Characterizing chainable and tree-like continua

Taras Banakh, Zdzisław Kosztołowicz & Sławomir Turek

Department of Mathematics
Jan Kochanowski University in Kielce

Hejnice, January-February 2010
Chainable continua

Continuum = compact connected Hausdorff space

Definition 1
An open cover \mathcal{U} of X is called chain-open cover of X if for \mathcal{U} there is an enumeration $\mathcal{U} = \{U_1, \ldots, U_m\}$ such that

$$U_i \cap U_j \neq \emptyset \iff |i - j| \leq 1 \text{ for all } 1 \leq i, j \leq n.$$

Definition 2
A continuum X is called chainable if each open cover of X there is a chain-open cover refinement.

Remark
In metric case a continuum X is chainable iff for each $\varepsilon > 0$ there is a chain-open cover \mathcal{U} of X with mesh(\mathcal{U}) $< \varepsilon$.
Chainable continua

Continuum = compact connected Hausdorff space

Definition 1

An open cover \mathcal{U} of X is called *chain-open cover* of X if for \mathcal{U} there is an enumeration $\mathcal{U} = \{U_1, \ldots, U_m\}$ such that

$$U_i \cap U_j \neq \emptyset \iff |i - j| \leq 1 \text{ for all } 1 \leq i, j \leq n.$$

Definition 2

A continuum X is called *chainable* if each open cover of X there is a chain-open cover refinement.

Remark

In metric case a continuum X is chainable iff for each $\varepsilon > 0$ there is a chain-open cover \mathcal{U} of X with mesh(\mathcal{U}) $< \varepsilon$.
Chainable continua

Continuum = compact connected Hausdorff space

Definition 1
An open cover \mathcal{U} of X is called *chain-open cover* of X if for \mathcal{U} there is an enumeration $\mathcal{U} = \{U_1, \ldots, U_m\}$ such that

$$U_i \cap U_j \neq \emptyset \iff |i - j| \leq 1 \text{ for all } 1 \leq i, j \leq n.$$

Definition 2
A continuum X is called *chainable* if each open cover of X there is a chain-open cover refinement.

Remark
In metric case a continuum X is chainable iff for each $\varepsilon > 0$ there is a chain-open cover \mathcal{U} of X with $\text{mesh}(\mathcal{U}) < \varepsilon$.
Chainable continua

Continuum = compact connected Hausdorff space

Definition 1
An open cover \(\mathcal{U} \) of \(X \) is called \textit{chain-open cover} of \(X \) if for \(\mathcal{U} \) there is an enumeration \(\mathcal{U} = \{ U_1, \ldots, U_m \} \) such that

\[
U_i \cap U_j \neq \emptyset \iff |i - j| \leq 1 \text{ for all } 1 \leq i, j \leq n.
\]

Definition 2
A continuum \(X \) is called \textit{chainable} if each open cover of \(X \) there is a chain-open cover refinement.

Remark
In metric case a continuum \(X \) is chainable iff for each \(\varepsilon > 0 \) there is a chain-open cover \(\mathcal{U} \) of \(X \) with mesh(\(\mathcal{U} \)) < \(\varepsilon \).
Chainable continua

Continuum = compact connected Hausdorff space

Definition 1
An open cover \(\mathcal{U} \) of \(X \) is called \textit{chain-open cover} of \(X \) if for \(\mathcal{U} \) there is an enumeration \(\mathcal{U} = \{U_1, \ldots, U_m\} \) such that

\[
U_i \cap U_j \neq \emptyset \iff |i - j| \leq 1 \text{ for all } 1 \leq i, j \leq n.
\]

Definition 2
A continuum \(X \) is called \textit{chainable} if each open cover of \(X \) there is a chain-open cover refinement.

Remark
In metric case a continuum \(X \) is chainable iff for each \(\varepsilon > 0 \) there is a chain-open cover \(\mathcal{U} \) of \(X \) with \(\text{mesh}(\mathcal{U}) < \varepsilon \).
Definition 3

A continuum X is called n-chainable, where $n \geq 3$, if for any open cover \mathcal{U} with $|\mathcal{U}| \leq n$ there is an open-chain refinement.

A continuum X is a chainable iff X is n-chainable for each n.

Remark

If X is n-chainable, then X is m-chainable for each $m \leq n$.

In the paper T. Banakh, P. Bankston, B. Raines, W. Ruitenburg, *Chainability and Hemmingsen’s theorem*, Topology Appl. 153 (2006) 2462–2468, it was announced (without proof) that 4-chainable implies n-chainability for each n. In other words 4-chainability implies chainability.

We will show that the same is true in more general situation.
1. 1.1 Chainable continua

Definition 3

A continuum X is called n-chainable, where $n \geq 3$, if for any open cover \mathcal{U} with $|\mathcal{U}| \leq n$ there is an open-chain refinement.

A continuum X is a chainable iff X is n-chainable for each n.

Remark

If X is n-chainable, then X is m-chainable for each $m \leq n$.

In the paper T. Banakh, P. Bankston, B. Raines, W. Ruitenburg, *Chainability and Hemmingsen’s theorem*, Topology Appl. 153 (2006) 2462–2468, it was announced (without proof) that 4-chainable implies n-chainability for each n. In other words 4-chainability implies chainability.

We will show that the same is true in more general situation.
Definition 3

A continuum X is called n-chainable, where $n \geq 3$, if for any open cover \mathcal{U} with $|\mathcal{U}| \leq n$ there is an open-chain refinement.

A continuum X is a chainable iff X is n-chainable for each n.

Remark

If X is n-chainable, then X is m-chainable for each $m \leq n$.

In the paper T. Banakh, P. Bankston, B. Raines, W. Ruitenburg, *Chainability and Hemmingsen’s theorem*, Topology Appl. 153 (2006) 2462–2468, it was announced (without proof) that 4-chainable implies n-chainability for each n. In other words 4-chainability implies chainability. **We will show that the same is true in more general situation.**
Let \(\mathcal{U} = \{ U_1, \ldots, U_n \} \) be a finite family of subsets of an arbitrary space \(X \) and let \(p_1, \ldots, p_n \) be a system of points of an euclidean space \(\mathbb{R}^m \). A nerve of the family \(\mathcal{U} \) is the simplicial complex \(\mathcal{N}(\mathcal{U}) \) formed by simplexes \(\langle p_{i_0}, \ldots, p_{i_l} \rangle \) such that \(U_{i_0} \cap \cdots \cap U_{i_l} \neq \emptyset \).

Theorem 1

If \(X \) is a normal space and \(\mathcal{U} = \{ U_1, \ldots, U_n \} \) is a finite open cover of \(X \) then there is a map from \(X \) into the nerve \(\mathcal{N}(\mathcal{U}) \) i.e. there is a continuous map \(\kappa: X \to |\mathcal{N}(\mathcal{U})| \) such that

\[
\kappa^{-1}(\text{st}_{|\mathcal{N}(\mathcal{U})|} p_i) \subseteq U_i
\]

for every \(i = 1, \ldots, n \).

\(|\mathcal{N}(\mathcal{U})| = \bigcup \mathcal{N}(\mathcal{U}) \) – a carrier of the nerve \(\mathcal{N}(\mathcal{U}) \);

\(\text{st}_{|\mathcal{N}(\mathcal{U})|} p_i = |\mathcal{N}(\mathcal{U})| \setminus \bigcup \{ S \in \mathcal{N}(\mathcal{U}) : p_i \notin S \} \) – a star of vertex \(p_i \) in \(|\mathcal{N}(\mathcal{U})| \).
\textbf{Definition 4}

Let \mathcal{U} be an open cover of a topological space X. A map $f : X \to Y$ into a space Y is called a \textit{\mathcal{U}-map} if there is an open cover \mathcal{V} of Y whose preimage $f^{-1}(\mathcal{V}) = \{f^{-1}(V) : V \in \mathcal{V}\}$ refines \mathcal{U}.

\textbf{Remark}

Let X and Y be a compact Hausdorff spaces and let \mathcal{U} be an open cover of X. A map $f : X \to Y$ is \mathcal{U}-map iff for each $y \in Y$ there is $U \in \mathcal{U}$ such that $f^{-1}(y) \subseteq U$.

\textbf{Theorem 2}

\textit{If X is a normal space then $\dim X = 1$ iff for any open cover \mathcal{U} of X there is a \mathcal{U}-map $f : X \to \Gamma$ onto a graph Γ.}

Graph = carrier of 1-dimensional simplicial complex.
If \mathcal{U} is a chain then the carrier $|\mathcal{N}(\mathcal{U})|$ of the nerve $\mathcal{N}(\mathcal{U})$ is an arc, so:

Theorem 3

1. A continuum X is chainable if and only if for any (finite) open cover \mathcal{U} of X there is a \mathcal{U}-map from X onto an arc.

2. A continuum X is n-chainable iff for each open cover \mathcal{U} of X such that $|\mathcal{U}| \leq n$ there is a \mathcal{U}-map f from X onto an arc.
Tree-like continua

A continuum X is said to be tree-like provided that every open cover of X can be refined by a finite open cover having nerve a tree, that is, having nerve a connected acyclic graph. Similarly, to the n-chainability we define the notion of a n-tree-likeness.

A counterpart of the Theorem 3 for the class of tree-like continua is the following:

Theorem 4

1. A continuum X is a tree-like if and only if for each open cover \mathcal{U} of X there is a tree T and \mathcal{U}-map $f : X \to T$.

2. A continuum X is a n-tree-like if and only if for each open cover \mathcal{U} of X such that $|\mathcal{U}| \leq n$ there is a tree T and \mathcal{U}-map $f : X \to T$.
A continuum X is said to be *tree-like* provided that every open cover of X can be refined by a finite open cover having nerve a tree, that is, having nerve a connected acyclic graph. Similarly, to the n-chainability we define the notion of a n-tree-likeness.

A counterpart of the Theorem 3 for the class of tree-like continua is the following:

Theorem 4

1. A continuum X is a tree-like if and only if for each open cover \mathcal{U} of X there is a tree T and \mathcal{U}-map $f : X \to T$.

2. A continuum X is a n-tree-like if and only if for each open cover \mathcal{U} of X such that $|\mathcal{U}| \leq n$ there is a tree T and \mathcal{U}-map $f : X \to T$.
A continuum X is said to be tree-like provided that every open cover of X can be refined by a finite open cover having nerve a tree, that is, having nerve a connected acyclic graph. Similarly, to the n-chainability we define the notion of a n-tree-likeness. A counterpart of the Theorem 3 for the class of tree-like continua is the following:

Theorem 4

1. A continuum X is a tree-like if and only if for each open cover \mathcal{U} of X there is a tree T and \mathcal{U}-map $f : X \to T$.

2. A continuum X is a n-tree-like if and only if for each open cover \mathcal{U} of X such that $|\mathcal{U}| \leq n$ there is a tree T and \mathcal{U}-map $f : X \to T$.
Chainable and tree-like continua are particular cases of the concept of a \mathcal{X}-like continuum. We shall say that a continuum X is \mathcal{X}-like, where \mathcal{X} is a class of continua, if for any open cover U of X there is a U-map $f : X \to T$ onto some space $T \in \mathcal{X}$.

A continuum X is called n-\mathcal{X}-like is for any open cover U with $|U| \leq n$ there is an U-map $f : X \to T \in \mathcal{X}$.
Chainable and tree-like continua are particular cases of the concept of a \mathcal{T}-like continuum. We shall say that a continuum X is \mathcal{T}-like, where \mathcal{T} is a class of continua, if for any open cover \mathcal{U} of X there is a \mathcal{U}-map $f : X \to T$ onto some space $T \in \mathcal{T}$.

A continuum X is called n-\mathcal{T}-like is for any open cover \mathcal{U} with $|\mathcal{U}| \leq n$ there is an \mathcal{U}-map $f : X \to T \in \mathcal{T}$.
Main Theorem

Theorem 5

For a subclass \mathcal{C} of the class of tree-like continua and a continuum X the following conditions are equivalent:

1. X is \mathcal{C}-like (i.e. for each open cover \mathcal{U} of X there is a \mathcal{U}-map $f: X \to T$ of X onto a space $T \in \mathcal{C}$);

2. X is 4-\mathcal{C}-like (i.e for each 4-set open cover $\mathcal{U} = \{U_1, U_2, U_3, U_4\}$ of X there is a \mathcal{U}-map $f: X \to T$ of X onto a space $T \in \mathcal{C}$).

Corollary 1

A continuum X is chainable (resp. tree-like) if and only if each 4-set open cover $\mathcal{U} = \{U_1, U_2, U_3, U_4\}$ of X has a chain-open (resp. tree-open) refinement.
Main Theorem

Theorem 5

For a subclass \(\mathcal{T} \) of the class of tree-like continua and a continuum \(X \) the following conditions are equivalent:

1. \(X \) is \(\mathcal{T} \)-like (i.e. for each open cover \(\mathcal{U} \) of \(X \) there is a \(\mathcal{U} \)-map \(f : X \to T \) of \(X \) onto a space \(T \in \mathcal{T} \));

2. \(X \) is 4-\(\mathcal{T} \)-like (i.e. for each 4-set open cover \(\mathcal{U} = \{U_1, U_2, U_3, U_4\} \) of \(X \) there is a \(\mathcal{U} \)-map \(f : X \to T \) of \(X \) onto a space \(T \in \mathcal{T} \)).

Corollary 1

A continuum \(X \) is chainable (resp. tree-like) if and only if each 4-set open cover \(\mathcal{U} = \{U_1, U_2, U_3, U_4\} \) of \(X \) has a chain-open (resp. tree-open) refinement.
Theorem 6 (Hemmingsen)

For a compact Hausdorff space X the following conditions are equivalent:

1. $\dim X \leq 1$, which means that any open cover \mathcal{U} of X has an open refinement \mathcal{V} of order ≤ 2;

2. each 3-set open cover \mathcal{U} of X has an open refinement \mathcal{V} of order ≤ 2;

3. each 3-set open cover $\mathcal{U} = \{U_1, U_2, U_3\}$ of X has an open 3-set refinement $\mathcal{V} = \{V_1, V_2, V_3\}$ with $V_1 \cap V_2 \cap V_3 = \emptyset$;

Corollary 2

Let \mathcal{S} be a some class of tree-like continua. If X is a $n\mathcal{S}$-like continuum, $n \geq 3$, then $\dim X = 1$.
Theorem 6 (Hemmingsen)

For a compact Hausdorff space X the following conditions are equivalent:

1. $\dim X \leq 1$, which means that any open cover \mathcal{U} of X has an open refinement \mathcal{V} of order ≤ 2;
2. each 3-set open cover \mathcal{U} of X has an open refinement \mathcal{V} of order ≤ 2;
3. each 3-set open cover $\mathcal{U} = \{U_1, U_2, U_3\}$ of X has an open 3-set refinement $\mathcal{V} = \{V_1, V_2, V_3\}$ with $V_1 \cap V_2 \cap V_3 = \emptyset$;

Corollary 2

Let \mathcal{C} be a some class of tree-like continua. If X is a n-\mathcal{C}-like continuum, $n \geq 3$, then $\dim X = 1$.
2. Auxiliary facts

Lemma 1

For any open cover \mathcal{U} of a topological graph Γ there is a \mathcal{U}-map $f : \Gamma \to G$ onto a topological graph of degree ≤ 3.

This lemma can be easily proved by induction with respect to number of branching point of Γ. The following drawing illustrates how to decrease a degree of a selected vertex of a graph.

\begin{center}
\includegraphics[width=\textwidth]{lemma_diagram.png}
\end{center}
Lemma 1

For any open cover \(\mathcal{U} \) of a topological graph \(\Gamma \) there is a \(\mathcal{U} \)-map \(f : \Gamma \to G \) onto a topological graph of degree \(\leq 3 \).

This lemma can be easily proved by induction with respect to number of branching point of \(\Gamma \). The following drawing illustrates how to decrease a degree of a selected vertex of a graph.
Lemma 1

For any open cover \(\mathcal{U} \) of a topological graph \(\Gamma \) there is a \(\mathcal{U} \)-map \(f : \Gamma \to G \) onto a topological graph of degree \(\leq 3 \).

This lemma can be easily proved by induction with respect to number of branching point of \(\Gamma \). The following drawing illustrates how to decrease a degree of a selected vertex of a graph.
In the next lemma graph \(G \) is consider as a combinatorial object.

Lemma 2

Let \(G = (V, E) \) be a connected graph with \(\deg(G) \leq 3 \) such that \(d(u, v) \geq 6 \) for any two vertices \(u, v \in V \) of order 3. Then there is a 4-coloring \(\chi: V \to \{1, 2, 3, 4\} \) such that no distinct vertices \(u, v \in V \) with \(d(u, v) \leq 2 \) have the same color.

Proof.

Let \(V_3 = \{v \in V : \deg(v) = 3\} \) and let \(B(v) = \{u \in V : \{u, v\} \in E\} \) for each \(v \in V \). Since \(\deg(G) \leq 3 \) then \(|B(v)| \leq 4 \) for each \(v \in V \). Moreover:

\[
v, w \in V_3, v \neq w \Rightarrow B(v) \cap B(w) = \emptyset.
\]

So we can define a 4-coloring \(\chi \) on the union \(\bigcup_{v \in V_3} B(v) \) so that \(\chi \) is injective on each \(B(v) \) and \(\chi(v) = \chi(w) \) for each \(v, w \in V_3 \). Next, it remains to color the remaining vertices all of order \(\leq 2 \) by four colors \(\chi(x) \neq \chi(y) \) if \(d(x, y) \leq 2 \). It is easy to check that this always can be done. \(\square \)
Take a class \mathcal{T} of tree-like continua and assume that X is a continuum such that for any 4-set open cover \mathcal{U}_4 of X there is a \mathcal{U}_4-map $f : X \to T$ onto a space $T \in \mathcal{T}$. We should prove that such a map exists for any (finite) open cover \mathcal{U} of X.

By the corollary 2, there is a \mathcal{U}-map $f : X \to \Gamma$ onto a topological graph Γ. Because of Lemma 1, we can assume that $\text{deg}(\Gamma) \leq 3$. Selecting vertices on edges of Γ, we find so fine triangulation $G = (V, E)$ of the topological graph Γ that

- the distance between any vertices of order 3 in the path metric of G is ≥ 6;
- the cover $\{f^{-1}(\text{st}_\Gamma(v)) : v \in V\}$ of X is inscribed into \mathcal{U}.

Lemma 2 implies that there is a 4-coloring $\chi : V \to \{1, 2, 3, 4\}$ of V such that no vertices $u, v \in V$ with $0 < d(u, v) \leq 2$ are monochromatic.
For $i \in \{1, 2, 3, 4\}$ consider the open set

$$V_i = \bigcup \{\text{st}_\Gamma v : \chi(v) = i\}. $$

The sets V_1, \ldots, V_4 cover Γ. Then for the 4-set cover $\mathcal{V} = \{f^{-1}(V_i) : i \leq 4\}$ of X we can find a \mathcal{V}-map $g : X \to Y$ to a continuum $Y \in \mathcal{F}$.

Since Y is tree-like, there is a map $\pi : Y \to T$ onto a topological tree such that the composition $h = \pi \circ g : X \to T$ still is a \mathcal{V}-map. Take a triangulation $H = (V_T, E_T)$ of T so fine that the cover $\{h^{-1}(\text{st}_T t) : t \in V_T\}$ is inscribed into the cover \mathcal{V}. Consequently, for each vertex $t \in V_T$ we can find a number $\xi(t) \in \{1, 2, 3, 4\}$ such that

$$h^{-1}(\text{st}_T t) \subseteq f^{-1}(V_{\xi(t)}).$$

Using the property of the coloring χ we can prove that

$$(\forall t \in V_T)(\exists! v_t \in V)(\xi(t) = \chi(v_t)).$$

So,

$$g^{-1}(\pi^{-1}(\text{st}_T t)) = h^{-1}(\text{st}_T t) \subseteq f^{-1}(\text{st}_\Gamma v_t) \subseteq U$$

for some $U \in \mathcal{U}$. It means that g is \mathcal{U}-map, so this finishes the proof.
Theorem 7

For a 1-dimensional continuum X the following conditions are equivalent:

1. each map from X into the circle is homotopic to a constant map;
2. X is 3-chainable;
3. X is 3-tree-like.

chainable continua $⊊$ tree-like continua $⊊$ 3-chainable continua $= 3$-tree-like continua

There is a 1-dimensional continuum for which each map from X into the circle is homotopic to a constant map but it is not tree-like – J. H. Case, R. E. Chamberlin Characterizations of tree-like continua, Pacific J. Math. 10 (1960) 73–84.