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First example

Definition

Fixed a topological space X , the Rothberger game is played as follows:

• Alice plays an open covering C0;

• Bob plays C0 ∈ C0;

• Alice plays an open covering C1;

• Bob plays C1 ∈ C1;

• and so on, for every n ∈ ω.

At the end, Bob is declared the winner if
⋃

n∈ω Cn = X and Alice is

declared the winner otherwise.
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Winning strategies

A strategy for a player is a function σ such that

σ(History of the game so far)

is a movement for the player at the current inning.

A winning strategy for a player is a strategy that wins the game, no

matter how well the other player plays.

In general, one player not having a winning strategy does not imply that

the other player has one - it’s a matter of order of quantifiers: there is a

strategy that beats all the other ones and every strategy is beaten for

some strategy.

Definition

We say that a topological space is a Rothberger space if Alice does

not have a winning strategy.
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Very easy stuff

• If X is countable, then Bob has a winning strategy (therefore, X is

Rothberger);

• If X is Rothberger, then X is Lindelöf;

• Compact spaces are... ?
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2ω

Proposition

2ω is a compact space that is not Rothberger.

Proof.

We have to show that there is a winning strategy for Alice. For every

n ∈ ω, let

C 0
n = {f ∈ 2ω : f (n) = 0} C 1

n = {f ∈ 2ω : f (n) = 1}

Note that Cn = {C 0
n ,C

1
n } is an open covering for X . Therefore, Alice

can play Cn at the n-th inning. This way, we can think that the choices of

Bob are 0 or 1 (for C 0
n and C 1

n ). Let f ∈ 2ω be such that f (n) = in + 1

mod 2, where in is the choice of Bob at the n-th inning. Note that f is

not covered by the choices of Bob.
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Drawing strategies

Often it is useful to draw sketches of strategies. Let us start with a

simple one: strategies for Alice in the Rothberger game.

First, it is good to note the following: the Rothberger game is only

interesting for the Lindelöf case. In this way, we can suppose that every

covering played by Alice is countable.
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Sketch of Alice’s strategy
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Seeing what means to be a winning strategy
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Variations of the game

We can do many modifications in the rules of the game. Some common

modifications are:

• to restrict what kind of coverings Alice can play (e.g., only

countable ones, point-cofinite open coverings etc.);

• to let Bob to play more open sets (e.g., finitely many open sets

instead of just one);

• to change the length of the game (e.g., to ω + ω innings or ω1

innings);

• to put some kind of amnesia on the players (e.g. they only remember

the previous inning, or just the number of the current inning).
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The long Rothberger game

The long version of the Rothberger game is played exactly the same way,

with the difference that each play has ω1 innings (instead of ω).

Proposition

If X is hereditarily Lindelöf, then Bob has a winning strategy in the long

Rothberger game.

Proof.

At every inning α, if Bob didn’t win already, there is an xα /∈
⋃
β<α Cβ .

Therefore, Bob plays Cα ∈ Cα such that xα ∈ Cα. Note that if Bob

does not win during the whole game, the subspace {xα : α < ω1} is not

Lindelöf, what is a contradiction.
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Indesctructible Lindelöf

It turns out that Alice not having a winning strategy in the long

Rothberger game is equivalent to the space being indestructible Lindelöf:

Definition

A Lindelöf space is indestructible Lindelöf if it is still Lindelöf after any

countably closed forcing.

(This was done first by Tall (without any game language) and later by

Scheepers and Tall [3])

Looking at this proof, you can prove that compact Rothberger spaces are

exactly the compacts that remain compact after any forcing extension.

21



Indesctructible Lindelöf
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Menger game

An important game that can be seen as a modification of the Rothberger

game is the Menger game:

Definition

Fixed a topological space X , the Menger game is played as follows:

• Alice plays an open covering C0;

• Bob plays a finite C0 ⊂ C0;

• Alice plays an open covering C1;

• Bob plays a finite C1 ⊂ C1;

• and so on, for every n ∈ ω.

At the end, Bob is declared the winner if
⋃

n∈ω Cn is a covering for X

and Alice is declared the winner otherwise.

If Alice does not have a winning strategy, the space is said to be a

Menger space.
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Very easy stuff

• Every Rothberger space is Menger;

• Every Menger space is Lindelöf;

• Every compact space is Menger;

• If the space is σ-compact, then Bob has a winning strategy.

23



Very easy stuff

• Every Rothberger space is Menger;

• Every Menger space is Lindelöf;
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Second countable spaces

For second countable spaces, these properties are not so different.

Theorem ([4, 2])

Every regular second countable space where Bob has a winning strategy

is σ-compact.
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Mysterious Lemma

Lemma

Let σ be a strategy for Bob in the Menger game. Then

K = σ(C)

is compact.

Proof.

Pretend that all the open sets played are open subsets of βX . Let K̃ be

like K - but with the closures taken in βX . This way, K̃ is compact. If

we show that K̃ ⊂ X , then K = K̃ and we are done.

Suppose that there is a y ∈ K̃ r X . It is very easy to Alice to come up

with a covering C for X with open sets from βX such that y /∈ C for all

C ∈ C. Therefore, y /∈
⋃
σ(C)

βX
⊃ K̃ .
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OK, so I can find one compact. But how to find the covering?

Let us focus on the first inning.

First, fix a countable base B and suppose that Alice will only play

coverings made by basic open sets.

Even with this restriction, Alice can ask uncountably many questions.

But the important thing is that Bob has only countably many possible

answers.

Let K0 be the “intersection” of all these possible answers, as in the

Mysterious Lemma. As before, K0 is compact.

Since K0 is the intersection of countably many answers, let us fix

countably many questions for Alice, i.e:

K0 =
⋂
n∈ω

⋃
σ(C〈n〉)
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Next inning

Now let us proceed in the game. If Alice played C〈n〉 in the first inning,

we can define K〈n〉 as in the Mysterious Lemma:

K〈n〉 =
⋂
C∈O

⋃
σ(C〈n〉, C)

As before, K〈n〉 is compact. Moreover, counting again the questions and

answers, we can find 〈C〈n,k〉 : k ∈ ω〉 such that

K〈n〉 =
⋂
k∈ω

⋃
σ(C〈n〉, C〈n,k〉)

Doing like this, we obtain 〈Ks : s ∈ ω<w 〉.
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Is it enough?

Now we only have to prove that
⋃

s∈ω<ω Ks = X .

Suppose not.
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Just go where x is not
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Another game

Definition

The point-open game is played over a space X as follows:

• Alice plays an x0 ∈ X ;

• Bob plays V0 an open neighborhood of x0;

• Alice plays x1 ∈ X ;

• Bob plays V1 an open neighborhood of x1;

• and so on, for every n ∈ ω.

At the end, Alice is declared the winner if
⋃

n∈ω Vn = X and Bob is

declared the winner otherwise.

35



Another game

Definition

The point-open game is played over a space X as follows:

• Alice plays an x0 ∈ X ;

• Bob plays V0 an open neighborhood of x0;

• Alice plays x1 ∈ X ;

• Bob plays V1 an open neighborhood of x1;

• and so on, for every n ∈ ω.

At the end, Alice is declared the winner if
⋃

n∈ω Vn = X and Bob is

declared the winner otherwise.

35



Another game

Definition

The point-open game is played over a space X as follows:

• Alice plays an x0 ∈ X ;

• Bob plays V0 an open neighborhood of x0;

• Alice plays x1 ∈ X ;

• Bob plays V1 an open neighborhood of x1;

• and so on, for every n ∈ ω.

At the end, Alice is declared the winner if
⋃

n∈ω Vn = X and Bob is

declared the winner otherwise.

35



Another game

Definition

The point-open game is played over a space X as follows:

• Alice plays an x0 ∈ X ;

• Bob plays V0 an open neighborhood of x0;

• Alice plays x1 ∈ X ;

• Bob plays V1 an open neighborhood of x1;

• and so on, for every n ∈ ω.

At the end, Alice is declared the winner if
⋃

n∈ω Vn = X and Bob is

declared the winner otherwise.

35



Another game

Definition

The point-open game is played over a space X as follows:

• Alice plays an x0 ∈ X ;

• Bob plays V0 an open neighborhood of x0;

• Alice plays x1 ∈ X ;

• Bob plays V1 an open neighborhood of x1;

• and so on, for every n ∈ ω.

At the end, Alice is declared the winner if
⋃

n∈ω Vn = X and Bob is

declared the winner otherwise.
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Relations between point-open and Rothberger

Remember that in the Rothberger game, Bob was the one seeking for a

covering (and now it is Alice who is looking for one).

This is not the only connection:

Theorem ([1])

The Rothberger game and the point-open game are dual (i.e. Alice has

a winning strategy in one of the games iff Bob has a winning strategy in

the other one)
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One simple implication

Suppose that Alice has a winning strategy σ for the point-open game.

Let us define how Bob should play in the Rothberger game.

Alice plays an open covering C0. σ(〈〉) = x0 would be the first move of

σ in the point-open game. Since C0 is a covering, there is a C0 ∈ C0 such

that x0 ∈ C0. So C0 is the play of Bob.

Then Alice plays C1. Let x1 = σ(〈C1〉). As before, Bob can select

C1 ∈ C1 such that x1 ∈ C1. Then Alice plays C2 and we fix

x2 = σ(〈C1,C2〉) and so on.

The point is, the sequence 〈x0,C0, x1,C1, ...〉 is a play of the point-open

game where the strategy σ was used. Therefore
⋃

n∈ω Cn = X .
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One nice implication

Now suppose that Bob has a winning strategy for the Rothberger game

and we want to find a way for Alice to win the point-open game.

Let us look at the first inning: Alice knows (from the other game) how

to select elements from open coverings. But she needs to begin this

game playing a point.
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The x Lemma

Lemma

Let σ be a strategy for Bob in the Rothberger game.

Then there is an

x ∈ X such that for every open set C such that x ∈ C, there is a C such

that C = σ(C).

Proof.

Suppose not. Then for every x there is a Cx such that x ∈ Cx and Cx is

not a possible answer from σ. Note that C = {Cx : x ∈ X} is an open

covering. Since σ(C) ∈ C, we got a contradiction.
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Playing

Alice starts with the x0 given by the x Lemma.

Let C0 be the answer of

Bob. By assumption, there is a C0 such that σ(〈C0〉) = C0. Repeating

the proof of the x Lemma, we can find an x1 such that for all V with

x ∈ V , there is a C such that V = σ(C0, C). Therefore Alice just plays

x1 and so on.

Therefore the sequence 〈C0,C0, C1,C1, ...〉 is a play of the Rothberger

game where σ was used. Therefore
⋃

n∈ω Cn = X .
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Lindelöf indestructibility, topological games and selection

principles.

Fundamenta Mathematicae, 210:1–46, 2010.

R. Telgársky.
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