Are you self-similar?

Magdalena Nowak

Jan Kochanowski University in Kielce

Hejnice 2017

joint work with T. Banakh and F. Strobin
Self-similar sets

X - topological space
$\mathcal{F} = \{ f : X \to X; \text{ continuous, ”contractive” maps} \}$ - finite

\[\mathcal{F} : \mathcal{P}(X) \to \mathcal{P}(X) \]

$B \subset X \quad \mathcal{F}(B) = \bigcup_{f \in \mathcal{F}} f(B) $
Self-similar sets

X - topological space

$\mathcal{F} = \{f : X \rightarrow X; \text{continuous, ”contractive” maps}\} - \text{finite}$

$$\mathcal{F} : \mathcal{P}(X) \rightarrow \mathcal{P}(X)$$

$B \subset X \quad \mathcal{F}(B) = \bigcup_{f \in \mathcal{F}} f(B)$

Definition

A **self-similar set** for family \mathcal{F} is a nonempty compact set $A \subset X$ which is fixed point of the operator \mathcal{F}:

$$A = \mathcal{F}(A) = \bigcup_{f \in \mathcal{F}} f(A).$$
Examples for $X = \mathbb{R}^n$

F : similarities contractive affine transformations

Magdalena Nowak

Are you self-similar?
Examples for X-metric space

$F : \begin{align*}
\text{Banach contractions} & \quad \text{weak contractions} \\
\text{Lip}_f < 1 & \quad \forall x \neq y \quad d(f(x), f(y)) < d(x, y)
\end{align*}$

A: IFS-attractor \quad \text{weak IFS-attractor}

Are you self-similar?
Motivation

Which compact space is homeomorphic to
- IFS-attractor in \mathbb{R}^n?
- IFS-attractor?
- weak IFS-attractor?

Definition
A compact space $A = F(A)$ for finite $F = \{ f : A \to A, \text{continuous map} \}$ is topological fractal if A is a Hausdorff space and F is topologically contracting; for every open cover U of A there is $n \in \mathbb{N}$ such that for any maps $f_1, \ldots, f_n \in F$ the set $f_1 \circ \cdots \circ f_n(A) \subset U \in U$.

Magdalena Nowak
Are you self-similar?
Motivation

Which compact space is homeomorphic to

- IFS-attractor in \mathbb{R}^n? \rightarrow Euclidean fractal
- IFS-attractor?
- weak IFS-attractor?

Magdalena Nowak
Are you self-similar?
Motivation

Which compact space is homeomorphic to

- IFS-attractor in \mathbb{R}^n? \rightarrow Euclidean fractal
- IFS-attractor? \rightarrow Banach fractal
- weak IFS-attractor?
Motivation

Which compact space is homeomorphic to
- IFS-attractor in \mathbb{R}^n? → **Euclidean fractal**
- IFS-attractor? → **Banach fractal**
- weak IFS-attractor? → **topological fractal**
Motivation

Which compact space is homeomorphic to

- IFS-attractor in \(\mathbb{R}^n \)? \(\rightarrow\) **Euclidean fractal**
- IFS-attractor? \(\rightarrow\) **Banach fractal**
- weak IFS-attractor? \(\rightarrow\) **topological fractal**

Euclidean fractal \(\Rightarrow\) Banach fractal \(\Rightarrow\) topological fractal
Motivation

Which compact space is homeomorphic to

- IFS-attractor in \(\mathbb{R}^n \)? \(\rightarrow\) **Euclidean fractal**
- IFS-attractor? \(\rightarrow\) **Banach fractal**
- weak IFS-attractor? \(\rightarrow\) **topological fractal**

Euclidean fractal \(\Rightarrow\) Banach fractal \(\Rightarrow\) topological fractal

Definition

A compact space \(A = \mathcal{F}(A) \) for finite \(\mathcal{F} = \{ f : A \to A, \text{continuous map} \} \) is **topological fractal** if \(A \) is a Hausdorff space and \(\mathcal{F} \) is **topologically contracting**; for every open cover \(\mathcal{U} \) of \(A \) there is \(n \in \mathbb{N} \) such that for any maps \(f_1, \ldots, f_n \in \mathcal{F} \) the set \(f_1 \circ \cdots \circ f_n(A) \subset U \in \mathcal{U} \).
Peano continua

Peano continuum = continuous image of $[0, 1]$
Peano continuum = continuous image of $[0, 1]$

Corollary from (Hata, 1985)

For compact and connected set A

A is a Banach fractal \Rightarrow A is a Peano continuum
Peano continuum = continuous image of $[0, 1]$

Corollary from (Hata, 1985)

For compact and connected set A

A is a Banach fractal $\Rightarrow A$ is a Peano continuum

A is a Banach fractal $\nRightarrow A$ is a Peano continuum

Is every Peano continuum a topological fractal?

Magdalena Nowak

Are you self-similar?
Peano continuum = continuous image of $[0, 1]$

Corollary from (Hata, 1985)

For compact and connected set A

A is a Banach fractal \Rightarrow A is a Peano continuum

A is a Banach fractal $\not\Leftrightarrow$ A is a Peano continuum

Is every Peano continuum a topological fractal?
Theorem

Each Peano continuum P with open subset A homeomorphic to $(0, 1)$ is a topological fractal.

Magdalena Nowak

Are you self-similar?
Theorem

Each Peano continuum P with open subset A homeomorphic to $(0, 1)$ is a topological fractal.

1. \overline{A} is the IFS-attractor of \mathcal{F}
Peano continua

Theorem

Each Peano continuum P with open subset A homeomorphic to $(0,1)$ is a topological fractal.

1. \overline{A} is the IFS-attractor of \mathcal{F}
2. For every $f \in \mathcal{F}$
 \[\tilde{f}|_A = f \text{ and } \tilde{f}|_{P \setminus A} = \text{const}_{x_f} \]
 \[\tilde{f} : P \to \overline{A} \text{ for } f \in \mathcal{F} \text{ and } \bigcup_{f \in \mathcal{F}} \tilde{f}(P) = \overline{A} \]
Theorem

Each Peano continuum P with open subset A homeomorphic to $(0,1)$ is a topological fractal.

1. \overline{A} is the IFS-attractor of F
2. For every $f \in F$
 \[\tilde{f}|_A = f \quad \text{and} \quad \tilde{f}|_{P \setminus A} = \text{const}_{x_f} \]
 \[\tilde{f} : P \rightarrow \overline{A} \quad \text{for} \quad f \in F \quad \text{and} \quad \bigcup_{f \in F} \tilde{f}(P) = \overline{A} \]
3. $g(\overline{A}) = P \setminus A$ and $g|_{P \setminus A} = \text{const}_{x_g}$
 \[g : P \rightarrow P \setminus A \quad \text{and} \quad g(P) = P \setminus A. \]
Theorem

Each Peano continuum P with open subset A homeomorphic to $(0,1)$ is a topological fractal.

1. \bar{A} is the IFS-attractor of \mathcal{F}

2. For every $f \in \mathcal{F}$
 \[
 \tilde{f}_{|\bar{A}} = f \quad \text{and} \quad \tilde{f}_{|P \setminus A} = \text{const}_{x_f}
 \]
 \[
 \tilde{f} : P \rightarrow \bar{A} \quad \text{for} \quad f \in \mathcal{F} \quad \text{and} \quad \bigcup_{f \in \mathcal{F}} \tilde{f}(P) = \bar{A}
 \]

3. $g(\bar{A}) = P \setminus A$ and $g_{|P \setminus A} = \text{const}_{x_g}$
 \[
 g : P \rightarrow P \setminus A \quad \text{and} \quad g(P) = P \setminus A.
 \]

4. g is uniformly continuous so $\hat{\mathcal{F}} \cup \{g\}$ is topologically contracting
Zero-dimensional spaces

Theorem (Banakh, N., Strobin, 2015)

For zero-dimensional space X

- X countable and $ht(X) = \alpha + 1 \Rightarrow X$ is an Euclidean fractal
- X countable and $ht(X)$ - limit ordinal $\Rightarrow X$ is not a topological fractal
- X uncountable $\Rightarrow X$ is an Euclidean fractal
Theorem (Banakh, N 2016)

Let X be compact finite-dimensional space and Z be its uncountable, zero-dimensional, subset open in X. Then X is topological fractal.

Theorem (Banakh, N, Strobin)

Let X be compact finite-dimensional space and Z be its uncountable, zero-dimensional, subset open in X. Then X is Euclidean fractal.

In progress...
Compact spaces

Theorem (Banakh, N 2016)
Let X be compact finite-dimensional space and Z be its uncountable, zero-dimensional, subset open in X. Then X is topological fractal.

Theorem (Banakh, N, Strobin)
Let X be compact finite-dimensional space and Z be its uncountable, zero-dimensional, subset open in X. Then X is Euclidean fractal.

In progress...
Golden Bee (Robert Ammann)

\[(x, y) = (0, a - a_0)(x, y) + (0, a) \]
\[(x, y) = (-a_0^2, 0)(x, y) + (1, 0) \]

\[a = \sqrt{r} \] where \(r = \frac{\sqrt{5} - 1}{2} \) - golden ratio conjugate

Golden Bee (Robert Ammann)

\[f_1(x, y) = \begin{pmatrix} 0 & a \\ -a & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 0 \\ a \end{pmatrix} \]

\[f_2(x, y) = \begin{pmatrix} -a^2 & 0 \\ 0 & a^2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \end{pmatrix} \]

\[a = \sqrt{r} \text{ where } r = \frac{\sqrt{5} - 1}{2} \text{ - golden ratio conjugate} \]

Golden Bee tilings

$$f_1(G)$$

$$f_2(G)$$

Are you self-similar?
Golden Bee tilings

Are you self-similar?
Golden Bee tilings

Are you self-similar?
Are you self-similar?
Golden Bee tilings

Are you self-similar?
Golden Bee tilings

Are you self-similar?
Golden Bee - amount of pieces

<table>
<thead>
<tr>
<th></th>
<th>Large: 1</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>5 ...</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Small: 0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3 ...</td>
</tr>
</tbody>
</table>

The Fibonacci sequence is defined as:

\[F_n = F_{n-1} + F_{n-2} \]

Are you self-similar?
Golden Bee - amount of pieces

Large: 1 1 2 3 5 ...
Small: 0 1 1 2 3 ...

\[F_n = F_{n-1} + F_{n-2} \]

Fibonacci sequence
Let’s play!

Take all of the bee-shaped tiles and fit them together to make a large bee.
Self-similar polygonal tilings

Are you self-similar?
THANK YOU