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Our questions

We say that classes of topological spaces C, D are equivalent if
every member of C is homeomorphic to a member of D and vice
versa. We write C ∼= D.

Let C be a class of metrizable compacta.

Question
Can C be disjointly composed into one metrizable compactum such
that the quotient space is also a metrizable compactum?

If C is a class of continua, then the question is equivalent to
the following.

Question
Is there a metrizable compactum such that its set of connected
components is equivalent to C?



Compactifiable and Polishable classes

Definition
A class of topological spaces C is called

compactifiable if there is a continuous map q : A→ B between
metrizable compacta such that {q−1(b) : b ∈ B} ∼= C,
Polishable if there is a continuous map q : A→ B between
Polish spaces such that {q−1(b) : b ∈ B} ∼= C.



Compositions – the witnessing objects

More generally, a composition A consists of the following data:

{Ab}b∈B A B

{eb}b∈B
q

a composition space A and an indexing space B,
a family {Ab}b∈B of topological spaces being composed,
a family of embeddings {eb : Ab ↪→ A}b∈B such that
{rng(eb)}b∈B is a decomposition of A,

a composition map q : A→ B that is continuous and satisfies
q−1(b) = rng(eb) for every b ∈ B.

We write A(q : A→ B) or A = (A, eb)b∈B or even (A,Ab)b∈B
when Ab ⊆ A. For the latter cases, the induced composition map
is denoted by qA.



Compositions – the witnessing objects

A composition A(q : A→ B) is called
compact if A, B are metrizable compacta,
Polish if A, B are Polish spaces.

Let A, B be topological spaces, let F ⊆ A× B.
We put F b := {a ∈ A : (a, b) ∈ F} for every b ∈ B.
F induces the composition AF (πB : F → B).
On the other hand, we may move from a composition
A(q : A→ B) to the graph {(a, q(a)) : a ∈ A} ⊆ A× B.



Equivalences

Theorem
The following conditions are equivalent for a class of spaces C.

1 C is compactifiable.
2 There are metrizable compacta A, B and a closed set

F ⊆ A× B such that {F b : b ∈ B} ∼= C.
3 There is a closed set F ⊆ [0, 1]ω × 2ω such that

{F b : b ∈ 2ω} ∼= C.

1 C is Polishable.
2 There is a Polish space A, an analytic space B, and a Gδ set

F ⊆ A× B such that {F b : b ∈ B} ∼= C.
3 There is a Gδ set F ⊆ [0, 1]ω × ωω such that

{F b : b ∈ ωω} ∼= C.
4 There is a closed set F ⊆ (0, 1)ω × ωω such that

{F b : b ∈ ωω} ∼= C.



Observations

Compactifiable and Polishable classes are stable under
countable unions – consider the one-point compactification of∑

i∈I qi :
∑

i∈I Ai →
∑

i∈I Bi .

Hence, every countable family of metrizable compacta (or
Polish spaces) is compactifiable (or Polishable).
On the other hand, a cardinal argument gives that there are
many classes of metrizable compacta that are not Polishable.

There are c-many Gδ subsets of [0, 1]ω × ωω.
There are c-many non-homeomorphic metrizable compacta,
and so 2c-many non-equivalent classes.



Hyperspaces

For a topological space X we shall consider the hyperspaces of all
subsets P(X ), all closed subsets Cl(X ), all compact subsets K(X ),
and all subcontinua C(X ) endowed with the Vietoris topology.

Recall

The Vietoris topology is generated by the sets
U− = {A ⊆ X : A ∩ U 6= ∅} and U+ = {A ⊆ X : A ⊆ U}
for open U ⊆ X .
K(X ) is metrizable by the Hausdorff metric.
K(X ) is compact (or Polish) if X is compact (or Polish).
C(X ) is closed in K(X ).
R∈ = {(x ,A) : x ∈ A ∈ Cl(X )} is closed in X × Cl(X ).



Compositions and hyperspaces

Definition
A composition A(q : A→ B) is strong if q is closed and open and
|B \ rng(q)| ≤ 1. We also define strongly compactifiable and
strongly Polishable classes.

Construction

X , F ⊆ P(X ) A (q : A→ B)

AF (πF : R∈ ∩ (X ×F)→ F)

A, FA := {q−1(b)}b∈B ⊆ P(A)

If F ⊆ K(X ), then AF is strong.
A composition A is strong if and only if FA ∼= B via q−1∗.



Compositions and hyperspaces

Theorem
The following conditions are equivalent for a class of spaces C.

1 C is strongly compactifiable.
2 There is a metrizable compactum X and a closed family

F ⊆ K(X ) such that F ∼= C.
3 There is a closed family F ⊆ K([0, 1]ω) such that F ∼= C.

1 C is a strongly Polishable class of compacta.
2 There is a Polish space X and an analytic family

F ⊆ K(X ) such that F ∼= C.
3 There is a Gδ family F ⊆ K([0, 1]ω) such that F ∼= C.
4 There is a closed family F ⊆ K((0, 1)ω) such that F ∼= C.



Implications between the classes considered

Proposition
Let A(q : A→ B) be a Polish composition of compacta.

If q is closed, then FA ⊆ K(A) is Gδ.
Every compactifiable class is a strongly Polishable class.

strongly
compactifiable compactifiable

closed Fσ

strongly
Polishable Polishable

Gδ analytic

classes of compacta

existence of equivalent subsets of K([0, 1]ω)



Borel complexity up to equivalence
The previous results show that the problem of compactifiability is
related to the Borel complexity of subsets of K([0, 1]ω)) up to the
equivalence.

Closed subsets of K([0, 1]ω) correspond to strongly
compactifiable classes.
To every analytic subset of K([0, 1]ω) there exists an
equivalent Gδ subset, and these correspond to strongly
Polishable classes of compacta.

Theorem [Kechris, Louveau, Woodin]

Every analytic σ-ideal in K(X ) for X metrizable compact is Gδ.

What about clopen, open, and Fσ subsets of K([0, 1]ω)?

Proposition
There are only four clopen subsets of K([0, 1]ω):

∅, {∅}, K([0, 1]ω) \ {∅}, K([0, 1]ω).



Open classes

Let X be a metrizable compact space.
m(X ) := number of connected components of X .
n(X ) := number of nondegenerate components of X .
t(X ) := (m(X ), n(X )) if m(X ) < ω, ∞ otherwise.
T := {(m, n) : m ≥ n ∈ ω}, T+ := {(m, n) ∈ T : m > 0}.
We define a partial order ≤ on T ∪ {∞}:

(0, 0) is not comparable with anything,
T+ is ordered by the product order,
∞ ≥ t for every t ∈ T+.

For t ∈ T ∪ {∞} we define the principal upper class
Ut := {X : t(X ) ≥ t}.



Open classes

Examples
We have the following classes of metrizable compact spaces:

U0,0 = {∅},
U1,0 – all nonempty compacta,
U2,0 ∪ U1,1 – all nondegenerate compacta,
Um,0 – all compacta with at least m components,
Um,0 ∪ U1,1 – all compacta with at least m points.

Proposition
Let X ,Y ∈ K([0, 1]ω). A homeomorphic copy of Y is contained in
every neighborhood of X if and only if t(Y ) ≥ t(X ).



Open classes

It follows that for every open U ⊆ K([0, 1]ω) we have
U ∼=

⋃
{Ut(X) : X ∈ U}.

For every R ⊆ T let A(R) denote the set of all ≤-minimal
elements of R. This is a finite antichain in T ∪ {∞}. We
have

⋃
t∈R Ut =

⋃
t∈A(R) Ut .

Since finite spaces are dense in K([0, 1]ω), not every upper
class Ut is open in K([0, 1]ω). On the other hand, this is
essentially the only obstacle.
We call a set R ⊆ T nice if (m, 0) ∈ R for some m > 0
whenever R ∩ T+ 6= ∅.⋃

t∈R Ut ∩ K([0, 1]ω) is open if and only if R is nice.
A(R) is nice if and only if R is nice.



Open classes

We denote the set of all nice antichains in T ∪ {∞} by R.
These are finite subsets of T .
For every R ∈ R we define the open class OR :=

⋃
t∈R Ut .

Theorem

For every open U ⊆ K([0, 1]ω) there exists exactly one R ∈ R
such that U ∼= OR .
For every R ∈ R we have OR ∼= OR ∩ K([0, 1]ω), which is
open.



Fσ subsets

Proposition
Let X ∈ K([0, 1]ω) and F ⊆ K([0, 1]ω) closed. An equivalent copy
of F is contained in every neighborhood of X if and only if
t(Y ) ≥ t(X ) for every Y ∈ F .

Theorem
Every countable union of strongly compactifiable classes is strongly
compactifiable, i.e. every Fσ subset of K([0, 1]ω) is strongly
compactifiable and equivalent to a closed subset of K([0, 1]ω).

The proof uses the notion of Z-sets from infinite-dimensional
topology, a variant of Michael zero-dimensional selection theorem,
and the previous classification of open subsets.



Induced classes

Let C be a class of metrizable compacta.
C↓ denotes the class of all subspaces of members of C
that are metrizable compact.

Proposition

If C is compactifiable, then C↓ is strongly compactifiable.
If C is Polishable, then C↓ is strongly Polishable.

Example
Every hereditary class of metrizable compacta with a universal
element is strongly compactifiable – all compacta, all continua,
continua with dimension at most n, chainable continua, tree-like
continua, dendrites.



Induced classes

Let C be a class of metrizable compacta.
C� denotes the class of all continuous images of members of C
that are metrizable compact.

Proposition

If C is strongly Polishable, then C� is strongly Polishable.

Example
Every class of metrizable compacta closed under continuous
images with a common model is strongly Polishable – Peano
continua, weakly chainable continua.



Induced classes

Let C be a class of metrizable compacta.
C↑ denotes the class of all superspaces of members of C
that are metrizable compact.

Proposition

If C is strongly compactifiable, then C↑ is strongly
compactifiable.
If C is strongly Polishable, then C↑ is strongly Polishable.

Example
The class of all uncountable compacta is strongly compactifiable.



Induced classes

Let C be a class of metrizable compacta.
C∼= denotes the class of all homeomorphic copies of
members of C.

Proposition

If C strongly Polishable and X is a Polish space,
then C∼= ∩ K(X ) is analytic.

Example
Classes coanalytically complete in K([0, 1]ω) are not strongly
Polishable – all countable compacta, hereditarily decomposable
continua, dendroids, λ-dendroids, arcwise connected continua,
uniquely arcwise connected continua, hereditarily locally connected
continua.



Problems

Questions

Is there a compactifiable (or Polishable) class that is not
strongly compactifiable (or strongly Polishable)?
Is there a Polishable class that is not compactifiable?
Is the class of all Peano continua compactifiable?



Thank you for your attention.
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