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Baire spaces

Definition

A topological space is Baire if for every family 〈An : n ∈ ω〉 of open

dense subsets,
⋂

n∈ω An is dense.

2



Baire spaces

Definition

A topological space is Baire if for every family 〈An : n ∈ ω〉 of open

dense subsets,
⋂

n∈ω An is dense.

2



A classical game

The Banach-Mazur game is played as follows:

• Alice plays A0 a non-empty open set;

• Bob plays B0 ⊂ A0 a non-empty open set;

• Alice plays A1 ⊂ B0 a non-empty open set;

• Bob plays B1 ⊂ A1 a non-empty open set;

• an so on, for every n ∈ ω.

At the end, Bob is declared the winner if
⋂

n∈ω Bn 6= ∅ and Alice is the

winner otherwise.
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A classical relation

Theorem (Oxtoby)

X is a Baire space if and only if Alice does not have a winning strategy

for the Banach-Mazur game.
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Warming up

Suppose that X is not Baire. Let us show that Alice has a winning

strategy. Let V be a non-empty open set and let 〈An : n ∈ ω〉 be a

sequence of open dense subsets such that V ∩
⋂

n∈ω An = ∅.

• Alice plays V ∩ A0;

• Bob plays B0 ⊂ (V ∩ A0);

• Alice plays B0 ∩ A1;

• and so on.

Since V ∩
⋂

n∈ω An = ∅,
⋂

n∈ω Bn = ∅. Poor Bob.
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The other direction

Now suppose that X is Baire. Let σ be a strategy for Alice. We will

show that σ is not winning.

Since X is Baire, so it is V = σ(〈〉).

Lemma⋃
B∈τ⊂A

σ(〈B〉) is open dense in V .

Proof.

Let W ⊂ V be a non-empty open set. Then

∅ 6= σ(〈W 〉) ⊂W

Let Sn = {all possible Alice’s plays at the n-th inning}.

Note that the above lemma just tells us that
⋃

A∈S1
A is open dense in V .

And basically with the same proof, Dn =
⋃

A∈Sn
A is open dense in V for

every n.
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Bob can find a way

Since V is Baire, there is an x ∈
⋂

n∈ω Dn.

Now Bob just has to follow this x . At the inning n, Bob just picks a

open set that has x in its interior. Since x is in the intersection, the

answer from Alice will also contain x . ?

We may have a problem here.
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What can happen?
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How to solve it

We have to change a bit the definition of the Dn’s.

Instead of just looking for the possible answers, we look for maximal

antichains (and one being a refinement of the previous one).
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It is better if we draw a picture
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Products

Theorem

There are Baire spaces X and Y such that X × Y is not Baire.

Let us call a space X productively Baire if X × Y is Baire for all Baire

space Y .

Theorem

If Bob has a winning strategy for the Banach-Mazur game, then the

space is productively Baire.
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Let us prove it only with games

Suppose not.

Let b be a winning strategy for Bob in the Banach-Mazur game over X .

Let ea be a winning strategy for Alice in the Banach-Mazur game over

X × Y (since it is not Baire). Let us define a winning strategy for Alice

over Y .

First note that we can suppose that ea always plays basic open sets.

Let V0 ×W0 = ea(〈〉).

b can take care of it, so let B0 = b(〈V0〉)

Alice plays W0 in the play over Y .

Some Bob plays U0 ⊂W0 on Y .

We go back to X × Y and let V1 ×W1 = ea(〈B0 × U0〉).

Start over.

The point is,
⋂

n∈ω Bn is non-empty.
⋂

n∈ω Bn × Un = ∅. So⋂
n∈ωWn = ∅.

25
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Cantor

Proposition

Let X ⊂ R. If Bob has a winning strategy for the Banach-Mazur game

over X , then X has a Cantor subspace.
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Bernstein

Definition

We say that X ⊂ R is a Bernstein set if it is uncountable and, for every

uncountable closed set F ⊂ X , F ∩X e F ∩ (RrX ) are both non-empty.

Corollary

If X is a Bernstein set, then Bob has no winning strategy.
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Changing the game a little bit

Let us make Bob’s life easier:

• Alice plays A0 non-empty open set;

• Bob plays B1
0 ,B

2
0 ⊂ A0 non-empty open sets; Let us define

B0 = B1
0 ∪ B2

0 ;

• Alice plays A1
1 ⊂ B1

0 , A2
1 ⊂ B2

0 non-empty open sets;

• Bob plays B1
1 ,B

2
1 ⊂ A1

1 and B3
1 ,B

4
1 ⊂ A2

1 non-empty open sets; Let

us define B1 = B1
1 ∪ B2

1 ∪ B3
1 ∪ B4

1 .

• And so on.

Bob is declared the winner if
⋂

n∈ω Bn 6= ∅ and Alice is the winner

otherwise.
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Products again

Like we did before, it is possible to show (about this new game) that

• Alice has a winning strategy if, and only if, the space is not Baire;

• If Bob has a winning strategy, then the space is productively Baire.

Are these games different?

45
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Bernstein again

Proposition

If X is a Bernstein set, then Bob has a winning strategy for this new

game.
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If X is a Bernstein set, then Bob has a winning strategy for this new

game.
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Think that you are playing over R
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Multiboard game

Let BM2 be the 2-boards game version of Banach-Mazur. There are two

boards of the game, Alice starts playing on all the boards. Then Bob

answers playing in all the boards (following the rules on each board).

Then Alice again and so on.

We say that Bob wins the game if he wins on all boards. Alice is the

winner otherwise (i.e. Alice wins at some board).
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Really multiboard game

Let BMκ be the κ-boards game version of Banach-Mazur. There are κ

boards of the game, Alice starts playing on all the boards. Then Bob

answers playing in all the boards (following the rules on each board).

Then Alice again and so on.

We say that Bob wins the game if he wins on all boards. Alice is the

winner otherwise (i.e. Alice wins at some board).

52



Seeing the games
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So...

• If Bob has a winning strategy for BM1, he has one for BMκ.

• If Alice has a winning strategy for BM1, she has one for BMκ.

• If Bob has a winning strategy for BMκ, he has one for BM1.

• If you start with a Baire space where Bob does not have a winning

strategy for BM1 and BMκ is determined, then Alice has a

winning strategy for the BMκ.

• Given a space X , can we always find a κ such as BMκ is determined?

• Yes, kind of.

• If it is consistent that there is a proper class of measurable cardinals,

then the above conjecture is consistently true. [1]

• The motivation for the conjecture was: if Bob has a winning

strategy for BM1 on X , then �ξ<κX is Baire for any κ. Is the

converse also true?
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