n \in \mathbb{N}, f \in \mathbb{N}^\mathbb{N} \right\} \]

Let \(U \times V \) be a member of the open neighbourhood base about \((x_0, y_0)\) in the product topology on \(X \times Y \) — so \(x_0 \in U \) an open subset of \(X \), and \(y_0 \in V \) an open subset of \(Y \).

Consider the edges \(e_{X,n}^1 \) of \(X \):

Let \(g : \mathbb{N} \rightarrow \mathbb{N}^+ \) be an increasing function such that \([0, 1/g(n)) \subset e_{X,n}^1 \cap U\) for every \(n \in \mathbb{N} \).

Consider the edge \(e_{Y,g}^1 \) of \(Y \):

Let \(k \in \mathbb{N} \) be such that \(\frac{1}{g(k)+1} \in e_{Y,g}^1 \cap V \).
Example (Dowker, 1952)

\[
H = \left\{ \left(\frac{1}{f(n) + 1}, \frac{1}{f(n) + 1} \right) \in e_{X,n}^1 \times e_{Y,f}^1 : n \in \mathbb{N}, f \in \mathbb{N}^\mathbb{N} \right\}
\]

Let \(U \times V \) be a member of the open neighbourhood base about \((x_0, y_0)\) in the product topology on \(X \times Y \) — so \(x_0 \in U \) an open subset of \(X \), and \(y_0 \in V \) an open subset of \(Y \).

Consider the edges \(e_{X,n}^1 \) of \(X \):

Let \(g : \mathbb{N} \to \mathbb{N}^+ \) be an increasing function such that \([0, 1/g(n)] \subset e_{X,n}^1 \cap U\) for every \(n \in \mathbb{N} \).

Consider the edge \(e_{Y,g}^1 \) of \(Y \):

Let \(k \in \mathbb{N} \) be such that \(\frac{1}{g(k)+1} \in e_{Y,g}^1 \cap V \).

Then \(\left(\frac{1}{g(k)+1}, \frac{1}{g(k)+1} \right) \in U \times V \cap H \). So in the product topology, \((x_0, y_0) \in \bar{H} \).
A *subcomplex* A of a CW complex X is what you would expect.
More preliminaries: subcomplexes

A subcomplex A of a CW complex X is a subspace which is a union of cells of X, such that if $e^n_\alpha \subseteq A$ then its closure $\bar{e}^n_\alpha = \varphi^n_\alpha[D^n]$ is contained in A.

E.g. For any CW complex X and $n \in \mathbb{N}$, the n-skeleton X^n of X is the subcomplex of X which is the union of all cells of X of dimension at most n. Every subcomplex A of X is closed in X. By closure-finiteness, every x in a CW complex X lies in a finite subcomplex.

Definition Let κ be a cardinal. We say that a CW complex X is locally less than κ if for all x in X there is a subcomplex A of X with fewer than κ many cells such that x is in the interior of A. We write locally finite for locally less than \aleph_0, and locally countable for locally less than \aleph_1.

Andrew Brooke-Taylor (Leeds)
A *subcomplex* A of a CW complex X is a subspace which is a union of cells of X, such that if $e^n_\alpha \subseteq A$ then its closure $\overline{e^n_\alpha} = \varphi_\alpha^n[D^n]$ is contained in A.

E.g.

For any CW complex X and $n \in \mathbb{N}$, the *n-skeleton* X^n of X is the subcomplex of X which is the union of all cells of X of dimension at most n.
More preliminaries: subcomplexes

A subcomplex A of a CW complex X is a subspace which is a union of cells of X, such that if $e^n_\alpha \subseteq A$ then its closure $\overline{e^n_\alpha} = \varphi^n_\alpha[D^n]$ is contained in A.

E.g.

For any CW complex X and $n \in \mathbb{N}$, the n-skeleton X^n of X is the subcomplex of X which is the union of all cells of X of dimension at most n.

Every subcomplex A of X is closed in X.
A subcomplex A of a CW complex X is a subspace which is a union of cells of X, such that if $e^n_\alpha \subseteq A$ then its closure $\overline{e^n_\alpha} = \varphi^n_\alpha[D^n]$ is contained in A.

E.g.

For any CW complex X and $n \in \mathbb{N}$, the n-skeleton X^n of X is the subcomplex of X which is the union of all cells of X of dimension at most n.

Every subcomplex A of X is closed in X.
By closure-finiteness, every x in a CW complex X lies in a finite subcomplex.
A subcomplex \(A \) of a CW complex \(X \) is a subspace which is a union of cells of \(X \), such that if \(e^n_\alpha \subseteq A \) then its closure \(\bar{e}^n_\alpha = \varphi^n_\alpha[D^n] \) is contained in \(A \).

E.g.

For any CW complex \(X \) and \(n \in \mathbb{N} \), the \(n \)-skeleton \(X^n \) of \(X \) is the subcomplex of \(X \) which is the union of all cells of \(X \) of dimension at most \(n \).

Every subcomplex \(A \) of \(X \) is closed in \(X \).
By closure-finiteness, every \(x \) in a CW complex \(X \) lies in a finite subcomplex.

Definition

Let \(\kappa \) be a cardinal. We say that a CW complex \(X \) is locally less than \(\kappa \) if for all \(x \) in \(X \) there is a subcomplex \(A \) of \(X \) with fewer than \(\kappa \) many cells such that \(x \) is in the interior of \(A \). We write locally finite for locally less than \(\aleph_0 \), and locally countable for locally less than \(\aleph_1 \).
Proposition

If κ is a regular uncountable cardinal, then a CW complex W is locally less than κ if and only if every connected component of W has fewer than κ many cells.

Proof sketch.

\Leftarrow is trivial. For \Rightarrow, given any point w, recursively fill out to get an open (hence clopen) subcomplex containing w with fewer than κ many cells, using the fact that the cells are compact to control the number of cells along the way. \hfill \square
Suppose X and Y are CW complexes.
What was known

Suppose X and Y are CW complexes.

Theorem (J.H.C. Whitehead, 1949)

If X or Y is locally finite, then $X \times Y$ is a CW complex.
What was known

Suppose X and Y are CW complexes.

Theorem (J.H.C. Whitehead, 1949)

If X or Y is locally finite, then $X \times Y$ is a CW complex.

Footnote: “I do not know if this restriction on $[X$ or $Y]$ is necessary.”
What was known

Suppose X and Y are CW complexes.

Theorem (J.H.C. Whitehead, 1949)

If X or Y is locally finite, then $X \times Y$ is a CW complex.

Footnote: “I do not know if this restriction on $[X$ or $Y]$ is necessary.”

Theorem (J. Milnor, 1956)

If X and Y are both (locally) countable, then $X \times Y$ is a CW complex.
What was known

Suppose X and Y are CW complexes.

Theorem (J.H.C. Whitehead, 1949)

If X or Y is locally finite, then $X \times Y$ is a CW complex.

Footnote: “I do not know if this restriction on $[X$ or $Y]$ is necessary.”

Theorem (J. Milnor, 1956)

If X and Y are both (locally) countable, then $X \times Y$ is a CW complex.

Theorem (Y. Tanaka, 1982)

If neither X nor Y is locally countable, then $X \times Y$ is not a CW complex.
What was known, beyond ZFC

Theorem (Liu Y.-M., 1978)

Assuming CH, $X \times Y$ is a CW complex if and only if either

- one of them is locally finite, or
- both are locally countable.

Theorem (Y. Tanaka, 1982)

Assuming $b = \aleph_1$, $X \times Y$ is a CW complex if and only if either

- one of them is locally finite, or
- both are locally countable.
Theorem (Liu Y.-M., 1978)

Assuming CH, $X \times Y$ is a CW complex if and only if either
- one of them is locally finite, or
- both are locally countable.

Theorem (Y. Tanaka, 1982)

Assuming $b = \aleph_1$, $X \times Y$ is a CW complex if and only if either
- one of them is locally finite, or
- both are locally countable.
Question

Can we show, without assuming any extra set-theoretic axioms, that the product $X \times Y$ of CW complexes X and Y is a CW complex if and only if either

- one of them is locally finite, or
- both are locally countable?
Question
Can we show, without assuming any extra set-theoretic axioms, that the product $X \times Y$ of CW complexes X and Y is a CW complex if and only if either
- one of them is locally finite, or
- both are locally countable?

Answer (follows from Tanaka’s work)
No.
Can we nevertheless do better?

Updated question

Can we characterise exactly when the product of two CW complexes is a CW complex, without assuming any extra set-theoretic axioms?
Can we nevertheless do better?

Updated question

Can we characterise exactly when the product of two CW complexes is a CW complex, without assuming any extra set-theoretic axioms?

Answer (B.-T.)

Yes!
In the argument for Dowker’s example, there was a lot of inefficiency — we can do better, with the bigger star Y potentially having fewer edges.
Pushing Dowker’s example harder

In the argument for Dowker’s example, there was a lot of inefficiency — we can do better, with the bigger star Y potentially having fewer edges.

Recall:

For $f, g \in \mathbb{N}^\mathbb{N}$, write $f \leq^* g$ if for all but finitely many $n \in \mathbb{N}$, $f(n) \leq g(n)$. I’ll write $f \leq g$ to mean that for all n, $f(n) \leq g(n)$.

The **bounding number** b is the least cardinality of a set of functions that is unbounded with respect to \leq^*, i.e. such that no one g is \geq^* them all, i.e.,

$$b = \min\{|\mathcal{F}| : \mathcal{F} \subseteq \mathbb{N}^\mathbb{N} \land \forall g \in \mathbb{N}^\mathbb{N} \exists f \in \mathcal{F} \neg (f \leq^* g)\}.$$

$\aleph_1 \leq b \leq 2^{\aleph_0}$, and each inequality can be strict.
Let X be the “star” with a central vertex x_0 and countably many edges $e_{X,n}^1$ ($n \in \mathbb{N}$) emanating from it (and the countably many “other end” vertices of those edges).

Let Y be the “star” with a central vertex y_0 and $2^{\mathbb{N}_0}$ many edges $e_{Y,f}^1$ ($f \in \mathbb{N}^\mathbb{N}$) emanating from it (and the other ends).

Consider the subset of $X \times Y$

$$H = \left\{ \left(\frac{1}{f(n) + 1}, \frac{1}{f(n) + 1} \right) \in e_{X,n}^1 \times e_{Y,f}^1 : n \in \mathbb{N}, f \in \mathbb{N}^\mathbb{N} \right\}$$

where we have identified each edge with the unit interval, with 0 at the centre vertex.

Since every cell of $X \times Y$ contains at most one point of H, H is closed in the weak topology.
Example (Folklore based on Dowker, 1952)

Let X be the “star” with a central vertex x_0 and countably many edges $e_{X,n}^1$ ($n \in \mathbb{N}$) emanating from it (and the countably many “other end” vertices of those edges).

Let Y be the “star” with a central vertex y_0 and b many edges $e_{Y,f}^1$ ($f \in \mathcal{F}$) emanating from it where $\mathcal{F} \subseteq \mathbb{N}^\mathbb{N}$ is unbounded w.r.t. \leq^* (and the other ends).

Consider the subset of $X \times Y$

$$H = \left\{ \left(\frac{1}{f(n)+1}, \frac{1}{f(n)+1} \right) \in e_{X,n}^1 \times e_{Y,f}^1 : n \in \mathbb{N}, f \in \mathcal{F} \right\}$$

where we have identified each edge with the unit interval, with 0 at the centre vertex.

Since every cell of $X \times Y$ contains at most one point of H, H is closed in the weak topology.
Example (Dowker, 1952)

\[
H = \left\{ \left(\frac{1}{f(n)+1}, \frac{1}{f(n)+1} \right) \in e_{X,n}^1 \times e_{Y,f}^1 : n \in \mathbb{N}, f \in \mathbb{N}^\mathbb{N} \right\}
\]

Let \(U \times V \) be a member of the open neighbourhood base about \((x_0, y_0)\) in the product topology on \(X \times Y \) — so \(x_0 \in U \) an open subset of \(X \), and \(y_0 \in V \) an open subset of \(Y \).

Consider the edges \(e_{X,n}^1 \) of \(X \):

Let \(g : \mathbb{N} \to \mathbb{N}^+ \) be an increasing function such that \([0, 1/g(n)) \subset e_{X,n}^1 \cap U\) for every \(n \in \mathbb{N} \).

Consider the edge \(e_{Y,g}^1 \) of \(Y \):

Let \(k \in \mathbb{N} \) be such that \(\frac{1}{g(k)+1} \in e_{Y,g}^1 \cap V \).

Then \(\left(\frac{1}{g(k)+1}, \frac{1}{g(k)+1} \right) \in U \times V \cap H \). So in the product topology, \((x_0, y_0) \in \bar{H} \).
Example (Folklore based on Dowker, 1952)

\[H = \left\{ \left(\frac{1}{f(n) + 1}, \frac{1}{f(n) + 1} \right) \in e_{X,n}^1 \times e_{Y,f}^1 : n \in \mathbb{N}, f \in \mathcal{F} \right\} \]

Let \(U \times V \) be a member of the open neighbourhood base about \((x_0, y_0)\) in the product topology on \(X \times Y \) — so \(x_0 \in U \) an open subset of \(X \), and \(y_0 \in V \) an open subset of \(Y \).

Consider the edges \(e_{X,n}^1 \) of \(X \):

Let \(g : \mathbb{N} \to \mathbb{N}^+ \) be an increasing function such that \([0, 1/g(n)) \subset e_{X,n}^1 \cap U\) for every \(n \in \mathbb{N} \). Take \(f \in \mathcal{F} \) such that \(f \nleq^* g \).

Consider the edge \(e_{Y,f}^1 \) of \(Y \):

Let \(k \in \mathbb{N} \) be such that \(\frac{1}{f(k) + 1} \in e_{Y,f}^1 \cap V \) and \(f(k) > g(k) \).

Then \(\left(\frac{1}{f(k) + 1}, \frac{1}{f(k) + 1} \right) \in U \times V \cap H \). So in the product topology, \((x_0, y_0) \in \bar{H} \).
Is this harder-working Dowker example optimal?
Is this harder-working Dowker example optimal?

Yes!
Theorem (B.-T.)

Let X and Y be CW complexes. Then $X \times Y$ is a CW complex if and only if one of the following holds:

1. X or Y is locally finite.
2. One of X and Y is locally countable, and the other is locally less than \mathfrak{b}.
Proof

follows from the work of Tanaka (1982).

locally finite case: Whitehead (1949).

So it remains to show that if X and Y are CW complexes such that X is locally countable and Y is locally less than b, then $X \times Y$ is a CW complex.

By the Proposition earlier, we may assume that X has countably many cells and Y has fewer than b many cells.
Proof

\(\Rightarrow:\)

follows from the work of Tanaka (1982).

\(\Leftarrow:\)

locally finite case: Whitehead (1949).

So it remains to show that if \(X \) and \(Y \) are CW complexes such that \(X \) is locally countable and \(Y \) is locally less than \(b \), then \(X \times Y \) is a CW complex.

By the Proposition earlier, we may assume that \(X \) has countably many cells and \(Y \) has fewer than \(b \) many cells.
Proof

⇒: follows from the work of Tanaka (1982).
Proof

⇒: follows from the work of Tanaka (1982).

⇐:
Proof

⇒: follows from the work of Tanaka (1982).

Proof

⇒: follows from the work of Tanaka (1982).

So it remains to show that if X and Y are CW complexes such that X is locally countable and Y is locally less than b, then $X \times Y$ is a CW complex.

By the Proposition earlier, we may assume that X has countably many cells and Y has fewer than b many cells.
Any compact subset of a CW complex X is contained in finitely many cells, and each closed cell \bar{e}_n^α is compact. So

$$X \text{ has the weak topology } \iff \text{ the topology is } compactly \ generated$$

i.e. a set is closed if and only if its intersection with every compact set is closed.
Topologies

Any compact subset of a CW complex X is contained in finitely many cells, and each closed cell \bar{e}_α^n is compact. So

$$X \text{ has the weak topology } \iff \text{ the topology is compactly generated}$$

i.e. a set is closed if and only if its intersection with every compact set is closed.

We can also restrict to those compact sets which are continuous images of the space $\omega + 1$ (with the order topology).

Definition

A topological space Z is **sequential** if for every subset C of Z, C is closed if and only if C contains the limit of every convergent (countable) sequence from C — C is **sequentially closed**.
Any compact subset of a CW complex X is contained in finitely many cells, and each closed cell \bar{e}^n_α is compact. So

$$X \text{ has the weak topology } \iff \text{ the topology is compactly generated}$$

i.e. a set is closed if and only if its intersection with every compact set is closed.

We can also restrict to those compact sets which are continuous images of the space $\omega + 1$ (with the order topology).

Definition

A topological space Z is *sequential* if for every subset C of Z, C is closed if and only if C contains the limit of every convergent (countable) sequence from C — C is *sequentially closed*.

Any sequential space is compactly generated. Since D^n is sequential for every n, we have that CW complexes are sequential.
Need to show: $X \times Y$ is sequential.
Need to show: $X \times Y$ is sequential.

So suppose

- $H \subset X \times Y$ is sequentially closed, and
- $(x_0, y_0) \in X \times Y \setminus H$.

We want to construct open neighbourhoods U of x_0 in X and V of y_0 in Y such that $(U \times V) \cap H = \emptyset$.
Constructing neighbourhoods

We can build an open neighbourhood U of a point x in a CW complex X by induction on dimension:
Constructing neighbourhoods

We can build an open neighbourhood U of a point x in a CW complex X by induction on dimension:

- If $x \in e^n_\alpha \subset X$, start with the image under φ^n_α of an open ball in $\overset{\circ}{D}^n$.

Lemma: Such open neighbourhoods form a base for the topology on X.

Wrinkle in proof. Use compactness of closed cells.
Constructing neighbourhoods

We can build an open neighbourhood U of a point x in a CW complex X by induction on dimension:

- If $x \in e^n_\alpha \subset X$, start with the image under φ^n_α of an open ball in \tilde{D}^n. This defines $U \cap X^n$.

Lemma
Such open neighbourhoods form a base for the topology on X.

Wrinkle in proof.
Use compactness of closed cells.
Constructing neighbourhoods

We can build an open neighbourhood U of a point x in a CW complex X by induction on dimension:

- If $x \in e^\alpha_n \subset X$, start with the image under φ^α_n of an open ball in $\overset{\circ}{D}^n$. This defines $U \cap X^n$.

- Once $U \cap X^k$ is defined, for each $(k + 1)$-cell e_{β}^{k+1} whose boundary intersects $U \cap X^k$, take a collar neighbourhood of $(\varphi_{\beta}^{k+1})^{-1}(U \cap X^k) \subseteq S^k = \partial D^{k+1}$.
Constructing neighbourhoods

We can build an open neighbourhood U of a point x in a CW complex X by induction on dimension:

- If $x \in e^n_\alpha \subset X$, start with the image under φ^n_α of an open ball in \mathring{D}^n. This defines $U \cap X^n$.
- Once $U \cap X^k$ is defined, for each $(k + 1)$-cell e^{k+1}_β whose boundary intersects $U \cap X^k$, take a collar neighbourhood of $(\varphi^{k+1}_\beta)^{-1}(U \cap X^k) \subseteq S^k = \partial D^{k+1}$.

For any function f from the set of indices of cells in X to \mathbb{N} we thus get an open neighbourhood $U(x; f)$, taking radius/width $\frac{1}{f(\beta)+1}$ for the cell β step.
Constructing neighbourhoods

We can build an open neighbourhood U of a point x in a CW complex X by induction on dimension:

- If $x \in e^n_\alpha \subset X$, start with the image under φ^n_α of an open ball in \hat{D}^n. This defines $U \cap X^n$.
- Once $U \cap X^k$ is defined, for each $(k + 1)$-cell e^{k+1}_β whose boundary intersects $U \cap X^k$, take a collar neighbourhood of $(\varphi^{k+1}_\beta)^{-1}(U \cap X^k) \subseteq S^k = \partial D^{k+1}$.

For any function f from the set of indices of cells in X to \mathbb{N} we thus get an open neighbourhood $U(x; f)$, taking radius/width $\frac{1}{f(\beta)+1}$ for the cell β step.

Lemma

*Such open neighbourhoods form a base for the topology on X.***
Constructing neighbourhoods

We can build an open neighbourhood U of a point x in a CW complex X by induction on dimension:

- If $x \in e^n_\alpha \subset X$, start with the image under φ_n^α of an open ball in \mathring{D}^n. This defines $U \cap X^n$.

- Once $U \cap X^k$ is defined, for each $(k + 1)$-cell e^{k+1}_β whose boundary intersects $U \cap X^k$, take a collar neighbourhood of $(\varphi^{k+1}_\beta)^{-1}(U \cap X^k) \subseteq S^k = \partial D^{k+1}$.

For any function f from the set of indices of cells in X to \mathbb{N} we thus get an open neighbourhood $U(x; f)$, taking radius/width $\frac{1}{f(\beta)+1}$ for the cell β step.

Lemma

Such open neighbourhoods form a base for the topology on X.

Wrinkle in proof.

Use compactness of closed cells.
Constructing neighbourhoods avoiding \(H \)

Lemma 1 (Adding one cell to finite subcomplexes)

Suppose \(W \) and \(Z \) are CW complexes, \(W' \) is a finite subcomplex of \(W \), \(Z' \) is a finite subcomplex of \(Z \), \(U \subseteq W' \) is open in \(W' \), \(V \subseteq Z' \) is open in \(Z' \), and \(H \) is a sequentially closed subset of \(W \times Z \) such that the closure of \(U \times V \) is disjoint from \(H \).

Let \(e \) be a cell of \(Z \) whose boundary is contained in \(Z' \). Then there is a \(p \in \mathbb{N} \) such that, if \(V^e, p \) is \(V \) extended by the width \(1/(p+1) \) collar in \(e \), then \(U \times V^e, p \) has closure disjoint from \(H \).

Proof sketch.

Use compactness, normality and sequentiality of \(W' \times (Z' \cup e) \).
Constructing neighbourhoods avoiding H

Lemma 1 (Adding one cell to finite subcomplexes)
Constructing neighbourhoods avoiding H

Lemma 1 (Adding one cell to finite subcomplexes)

Suppose

- W and Z are CW complexes,
- W' is a finite subcomplex of W,
- Z' is a finite subcomplex of Z,
- $U \subseteq W'$ is open in W',
- $V \subseteq Z'$ is open in Z', and
- H is a sequentially closed subset of $W \times Z$ such that the closure of $U \times V$ is disjoint from H.

Let e be a cell of Z whose boundary is contained in Z'. Then there is a $p \in \mathbb{N}$ such that, if $V^{e,p}$ is V extended by the width $1/(p + 1)$ collar in e, then $U \times V^{e,p}$ has closure disjoint from H.

Proof sketch. Use compactness, normality and sequentiality of $W' \times (Z' \cup e)$.

Andrew Brooke-Taylor (Leeds)
Constructing neighbourhoods avoiding H

Lemma 1 (Adding one cell to finite subcomplexes)

Suppose

- W and Z are CW complexes,
- W' is a finite subcomplex of W,
- Z' is a finite subcomplex of Z,
- $U \subseteq W'$ is open in W',
- $V \subseteq Z'$ is open in Z', and
- H is a sequentially closed subset of $W \times Z$ such that the closure of $U \times V$ is disjoint from H.

Let e be a cell of Z whose boundary is contained in Z'. Then there is a $p \in \mathbb{N}$ such that, if $V^{e,p}$ is V extended by the width $1/(p + 1)$ collar in e, then $U \times V^{e,p}$ has closure disjoint from H.

Proof sketch.

Use compactness, normality and sequentiality of $W' \times (Z' \cup e)$. \qed
Back to the proof of the Theorem

We want to construct open neighbourhoods \(U \) of \(x_0 \) in \(X \) and \(V \) of \(y_0 \) in \(Y \) such that \((U \times V) \cap H = \emptyset \).

Basic idea
Simultaneous induction on cell number on the \(X \) side (after enumerating the cells of \(X \) in a reasonable order) and dimension on the \(Y \) side. For each new cell \(e_\alpha \) that you consider on the \(Y \) side, you get a function \(f_\alpha : N \to N \) defining an open set on the \(X \) side avoiding \(H \). Since there are fewer than \(b \) many \(\alpha \), they can be eventually dominated by a single function \(f \), with respect to which the \(e_\alpha \) part of the neighbourhood can be chosen.

This doesn't work (\(f_\alpha \leq \ast f \) isn't good enough).
Back to the proof of the Theorem

We want to construct open neighbourhoods U of x_0 in X and V of y_0 in Y such that $(U \times V) \cap H = \emptyset$.

We shall construct functions $f : \mathbb{N} \to \mathbb{N}$ and $g : J \to \mathbb{N}$, where J is the index set for cells of Y, such that $U(x_0; f) \times U(y_0; g)$ has closure disjoint from H.
Back to the proof of the Theorem

We want to construct open neighbourhoods U of x_0 in X and V of y_0 in Y such that $(U \times V) \cap H = \emptyset$.

We shall construct functions $f : \mathbb{N} \to \mathbb{N}$ and $g : J \to \mathbb{N}$, where J is the index set for cells of Y, such that $U(x_0; f) \times U(y_0; g)$ has closure disjoint from H.

Basic idea

Simultaneous induction on cell number on the X side (after enumerating the cells of X in a reasonable order) and dimension on the Y side.

For each new cell e_α that you consider on the Y side, you get a function $f_\alpha : \mathbb{N} \to \mathbb{N}$ defining an open set on the X side avoiding H. Since there are fewer than b many α, they can be eventually dominated by a single function f, with respect to which the e_α part of the neighbourhood can be chosen.
Back to the proof of the Theorem

We want to construct open neighbourhoods U of x_0 in X and V of y_0 in Y such that $(U \times V) \cap H = \emptyset$.

We shall construct functions $f : \mathbb{N} \to \mathbb{N}$ and $g : J \to \mathbb{N}$, where J is the index set for cells of Y, such that $U(x_0; f) \times U(y_0; g)$ has closure disjoint from H.

Basic idea

Simultaneous induction on cell number on the X side (after enumerating the cells of X in a reasonable order) and dimension on the Y side.

For each new cell e_α that you consider on the Y side, you get a function $f_\alpha : \mathbb{N} \to \mathbb{N}$ defining an open set on the X side avoiding H. Since there are fewer than b many α, they can be eventually dominated by a single function f, with respect to which the e_α part of the neighbourhood can be chosen.

This doesn’t work ($f_\alpha \leq^* f$ isn’t good enough).
\(\leq^* \) isn’t good enough

If \(f_\alpha(n) \leq f(n) \) for all \(n \), then \(U(x; f_\alpha) \supseteq U(x; f) \).

For 1-dimensional examples (Dowker, Tanaka), this isn’t a big deal. For arbitrary CW complexes, where higher dimensional cells can glue on to those finitely many cells, it’s a problem.

Solution

Hechler conditions!

Andrew Brooke-Taylor (Leeds) Products of CW complexes
\leq^* isn't good enough

If $f_\alpha(n) \leq f(n)$ for all n, then $U(x; f_\alpha) \supseteq U(x; f)$.

If $f_\alpha(n) \leq^* f(n)$, then this fails on finitely many cells.
\(\leq^* \) isn't good enough

If \(f_\alpha(n) \leq f(n) \) for all \(n \), then \(U(x; f_\alpha) \supseteq U(x; f) \).

If \(f_\alpha(n) \leq^* f(n) \), then this fails on finitely many cells.

- For 1-dimensional examples (Dowker, Tanaka), this isn't a big deal.
\[\leq^* \text{ isn't good enough} \]

If \(f_\alpha(n) \leq f(n) \) for all \(n \), then \(U(x; f_\alpha) \supseteq U(x; f) \).

If \(f_\alpha(n) \leq^* f(n) \), then this fails on finitely many cells.

- For 1-dimensional examples (Dowker, Tanaka), this isn’t a big deal.
- For arbitrary CW complexes, where higher dimensional cells can glue on to those finitely many cells, it’s a problem.
\[\leq^* \text{ isn't good enough} \]

If \(f_\alpha(n) \leq f(n) \) for all \(n \), then \(U(x; f_\alpha) \supseteq U(x; f) \).

If \(f_\alpha(n) \leq^* f(n) \), then this fails on finitely many cells.

- For 1-dimensional examples (Dowker, Tanaka), this isn’t a big deal.
- For arbitrary CW complexes, where higher dimensional cells can glue on to those finitely many cells, it’s a problem.

Solution

Hechler conditions!
The construction is actually by recursion on dimension on the Y side, and simultaneously, constructing f as the limit of a descending sequence of Hechler conditions, that is:

- finite initial segments of f, and
- promises to dominate some function F thereafter.
Lemma 2 (Adding a Y-side cell, fitting X-side promises)

Let Y' be a finite subcomplex of Y containing y_0, $F: \mathbb{N} \to \mathbb{N}$ be a function, $i \in \mathbb{N}$, and s be a function from the indices of Y' to \mathbb{N} such that $U(x_0; F) \times U(y_0; s) \subseteq X \times Y'$ has closure disjoint from H, $Y'' = Y' \cup e_\alpha$ for some cell e_α of Y not in Y'.

Then there is a function $f: \mathbb{N} \to \mathbb{N}$ such that

1. $f(n) \geq F(n)$ for all n in \mathbb{N},

2. for every $f': \mathbb{N} \to \mathbb{N}$ such that $f' \geq \ast f$ and $f' \geq F$, there is a $q \in \mathbb{N}$ such that $U(x_0; f') \times U(y_0; s \cup \{(\alpha, q)\})$ has closure disjoint from H.

Andrew Brooke-Taylor (Leeds)
Lemma 2 (Adding a Y-side cell, fitting X-side promises)

Let

- Y' be a finite subcomplex of Y containing y_0,
- $F : \mathbb{N} \to \mathbb{N}$ be a function,
- $i \in \mathbb{N}$, and
- s be a function from the indices of Y' to \mathbb{N} such that $U(x_0; F) \times U(y_0; s) \subseteq X \times Y'$ has closure disjoint from H,
- $Y'' = Y' \cup e_\alpha$ for some cell e_α of Y not in Y'.
Lemma 2 (Adding a Y-side cell, fitting X-side promises)

Let

- Y' be a finite subcomplex of Y containing y_0,
- $F : \mathbb{N} \to \mathbb{N}$ be a function,
- $i \in \mathbb{N}$, and
- s be a function from the indices of Y' to \mathbb{N} such that $U(x_0; F) \times U(y_0; s) \subseteq X \times Y'$ has closure disjoint from H,
- $Y'' = Y' \cup e_\alpha$ for some cell e_α of Y not in Y'.

Then there is a function $f : \mathbb{N} \to \mathbb{N}$ such that

1. $f(n) \geq F(n)$ for all n in \mathbb{N}, and $f(n) = F(N)$ for all $n < i$,

2. for every $f' : \mathbb{N} \to \mathbb{N}$ such that $f' \geq^* f$ and $f' \geq F$, there is a $q \in \mathbb{N}$ such that $U(x_0; f') \times U(y_0; s \cup \{ (\alpha, q) \})$ has closure disjoint from H.
Proof of Lemma 2

For every finite tuple r of length n such that $r \geq F \upharpoonright n$, $U(x_0; r) \subset U(x_0; F)$, so $U(x_0; r) \times U(y_0; s)$ certainly has closure disjoint from H.
Proof of Lemma 2

For every finite tuple r of length n such that $r \geq F \upharpoonright n$, $U(x_0; r) \subset U(x_0; F)$, so $U(x_0; r) \times U(y_0; s)$ certainly has closure disjoint from H.

By Lemma 1, we can then take $q_r \in \mathbb{N}$ such that $U(x_0; r) \times U(y_0; s \cup \{(\alpha, q_r)\})$ has closure disjoint from H.
Proof of Lemma 2

For every finite tuple r of length n such that $r \geq F \upharpoonright n$, $U(x_0; r) \subset U(x_0; F)$, so $U(x_0; r) \times U(y_0; s)$ certainly has closure disjoint from H.

By Lemma 1, we can then take $q_r \in \mathbb{N}$ such that $U(x_0; r) \times U(y_0; s \cup \{(\alpha, q_r)\})$ has closure disjoint from H.

Then by Lemma 1 again, there is $p \in \mathbb{N}$ sucht that $U(x_0; r \cup \{(n, p)\}) \times U(y_0; s \cup \{(\alpha, q_r)\})$ has closure disjoint from H.
Now, assuming by induction we have defined $f \upharpoonright n$ ($n \geq i$), there are only finitely many r with $F \upharpoonright n \leq r \leq f \upharpoonright n$; follow this procedure for all of them, and take the maximum of the resulting values p to be $f(n)$.

Then for any $f' \geq F$ with $f' \geq^* f$, $f' \geq r \cup (f \upharpoonright [n, \infty))$ for some $n \geq i$ and some r of length n as above, so

$$U(x_0; f' \upharpoonright n + 1) \times U(y_0; s \cup \{(\alpha, q_r)\})$$ has closure disjoint from H,

and in fact

$$U(x_0; f') \times U(y_0; s \cup \{(\alpha, q_r)\})$$ has closure disjoint from H.

Lemma 2
Finishing the proof of the Theorem

With Lemma 2 in hand, the argument now follows as outlined before:

Proceed by induction of dimension on the Y side. Assume we have defined $f_k : \mathbb{N} \to \mathbb{N}$ and $g \upharpoonright Y^k$. For each $(k + 1)$-dimensional cell e_α on the Y side, use Lemma 2 with f_k as F, k as i, the minimal (finite) subcomplex of Y containing e_α as Y'', and $g \upharpoonright (Y'' \setminus e_\alpha)$ as s to get $f_{a_l,k+1}$. There are fewer than b many such $f_{\alpha,k+1}$, so take f_{k+1} eventually dominating all of them. Then take q as given by Lemma 2 (with f_{k+1} as f') as $g(\alpha)$.

Finally, take f to be the (componentwise) limit of the f_{k+1}; these f and g are such that $U(x_0; f) \times U(y_0; g)$ has closure disjoint from H.

\[\square\]