Ramsey properties and the Katětov order

José de Jesús Pelayo Gómez

Posgrado Conjunto en Ciencias Matemáticas
UNAM-UMSNH
Morelia, México

Winter School in Abstract Analysis
Section Set Theory and Topology
Hejnice, Czech Republic.
1. Basic Definitions

2. Random graphs ideals

3. Main result
An ideal on ω is a family \mathcal{I} of subsets of ω closed under finite unions and under subsets. We only consider ideals which contains all finite sets.
An ideal on ω is a family I of subsets of ω closed under finite unions and under subsets. We only consider ideals which contains all finite sets.

We think an ideal like a family of “small” subsets and it is the dual notion of a filter. If $A \notin I$ we say that A is an I-positive set or only a positive set.
An ideal on \(\omega \) is a family \(\mathcal{I} \) of subsets of \(\omega \) closed under finite unions and under subsets. We only consider ideals which contains all finite sets.

We think an ideal like a family of “small” subsets and it is the dual notion of a filter. If \(A \notin \mathcal{I} \) we say that \(A \) is an \(\mathcal{I} \)-positive set or only a positive set.

\(\mathcal{I} \) is tall if for every \(B \in [\omega]^\omega \) there is \(A \in \mathcal{I} \) such that \(A \cap B \) is infinite or equivalently for every positive set \(C \) the restriction of \(\mathcal{I} \) to \(C \) is not the \(Fin \) ideal.
We will say that $\mathcal{I} \leq_{K} \mathcal{J}$ if there is a function $f : \omega \mathcal{J} \to \omega \mathcal{I}$ such that $f^{-1}[A] \in \mathcal{I}$ when $A \in \mathcal{J}$.
We will say that $\mathcal{I} \leq_K \mathcal{J}$ if there is a function $f : \omega \mathcal{J} \to \omega \mathcal{I}$ such that $f^{-1}[A] \in \mathcal{I}$ when $A \in \mathcal{J}$.

We are considering tall ideals because every non tall ideal \mathcal{I} is Katětov equivalent to Fin ($\mathcal{I} \leq_K \text{Fin}$ and $\text{Fin} \leq_K \mathcal{I}$).
We will say that $\mathcal{I} \leq_{K} \mathcal{J}$ if there is a function $f : \omega \mathcal{J} \to \omega \mathcal{I}$ such that $f^{-1}[A] \in \mathcal{I}$ when $A \in \mathcal{J}$.

We are considering tall ideals because every non tall ideal \mathcal{I} is Katětov equivalent to Fin ($\mathcal{I} \leq_{K} Fin$ and $Fin \leq_{K} \mathcal{I}$).

As a last comment, remember that the random graph is the unique (up to isomorphisms) such that for every $a, b \in Fin$ disjoin sets there is $n \in \omega$ related with every $i \in a$ and not related with any $j \in b$.
We will say that $\mathcal{I} \leq_{\mathcal{K}} \mathcal{J}$ if there is a function $f : \omega \mathcal{J} \rightarrow \omega \mathcal{I}$ such that $f^{-1}[A] \in \mathcal{I}$ when $A \in \mathcal{J}$.

We are considering tall ideals because every non tall ideal \mathcal{I} is Katětov equivalent to Fin ($\mathcal{I} \leq_{\mathcal{K}} \text{Fin}$ and $\text{Fin} \leq_{\mathcal{K}} \mathcal{I}$).

As a last comment, remember that the random graph is the unique (up to isomorfisms) such that for every $a, b \in \text{Fin}$ disjoin sets there is $n \in \omega$ related with every $i \in a$ and not related with any $j \in b$. The random graph ideal is the ideal generated by cliques and anticliques and it is denoted by \mathcal{R}.
Definition

We say that $\omega \rightarrow [\mathcal{I}^+]^2_n$ if for every $c : [\omega]^2 \rightarrow n$ there is $A \in \mathcal{I}^+$ such that c is constant in $[A]^2$.
Definition

We say that $\omega \to [I^+]^2_n$ if for every $c : [\omega]^2 \to n$ there is $A \in I^+$ such that c is constant in $[A]^2$.

Observation

The classical Ramsey theorem says that $\omega \to [\text{Fin}^+]^2_n$. It’s easy to see that $\omega \to [I^+]^2_2$ if and only if $R \nless_K I$.
Proposition

For every n there is an ideal \mathcal{R}_n such that $\omega \rightarrow [\mathcal{I}^+]^2_n$ if and only if $\mathcal{R}_n \nsubseteq_K \mathcal{I}$
Proposition

For every n there is an ideal \mathcal{R}_n such that $\omega \to [\mathcal{I}^+]^2_n$ if and only if $\mathcal{R}_n \nsubseteq K \mathcal{I}$

Proof

- We can construct recursively an universal graph with n colors satisfying a property equivalent with the random graph property. Then we take the ideal generated by monochromatic sets and that’s all. ■
• R. Filipów, N. Mrożek, I. Reclaw and P. Szuca asked if the number of colors matter (in other words if $\omega \rightarrow [\mathcal{I}^+]^2_2$ is equivalent with $\omega \rightarrow [\mathcal{I}^+]^2_n$).
R. Filipów, N. Mrożek, I. Reclaw and P. Szuca asked if the number of colors matter (in other words if $\omega \rightarrow [\mathcal{I}^+]^2_2$ is equivalent with $\omega \rightarrow [\mathcal{I}^+]^2_n$).

M. Hrušák, D. Meza-Alcántara, E. Thümmel and C. Uzcátegui answered in the negative way giving an example of an ideal \mathcal{I} which satisfies $\omega \rightarrow [\mathcal{I}^+]^2_2$ and does not satisfies $\omega \rightarrow [\mathcal{I}^+]^2_3$.
R. Filipów, N. Mrożek, I. Reclaw and P. Szuca asked if the number of colors matter (in other words if $\omega \to [\mathcal{I}^+]_2^2$ is equivalent with $\omega \to [\mathcal{I}^+]_n^2$).

M. Hrušák, D. Meza-Alcántara, E. Thümmel and C. Uzcátegui answered in the negative way giving an example of an ideal \mathcal{I} which satisfies $\omega \to [\mathcal{I}^+]_2^2$ and does not satisfies $\omega \to [\mathcal{I}^+]_3^2$.

The main result of this talk is how to improve that result.
Definition

For $s \in \omega^{<\omega}$ we define a family of subsets of ω as follows:

- $A_\emptyset = \omega$
Definition

For $s \in \omega^{<\omega}$ we define a family of subsets of ω as follows:

- $A_\emptyset = \omega$
- $\{A_s \setminus n : n \in \omega\}$ is a partition of A_s in infinite sets.
Definition

For $s \in \omega^{<\omega}$ we define a family of subsets of ω as follows:

- $A_\emptyset = \omega$
- $\{A_{s \upharpoonright n} : n \in \omega\}$ is a partition of A_s in infinite sets.
- For n, m natural numbers there are $s \neq t \in \omega^{<\omega}$ such that $n \in A_s$ and $m \in A_t$.

Pelayo (UNAM-UMSNH)

Ramsey properties and the Katětov order

February, 2017 8 / 14
With the previous definition we can see the \mathcal{ED} ideal as the ideal generated by $A_{(n)}$ and selectors in the first level.
With the previous definition we can see the \mathcal{ED} ideal as the ideal generated by $A(n)$ and selectors in the first level.

For $n \geq 1$ define $\overline{\mathcal{ED}}^n$ as the ideal generated by A_s such that $|s| = n + 1$ and selectors in every level from 0 to n.
• With the previous definition we can see the E_D ideal as the ideal generated by $A_{(n)}$ and selectors in the first level.

• For $n \geq 1$ define $\widetilde{E_D}^n$ as the ideal generated by A_s such that $|s| = n + 1$ and selectors in every level from 0 to n.

• Note that $R \leq_K E_D$ or equivalently E_D has no Ramsey properties.
Also we can define $\overline{\mathcal{ED}}^\omega$ as the intersection of $\overline{\mathcal{ED}}^n$ with $n \in \omega$.
Also we can define \overline{ED}^ω as the intersection of \overline{ED}^n with $n \in \omega$.

The result of M. Hrušák, D. Meza-Alcántara, E. Thümmel and C. Uzcátegui can be translated into this language as $\omega \rightarrow [\overline{ED}^1]^2_2$ but $\overline{ED}^1 \geq_K R_3$.
Main theorem

For every $n \in \omega$ we have that $\omega \rightarrow [\overline{\mathcal{ED}}^n +]^2_{n+1}$ but $\overline{\mathcal{ED}}^n \geq R_{n+2}$. In other words, we have an example of an ideal such that the Ramsey property happens for some n and fails for $n + 1$.

Corollary

$\omega \rightarrow [\overline{\mathcal{ED}}^\omega +]^2_n$ for every $n \in \omega$.
The idea of the proof

It's easy to see that the Ramsey property with $n + 2$ colors is not satisfied by \overline{ED}^n because we can do a coloring by levels. It's a little bit hard to see the Ramsey property with $n + 1$ colors, but we have only see that in every node in the first level or we have a positive set for one color or for each color we have infinite monochromatic sets.
Question

The main question of this area is if there is a Ramsey Borel ideal. The \mathcal{ED}'s ideals seen here was F_σ and the ideal $\overline{\mathcal{ED}}^\omega$ is $F_{\sigma\delta}$ but they don’t have the strong Ramsey property and in fact every F_σ ideal doesn’t have the Ramsey property because they have a restriction bigger (in the Katětov order) than \mathcal{ED}. So if it is true then an example should be more complicated.
THANKS
FOR
YOUR
ATTENTION