Homogeneity of ideals

Jacek Tryba

Hejnice, 30.01.2017

Joint work with Adam Kwela.
The restriction of the ideal \mathcal{I} to $X \subseteq \bigcup \mathcal{I}$ is given by

$$\mathcal{I}|X = \{A \cap X : A \in \mathcal{I}\}.$$

Given two ideals \mathcal{I} and \mathcal{J} we write $\mathcal{I} \cong \mathcal{J}$ if there is a bijection $f : \bigcup \mathcal{I} \longrightarrow \bigcup \mathcal{J}$ such that $f[C] \in \mathcal{J} \iff C \in \mathcal{I}$.

Definition (Homogeneity)

Let \mathcal{I} be an ideal on ω. Then $H(\mathcal{I}) = \{A \subseteq \omega : \mathcal{I}|A \cong \mathcal{I}\}$ is called the homogeneity family of the ideal \mathcal{I}.

Theorem

When $A \in H(\mathcal{I})$ and $B \supseteq A$ then $B \in H(\mathcal{I})$.

Jacek Tryba

Homogeneity of ideals
The restriction of the ideal \mathcal{I} to $X \subseteq \bigcup \mathcal{I}$ is given by

$$\mathcal{I}|X = \{A \cap X : A \in \mathcal{I}\}.$$

Given two ideals \mathcal{I} and \mathcal{J} we write $\mathcal{I} \cong \mathcal{J}$ if there is a bijection $f : \bigcup \mathcal{I} \rightarrow \bigcup \mathcal{J}$ such that $f[C] \in \mathcal{J} \iff C \in \mathcal{I}$.

Definition (Homogeneity)

Let \mathcal{I} be an ideal on ω. Then

$$H(\mathcal{I}) = \{A \subseteq \omega : \mathcal{I}|A \cong \mathcal{I}\}$$

is called the homogeneity family of the ideal \mathcal{I}.

Theorem

When $A \in H(\mathcal{I})$ and $B \supseteq A$ then $B \in H(\mathcal{I})$.

Jacek Tryba
Homogeneity of ideals
Homogeneity

The restriction of the ideal \mathcal{I} to $X \subseteq \bigcup \mathcal{I}$ is given by

$$\mathcal{I}|_X = \{ A \cap X : A \in \mathcal{I} \}.$$

Given two ideals \mathcal{I} and \mathcal{J} we write $\mathcal{I} \cong \mathcal{J}$ if there is a bijection $f : \bigcup \mathcal{I} \longrightarrow \bigcup \mathcal{J}$ such that $f[C] \in \mathcal{J} \iff C \in \mathcal{I}$.

Definition (Homogeneity)

Let \mathcal{I} be an ideal on ω. Then

$$H(\mathcal{I}) = \{ A \subseteq \omega : \mathcal{I}|_A \cong \mathcal{I} \}$$

is called the homogeneity family of the ideal \mathcal{I}.

Theorem

*When $A \in H(\mathcal{I})$ and $B \supseteq A$ then $B \in H(\mathcal{I})$.***
We call an ideal \mathcal{I} on ω *homogeneous* if
\[H(\mathcal{I}) = \mathcal{I}^+ = \{ A \subseteq X : A \notin \mathcal{I} \}. \]

We call an ideal \mathcal{I} on ω *anti-homogeneous* if
\[H(\mathcal{I}) = \mathcal{I}^* = \{ A \subseteq X : A^c \in \mathcal{I} \}. \]
Examples

- Fin, the ideal of all finite sets, is homogeneous.
Examples

- \(\text{Fin} \), the ideal of all finite sets, is homogeneous.
- Maximal ideals are both homogeneous and anti-homogeneous.
Examples

- \(\text{Fin} \), the ideal of all finite sets, is homogeneous.
- Maximal ideals are both homogeneous and anti-homogeneous.
- Van der Waerden ideal \(\mathcal{W} = \{ A \subseteq \omega : \exists n \in \omega A \text{ does not contain an arithmetic progression of length } n \} \) is homogeneous.
Examples

- Fin, the ideal of all finite sets, is homogeneous.
- Maximal ideals are both homogeneous and anti-homogeneous.
- Van der Waerden ideal $\mathcal{W} = \{ A \subseteq \omega : \exists n \in \omega A \text{ does not contain an arithmetic progression of length } n \}$ is homogeneous.
- Let $\{ I_n : n \in \omega \}$ be a family of consecutive intervals such that each I_n has length $n!$. An ideal $\mathcal{I} = \{ A \subseteq \omega : \lim_{n \to \infty} |A \cap I_n|/n! = 0 \}$ is anti-homogeneous.
Examples

- Fin, the ideal of all finite sets, is homogeneous.
- Maximal ideals are both homogeneous and anti-homogeneous.
- Van der Waerden ideal $\mathcal{W} = \{ A \subseteq \omega : \exists n \in \omega A \text{ does not contain an arithmetic progression of length } n \}$ is homogeneous.
- Let $\{ I_n : n \in \omega \}$ be a family of consecutive intervals such that each I_n has length $n!$. An ideal $\mathcal{I} = \{ A \subseteq \omega : \lim_{n \to \infty} |A \cap I_n|/n! = 0 \}$ is anti-homogeneous.
- Ideal of sets of asymptotic density zero $\mathcal{I}_d = \{ A \subseteq \mathbb{N} : \lim_{n \to \infty} \frac{|A \cap \{0,1,\ldots,n\}|}{n+1} = 0 \}$ is neither homogeneous nor anti-homogeneous.
Invariant functions

Definition (Balcerzak, Głąb, Swaczyna)

Let \mathcal{I} be an ideal on ω and $f : \omega \to \omega$ be an injection. We say that f is:

- \mathcal{I}-invariant if $f[A] \in \mathcal{I}$ for all $A \in \mathcal{I}$;
- bi-\mathcal{I}-invariant if $f[A] \in \mathcal{I} \iff A \in \mathcal{I}$ for all $A \subseteq \omega$.

If $f : \omega \to \omega$ is bi-\mathcal{I}-invariant then $f[\omega] \in H(\mathcal{I})$. On the other hand, if $A \in H(\mathcal{I})$ then there is a bi-\mathcal{I}-invariant $f : \omega \to \omega$ with $f[\omega] = A$.

Jacek Tryba

Homogeneity of ideals
Theorem

The following are equivalent for any ideal \mathcal{I} on ω:
- there is an \mathcal{I}-invariant injection $f : \omega \to \omega$ with $\text{Fix}(f) \notin \mathcal{I}^*$ and $f[\omega] \notin \mathcal{I}$;
- \mathcal{I} is not a maximal ideal.

Theorem

The following are equivalent for any ideal \mathcal{I} on ω:
- there is a bi-\mathcal{I}-invariant injection $f : \omega \to \omega$ with $\text{Fix}(f) \notin \mathcal{I}^*$;
- there are $A, B \subseteq \omega$ such that $A \triangle B \notin \mathcal{I}$ and $\mathcal{I}|A \cong \mathcal{I}|B$.

Jacek Tryba
Homogeneity of ideals
Theorem

The following are equivalent for any ideal \mathcal{I} on ω:

- there is an \mathcal{I}-invariant injection $f : \omega \rightarrow \omega$ with $\text{Fix}(f) \notin \mathcal{I}^*$ and $f[\omega] \notin \mathcal{I}$;
- \mathcal{I} is not a maximal ideal.

Theorem

The following are equivalent for any ideal \mathcal{I} on ω:

- there is a bi-\mathcal{I}-invariant injection $f : \omega \rightarrow \omega$ with $\text{Fix}(f) \notin \mathcal{I}^*$;
- there are $A, B \subseteq \omega$ such that $A \Delta B \notin \mathcal{I}$ and $\mathcal{I}\vert A \cong \mathcal{I}\vert B$.

Problem

Characterize the ideals for which there are no $A, B \subseteq \omega$ such that $A \Delta B \notin \mathcal{I}$ and $\mathcal{I}\vert A \cong \mathcal{I}\vert B$. Specifically, find a “nice” example of such an ideal.
Let \mathcal{I} be an ideal on ω. We say that a real sequence $(x_n)_{n \in \omega}$ is \mathcal{I}-convergent to $x \in \mathbb{R}$ if for every $\varepsilon > 0$ we have
\[\{ n \in \omega : |x_n - x| > \varepsilon \} \in \mathcal{I}. \]
Ideal convergence

Let \mathcal{I} be an ideal on ω. We say that a real sequence $(x_n)_{n \in \omega}$ is \mathcal{I}-convergent to $x \in \mathbb{R}$ if for every $\varepsilon > 0$ we have

$$\{ n \in \omega : |x_n - x| > \varepsilon \} \in \mathcal{I}.$$

Proposition

The following are equivalent for any ideal \mathcal{I} on ω not isomorphic to $\text{Fin} \oplus \mathcal{P}(\omega)$:

- for any sequence $(x_n)_{n \in \omega}$ of reals, \mathcal{I}-convergence of $(x_n)_{n \in \omega}$ to some $x \in \mathbb{R}$ implies convergence of $(x_{f(n)})_{n \in \omega}$ to x for some bi-\mathcal{I}-invariant injection f;

- for every countable family $\{A_n : n \in \omega\} \subseteq \mathcal{I}$ there exists such $A \in H(\mathcal{I})$ that $A \cap A_n$ is finite for every $n \in \omega$.

A homogeneous ideal satisfies the above if and only if it is a weak P-ideal. Moreover, an anti-homogeneous ideal satisfies the above if and only if it is a P-ideal.
Theorem

Let $A \in H(I_d)$ and $\{a_0, a_1 \ldots\}$ be an increasing enumeration of A. Then the function $f: \omega \rightarrow A$ given by $f(n) = a_n$ witnesses that $I_d|A \cong I_d$.
Theorem

Let $A \in H(\mathcal{I}_d)$ and $\{a_0, a_1, \ldots\}$ be an increasing enumeration of A. Then the function $f : \omega \to A$ given by $f(n) = a_n$ witnesses that $\mathcal{I}_d|A \cong \mathcal{I}_d$.

Problem

Characterize ideals \mathcal{I} such that for any $A \in H(\mathcal{I})$ the function $f : \omega \to A$ given by $f(n) = a_n$, where $\{a_0, a_1, \ldots\}$ is an increasing enumeration of A, witnesses that $\mathcal{I}|A \cong \mathcal{I}$.