ON THE SEMITOPOLOGICAL LOCALLY COMPACT α-BICYCLIC MONOID

Serhii Bardyla

Ivan Franko National University of Lviv, Lviv, Ukraine

For each ordinal α by the α-bicyclic monoid B_α we mean the set $\omega^\alpha \times \omega^\alpha$ endowed with the following binary operation:

$$(a, b) \cdot (c, d) = \begin{cases}
(a + (c - b), d), & \text{if } b \leq c; \\
(a, d + (b - c)), & \text{if } b > c.
\end{cases}$$

We prove that α-bicyclic monoid B_α is algebraically isomorphic to a semigroup of all order isomorphisms between the principal upper sets of the ordinal ω^α and prove that $B_{\alpha+1}$ is isomorphic to the Brook extension of the semigroup B_α. We prove that for every ordinal α for every $(a, b) \in B_\alpha$ if either a or b is a non-limit ordinal then (a, b) is an isolated point in the semitopological B_α. We show that for every ordinal $\alpha < \omega + 1$ every locally compact semigroup topology on B_α is discrete. However, we construct an example of a non-discrete locally compact topology τ_{lc} on $B_{\omega+1}$ such that $(B_{\omega+1}, \tau_{lc})$ is a topological inverse semigroup. Also, for every positive integer n we describe all locally compact topologies on the semitopological B_n. In particular we show that there exist exactly n distinct locally compact topologies on the semitopological n-bicyclic monoid B_n.

1