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We present some techniques in C.C.C. forcing, and apply them to prove consistency results 

concerning the isomorphism and embeddability relations on the family of X,-dense sets of real 

numbers. In this direction we continue the work of Baumgartner [2] who proved the axiom BA 

stating that every two Xi-dense subsets of R are isomorphic, is consistent. We e.g. prove 

Con(BA+ (2’0 > X,)). Let (KH, S) be the set of order types of X,-dense homogeneous subsets 

of R with the relation of embeddability. We prove that for every finite model (L, S) : Con(MA + 

(KH, C) -(L. s)) iff L is a distributive lattice. We prove that it is consistent that the 

Magidor-Malitz language is not countably compact. We deal with the consistency of certain 

topological partition theorems. E.g. We prove that MA is consistent with the axiom OCA which 

says: “If X is a second countable space of power K,, and {U,,, . , U,_,} is a cover of 

D(X)dsfX X X-{(x, x) 1 x E X} consisting of symmetric open sets, then X can be partitioned 

into {X, ) i E o} such that for every i E o there is 1< n such that D(Xi) E U,“. We also prove that 

MA + OCA j 2Ko = X,. 

Introduction 

The purpose of this paper is to prove consistency results about partitions of 

second countable spaces of power X,, and about the relations of embeddability 

and isomorphism between sets of real numbers of power K,. 

Our intention is not only to prove new results, but also to present the 
techniques used. Because of this reason, in the first sections, we tried as much as 

possible to present applications in which the proofs were technically simple, and 

in which only one technique was being used at a time. Thus we sometimes had to 

repeat ourselves, and in one case we chose to reprove a theorem from [l], though 
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in a different way. On the other hand we sometimes omit the proof of some 
details which resemble previous arguments. 

The starting point of this paper is the theorem of Baumgartner [2] that the 
axiom BA, which says that every two &-dense sets of real numbers are order- 
isomorphic, is consistent. Baumgartner in fact proved that MA+BA is consistent. 
The isomorphization of two K,-dense sets of real numbers was done by means of a 
C.C.C. forcing set. This suggested that maybe MA,, already implies BA. 

The negative answer to the above question was found by Shelah. He invented 
two techniques: the club method and the explicit contradiction method. Using 
these methods Shelah [l] proved that MA,, was consistent with the existence of 
an entangled set (see Section 7), thus showing that MA,, $5 BA. 

Avraham [l] then found another way to refute BA. By means of the club 
method he constructured a universe V satisfying MA and a set of real numbers of 
power K1, A E V, such that every l-l uncountable g c AX A contained an 
uncountable order preserving function. Such an A is not isomorphic to A*dzf 
{-a 1 a E A}, thus VklBA. 

Answering a question of Avraham, Shelah [l] proved that it is consistent that 
every l-l g G R x R’ of power H, can be represented as the union of countably 
many monotonic functions. The proof involved a new trick: The preassignment of 
colors (see Section 3). 

Tbe club method 

The club method plays the most central role in this paper. We explain in what 
context one can try to use this method. Let IAl = X1, and let R be a binary 
relation on A. Suppose R = UiaoBi x Ci, (in this case we say that R has a 
countable semibase). By the club method one can try to construct a C.C.C. forcing 
set which adds to V an uncountable subset of A” which has various homogeneity 
properties with respect to R. E.g. one might want to add an uncountable 
g c_ A x A such that for every (a,, b,), (aZ, bJ E g, (a,, aJ E R iff (b,, b2) E R. (This 
is the case of adding an order preserving function.) Note that if X is a second 
countable space and R c XX X is open, then R has a countable semibase, hence 
CR and R> have countable semibases. 

The club method makes the problem of isomorphizing two K,-dense subsets of 
R just one special option in a wide spectrum of possibilities. 

In the beginning, we knew to apply the club method only when the ground 
model satisfied CH. After understanding the exact role of CH it was possible to 
replace it by an axiom denoted by Al which may holds also in the absence of CH. 
Al has the property that if Vl=Al and P is a C.C.C. forcing set of power <2’1, then 
VP also satisfies Al. Hence one can carry out a finite support iteration of length 
2”1 consisting of general C.C.C. forcing sets and ‘club method’ forcing sets. In this 
way we obtain the consistency of BA+ (2’o>R,) which could not have been 
obtained by the method of [2]. 
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The other techniques described in this paper are easily combined with the club 

method in many different ways, thus yielding a rich variety of consistency results. 

Summary of results 

1. The club method and the semiopen coloring axiom 

In this section we present the club method by means of an application. Let X 

denote a second countable space of power K1, let U be a symmetric open subset 

of XXX, and for a set A let D(A) = A X A -{(a, a) 1 a E A}. The semi open 

coloring axiom (SOCA) says: “For every X and U as above there is an 

uncountable A G X such that either D(A) c U or D(A) II U = fl”. In Section 1 we 

prove that MA + SOCA is consistent. This is probably the simplest application of 

the club method. 

In addition we prove in Section 1 the consistency of a certain strengthening of 

SOCA, we prove some corollaries of SOCA, and bring some counter-examples. 

2. The explicit contradiction method and the increasing set axiom 

A set S G IR of cardinality X1 is called an increasing set if for every n E w and a 

set {(a(a, O), . . . , a(a, n - 1)) 1 a <X,}s A” of pairwise disjoint n-tuples there are 

(Y, /3 <K, such that for every i <n, a(cy, i) < a(& i). 
Suppose A E V is increasing, and we want to construct a universe W 1 V which 

satisfies MA and in which A retains its increasingness. The problem is that when 

we iterate C.C.C. forcing sets in order to take care of MA it may happen (and 

indeed it does happen if VFCH) that some of the iterands Pi force that A is not 

increasing. The way in which this difficulty is overcome, is that we construct a 

C.C.C. forcing set Q such that II-, (Pi is not c.c.c) A (A is increasing). Hence forcing 

through Q retains the increasingness of A and frees us from forcing through Pi. 

The particular method in which this is done is called the explicit contradiction 

method. 

Section 2 is devoted to the proof that MAN1 is consistent with the existence of 

an increasing set. Indeed MAN, j A is increasing iff every uncountable l-l 

g c A X A contains an uncountable order preserving function. Thus what we 

prove in Section 2 coincides with Theorem 2 of [l]. However, since this is the 

simplest application of the explicit contradiction method, and since the proof we 

present can be used to retain also other properties of A, we take the liberty to 

reprove Theorem 2 of [l]. 

3. The open coloring axiom, and how to preassign colors 

Let X denote a second countable space of power x1. An open cover O& = 

W,,..., U,,_,} of D(X) consisting of symmetric sets is called an open coloring of 
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X. A E X is %-homogeneous if for some i <n, D(A) C_ Vi. Let OCA be the 
axiom: “For every X and Q_l as above X can be partitioned into countably many 
%-homogeneous subsets”. Let ISA be the axiom: “There exists an increasing 
set”. 

Trying to strengthen SOCA, and Theorem 6 of [l], we prove that MA+ 
SOCA + OCA + ISA is consistent. The new element in the proof is a use of the 
so-called preassignment of colors. Let X, % be as above, and let A ER be an 
increasing set. We want to partition X into countably many %-homogeneous 
subsets without destroying the increasingness of A. There is a method to assign to 
each a E X a color i(a) < n such that there is a c.c.c forcing set P which partitions 
X into countably many % -homogeneous sets, in this partition every a E X belongs 
to a set with color i(a), and P does not destroy increasingness of A. The 
preassignment of colors resembles Theorem 6 of [l], but here we have one 
additional trick devised in order to retain the increasingness of A. 

OCA can be generalized to colorings of n-tuples rather than colorings of pairs. 
For u, 5~ ““2 let I, A 5 denote the maximal common initial segment of v and 5. 
For A G “2 let 

T[A ] = {v A 5 1 v, .$ E A and are distinct}. 

For Y, [~““2 and 1 = 0, 1, let Y <[ .$ denote the fact that v-(l) is an initial 
segment of 5. Let cr, T be finite subsets of “‘2. u - T means that (a, co, $)= 

(7, (0, -5). 
Let TCAm be the axiom saying: “If (C,, . . . , C,_,) is a partition of the 

unordered m -tuples of ,‘2, and A c “2 is of power K1, then there is a partition of 
A {Ai 1 i E o} such that for every i E w and two subsets ul, c‘2 of Ai of power 
m + 1: if T[aJ - T[a,], then there is j < k such that T[u,], T[a,] G Ci”. 

In Section 3 we prove that Ma+ A,,,,, TCAm is consistent. TCAl is implied by 
OCA, and MA+TCAl 3 OCA. 

TCAm has also a topological equivalent but its formulation is not very 
transparent. The more direct and stronger generalization of OCA remains open. 

We conclude Section 3 with another axiom concerning partitions. Let X, Y be a 
second countable spaces such that 1x1 =K1, and Y does not contain isolated 
points; let f be a symmetric continuous function from D(X) to Y. Let NWDA be 
the axiom which says: “If X, Y, f are as above, then there is a partition {Ai 1 i E w> 
of X such that for every i, j E o f(A, x Ai -{(a, a) 1 a E X}) is nowhere dense”. We 
prove that MA+ NWDA is consistent. 

We did not investigate the relationship of NWDA with other axioms and its 
possible generalizations. 

4. The semi open coloring axiom does not imply the open coloring axiom ; the rail 
method 

In Section 4 we prove that SOCA + MA+ (2xo = X,) $5 OCA. Indeed, in Section 
5 we prove that MA+ SOCA is consistent with 2”o > K,, and in Section 11 we 
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prove that MA+ 2’0> X2 + 10CA, hence the result of Section 4 becomes less 
interesting. But the proof serves well in demonstrating an additional trick called 
the tail method. This trick is used also in Sections 9 and 10, but there, the 
technical details are somewhat more complicated. 

5. Enlarging the continuum beyond X2 

In Baumgartner’s proof of the consistency of BA, the construction of a C.C.C. 
forcing set which isomorphizes K,-dense sets of real numbers, is done under the 
assumption of CH. So in the universe satisfying BA the continuum had to be XZ. 
The substitute for CH in the application of the club method was found by Shelah. 
This immediately implied that BA is consistent with 2”o>H,. In this section we 
demonstrate this method by proving that MA+ SOCA + (2’0) 8,) is consistent. 

6. MA, OCA and the embeddability relation on HI-dense real order types 

Let K = {A ER [ A# fJ, A has no endpoints and every interval of A has 
cardinality Xi}. For A, B E K let A ( B and A = B respectively mean that (A, <) 

is embeddable or isomorphic to (B, <). Let A E K. A is homogeneous if for every 
a, b E A there is an automorphism f of (A, <) such that f(a) = b. Let KH = 
{A E K ) A is homogeneous}. Let N(A, B) mean that there is C E K such that 
C<A andC+B;A I B=lN(A,B)andAIIB=A_LBr\AIB*.LetNAbe 
the axiom: (VA, B E K) N(A, B). 

A great part of this work was motivated by questions about the possible 
structure of K and KH. Since SOCA easily implies (VA, B E K) (N(A, B) U 
N(A, B”)) it was natural to ask whether it also implied NA. Since “A is 
increasing” implies lN(A, A*), this question was answered in Section 3. There 
was still another reason why MA + OCA+ ISA was interesting. Shelah proved the 
consistency of the following axiom: “There are A, B E KH such that: A = A*, 

B=B*, AIIB, AUBEK~ and for every CeKH either C=A or C=B or 
C=A UB". 

It was of interest to us to find whether in this axiom one can make the 
modification that A I A* and A* = B. In Section 6 we indeed show that this 
modified axiom follows from MA + OCA + ISA. 

In fact MA + OCA almost determines the structure of KH and K. If MA+ OCA 
is conjuncted with ISA, then KH is as above, if MA+OCA is conjuncted with 
-IISA, then BA holds. 

7. Relationship with the weak continuum hypothesis 

The weak continuum hypothesis WCH is the statement that 2xo < 2”1. In Section 

7 we first show that BA j 1WCH. The question that naturally arises is what 
happens if BA is weakened and is replaced by NA. We prove that unlike BA, NA 
is consistent with WCH. 
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This automatically implies that NA + BA. The fact that MA+ NA Z& BA 
follows from the results of Section 9. 

In the proof of NA+ WCH we introduce a forcing which makes two members 
of K near. This is a simple version of a forcing set which isomorphizes two 
members of K. 

One can consider the following strengthening of NA. Let DNA be the following 
axiom: “If A, B E K, then there is an uncountable order preserving function 
g c A X B such that Dam(g), Rng(g) E K and are dense in A and B respectively. 
Section 7 is concluded with a proof that NA+DNA. 

8. A weak form of Martin’s axiom, the consistency of the incompactness of the 
Magidor-Mali& quantifiers. 

Let MML denote the Magidor-Malitz language. In [7] Magidor and Malitz 
proved that OX,+“MML is countably compact”. This suggested the following 
question: “Construct a universe in which MML is not countably compact”. A first 
solution to this problem was found by Shelah (unpublished) using methods of 
Avraham. Shelah’s solution involves properties of Suslin trees which are expressi- 
ble by MML sentences. The result of Shelah is that the countable incompactness 
of MML is consistent with CH. 

In Section 8 we bring a simpler solution to this question, here we obtain a 
universe in which MA+(X,<~‘Q)+ (MML is not countably compact) holds. 

Let A E K and k E o, A is k-entangled if for every sequence 

{&(a, O), . . . , a(a, k - 1)) ( a <K1}~ Ak of pairwise disjoint l-l sequences, and 
for every (E(O), . . . , e(k-1))~{0, l}k there are aO, al<X1 such that for every 
i< k, a(ti,(i), i)<a(al_,ci,, i). The k-entangleness of A can be expressed by an 
MML sentence and MA,(1Ji(3A EK) (Vk E o) (A is k-entangled). Let WF 
MAN, + (Vk E w) (3A E K) (A is k-entangled). Hence in W MML is not countably 
compact. 

The notion of entangledness was defined by Shelah in [ 13. There, it is proved 
that for every k E o, MAN1+(3A E K) (A is k-entangled) is consistent, It is 
somewhat more complicated to prove that MA,,+ (Vk E o) (3A E K) (A is k- 
entangled) is consistent. We prove this fact in Section 8. 

The other question considered in Section 8 is whether iterating forcing sets 
obtained by means of the club method can yield a universe satisfying &,. To 
prove that this is not so we define a property, denoted by s.c.c., and stronger than 
the countable chain condition, such that every forcing set gotten from the club 
method has this property. On the other hand we prove that a finite support 
iteration of S.C.C. forcing sets does not destroy Suslin trees. We hence obtain that 
OCA, SOCA, NA, etc. are consistent with the existence of a Suslin tree. 

9. The isomorphizing forcing, and more on the possible structure of K 

In this section we first construct for A, B E K a C.C.C. forcing set P such that 
IFP A = B. This construction is a basic tool for results concerning the possible 
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structure of K. This construction can be carried out under assumptions weaker 
than CH, hence we can prove that BA is consistent with 2’o>X,. The other 
important property of this construction is that it enables to isomorphize two sets 
leaving some other sets far. E.g., we prove that if A, B, C II D, then there is a 
C.C.C. P which isomorphizes A and B and keeps C II D. 

A EK is rigid if (A, <) has no automorphisms other than the identity. Let 

RHA = (VA E K) (3B, C E K) ((B, C c A) A (B is rigid) A (C is homogeneous)). 

Note that RHAjlCH. 
Combining the construction of isomorphizing forcing sets with the explicit 

contradiction method and the tail method we prove the consistency of MA+ 
RHA. 

10. The structure of K and KH when KH is finite 

In Section 6 we prove that MA,,+ KH/= is partially ordered by < . Clearly * is 
an automorphism of (KH/=, <>. Let KHZ = (KH/=) U {@}, (KHz, <, *) is a partially 
ordered set with an involution. In Section 10 we prove the following theorem: Let 
(I,, G:, *) be a finite partially ordered set with an involution: Then MA+ 
(Km = L) is consistent iff L is a finite distributive lattice with an involution. 

This theorem was preceded by the following result by Shelah: It is consistent 
that KIIZ = (0, a, b, c} where a A b = 0, a* = a, b” = b and c = a v b. Avraham and 
Rubin then showed (Section 3, 6) that KHZ may by (0, a, b, c} where a A b = 0, 
a=b” and c=avb. 

Some results in the same direction were proved by Rubin for the class 
K IIHdZ{AEKH(A is of the second category}. 

We also prove in Section 10 some results about the possible infinite KHZ’s. 

11. MA f OCA implies 2”o = Hz. 

Until the writing of this paper had been almost finished, we believed that the 
method to enlarge 2x0 beyond K2 worked for all applications of the club method. 
We realized that CH was used not only in the application of the club method, but 
also in order to e.g., get from A, B E K A’, B’E K such that A’S A, B’S B and 
A’ ti B’. However this could be done too without assuming CH. Finally we 
noticed that, indeed, we did not know to preassign colors (Section 3) without CH, 
and we did not know how to prove the consistency of SOCAl (Section 1) and the 
results of Section 10 without assuming CH in the intermediate models. 

Shelah then found that at least in the case of OCA, the failure to prove the 
consistency of OCA+MA+(2’o>K,) followed from the fact that this axiom was 
false. He found a C.C.C. forcing set P of power K,, and Kz dense subsets of P, such 
that if V contains a filter of P which intersects all these dense sets, then V 
contains an open coloring of a set A E “2 of power rC1 for which there is no 
partition of A into countably many homogeneous sets. Section 11 contains this 
result. 
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Whether the results of Section 10 and SOCAl are consistent with MA+ 
(2Ko>X3 remains open. 

Main open problems 

In the paper we mention many open problems, they appear in the relevant 
context. Let us mention here those problems which, we believe, require new 
techniques. 

(1) (Baumgartner) Is it consistent that every two X,-dense sets are isomorphic? 
More generally, are the axioms appearing in this paper consistent when we 
replace K, by K,? 

(2) The axioms mentioned in this paper are all consistent with MA. We do not 
know how to prove the consistency of similar axioms which contradict MA. E.g., 
is the following axiom consistent: iBA+ (VA, B E K) (A < B)? Is the following 
axiom consistent: OCA+ 2’0 > K,? 

(3) Let OCA(m, k) be the following axiom: “For every second countable space 
X of power X1 and every finite open cover ‘?.l of X”, there is a partition {Xi ) i E o} 
of X such that for every i E w, XT intersects at most k members of Ou.” Does there 
exist a k for which OCA(m, k) is consistent? In fact we do not know the answer 
even for m = 3, and even if the axiom is weakened to require only the existence of 
one uncountable subset A of X such that A” intersects at most k members of % 

(4) Are some of the axioms mentioned consistent with the existence of a 
second category subset of 0% of power K 1? E.g. are NA+ @A E K) (A is of the 
second category) and SOCA+ (3A E K) (A is of the second category) consistent? 

Historical remarks 

The club method, explicit contradiction method, the method to enlarge 2”~ 
beyond tf, are due to Shelah. The tail method is due to Rubin. The method of 
preassigning colors is due to Shelah, but an additional trick was added by 
Avraham and Rubin. Section 1 dealing with SOCA is mainly the work of 
Avraham and Rubin. Section 2 is another proof of a theorem by Avraham and 
Shelah in [ 11. The axiom OCA appearing in Section 3 and its corollaries 
concerning the structure of K appearing in Section 6 are due to Avraham and 
Rubin. The axiom TCAm which generalizes OCA is due to Shelah and the axiom 
NWDA is due to Rubin. The proof that SOCA=$ OCA appearing in Section 4 is 
due to Rubin. Section 5 dealing with how to enlarge 2’~ beyond K2 is due to 
Shelah. Section 7 dealing with the relationship with WCH is due to Shelah. The 
weak Martin’s axiom appearing in Section 8 and the proof that it is consistent 
with the existence of Suslin trees is due to Avraham and Rubin. The proof that 
MML may be countably incompact is due to Rubin. This theorem was first proved 
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by Shelah using other methods. The proof was a slight improvement of a theorem 

of Shelah in [l]. 

The isomorphizing forcing in Section 9 is due to Shelah. BAl as well as RHA 

are due to Rubin. RHA uses the tail method as well as an important lemma 

essentially due to Shelah. This lemma states that if A, B U. C, D then it is possible 

to isomorphize A and B keeping C II D. Section 10 which deals with the structure 

of K and K" when KH is finite is due to Rubin. The theorem stating that 

MA + OCAj 2’1= K, appearing in Section 11 is due to Shelah. 

Index 

For the reader’s convenience we include here an index of axioms and some 

notations used in this work. 

Al, 160 

BA (Baumgartner’s Axiom), 124 

BAl, 179 

DNA, 169 

DN(A, B), 169 

entangled set, 171 

homogeneous, 162 

increasing set, 139 

ISA (increasing set axiom), 139 

mixing, 162 
monotonic, 162 

NA (nearness axiom), 165 

N(A, B), 165 

NWDA2 (nowhere denseness axiom), 

open coloring, 141 

OCA (open coloring axiom), 141 

OCAm, 152 

OCA(m, k), 147 

OC pair, 154 

153 

OP (order preserving), 162 

OR (order reversing), 162 

K, 162 

KH, 162 

RHA, 185 

semibase, 134 

shuffle, 162 

SOC (semiopen coloring), 132 

SOCA (semiopen coloring axiom), 132 

SOC pair, 154 

TCAm (the tree m-coloring axiom), 148 

TCA, 148 

WCH (weak continuum hypothesis), 165 

A*={-ajacA}, 124 

A<B, 162 

A LB, 162 
=, 162 

AIIB, 181 

1. The club method and the semiopen coloring axiom 

In this section we present the club method which is the main technique in this 

paper. We prove a theorem in which the club method is used. This theorem is 

perhaps the simplest application of this method. 

For a set A let D(A) = A XA -{(a, a) 1 a GA}. A function f from the set of 

unordered pairs of a set A to (0, 1) is called a coloring of A in two colors. We 

regard f as a symmetric function from D(A) to (0, l}. A subset B E A is called 

f-homogeneous, or in short homogeneous, if f 1 D(B) is a constant function; we 

say that B is of color 1, or in short B is l-colored if the value of f 1 D(B) is 2. 

From now on X denotes a second countable topological Hausdorff space of 
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cardinality 8,. Let f be a coloring of X in two colors, f is called a semiopen 
coloring (SOC), if f-‘(l) is open in XX X. 

Let the semiopen coloring axiom be the following axiom. 

Axiom SOCA. For every X and a SOC f of X, X contains an uncountable 
f-homogeneous subset. 

Theorem 1.1. SOCA is consistent with ZFC. 

Proof. We prove the following claim. Let VkCH, and let f be a SOC of X such 
that X has no uncountable homogeneous subset of color 0; then there is a C.C.C. 
forcing set of power K,, P = Px,f, such that in VP, X contains an uncountable 
homogeneous set of color 1. 

By the method of Solovey and Tenenbaum [9], this claim suffices in order to 
prove the theorem. More specifically we start with a universe satisfying CH+ 
(2Kl = X,) and carry out an iteration with direct limits {P, 1 a <Hz}, in which each 
(a: + l)st iterand is the Pa-name of some forcing set of the form Px,f. 

We thus turn to the construction of Px,f assuming that CH holds, and X and f 
are given. We first need a model of the form (K,, <, . . . ,) that includes the 
information about X and f, and that encompasses enough set theory. In order not 
to repeat the same definition over and over, we shall at this point fix a model that 
will serve us also in the future. Let I-IQ+&) be the set of hereditarily countable sets. 
By CH, \H(K,)) = X1. We choose a l-l correspondence h between H(N,) and X,. 
Let MO= (EC,, <, h, Ed) where a: E~ p iff h(a)E h(P). In order not to have two 
belonging relation symbols we shall denote Ed by E and will refrain from using 
“(Y E 6” to mean the usual belonging relation between countable ordinals; instead 
we shall write “(Y < 0”. We reserve MO to mean the above model throughout this 
paper. 

W.1.o.g. X G K1. Let M = (MO, X, f, T); by this we mean that we expand MO by 
adding to it a unary predicate to represent X, a binary function symbol to 
represent f, and some binary relation symbol to represent some fixed countable 
base for X. T can be defined in the following way: let {Vi ( i E o}dsf Q be a 
countable base for X; T = {(i, a) ) i E w and (Y E Vi}. 

For (Y <K,, let M, denote the submodel of M whose universe is (Y. Let 
C, = {a 1 Ma < M}. C, is a closed unbounded set (club). 

A subset A E K1 is called C&separated or in short separated, if for every 
(Y, p E A such that a! < /3 there are yl, yz~ C, such that y1 < (Y < y2< p. 

Let h be a cardinal and A be a set; we denote P,(A) = {B E A 1 II31 < A}. Let 

PXJ = (a E PN,(X) I c is homogeneous of color 1 and (+ is separated}. The partial 
ordering on Px,f is set inclusion. 

We show that Px,f is C.C.C. Suppose by contradiction that it is not; then it is easy 
to see that there is r1 = {ui 1 i <X1} G Px.f such that: 

(1) for every i<j<tE 1, cri U cd is not homogeneous of color 1; 
(2) for every i Cj <Xl: (&I = la’\, and ui U ui is &-separated. 
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Let {al;, . . . , a2 be an enumeration of cri in an increasing order. Since ui is 

homogeneous of color 1 and since f is a SOC, there are ul, . . . , USE % such that 

for every k # 1, a: E v: and f( v: x G) = (1). Let r be an uncountable subset of r1 

such that for every i, j E r and for every 1 <k s n, UL = U’, ‘%Zf U,. By reindexing 

we can assume that r = {ui 1 i CR,}. We thus conclude 

(*) For every i,j<X, and lGk# lsn, f(ak,cx{)= 1. 

The next step which we call ‘the duplication argument’ is one of the central 

arguments in this paper. For a subset A of a topological space X, let cl(A) be the 

topological closure of A in X. 

r c X” and X” is second countable, hence for some countable To E r, cl(r,) = 

cl(T). Let y E C, be such that r,, E I%/. (M ore precisely we mean that h(r,)<r, 

but we shall always make this abuse of notation.) Note also that Q G M, for every 

LY E C,. There is a formula in the language of && and with the parameter r,, 

cp(x1,. . .7 x,), which says that (x1,. . . , x,)e cl(T,). Let i <K, be such that y <(Y;. 

We want to define by a downward induction a sequence of certain formulas 

cpl(xl,. . . , xl), 1~0,. . . , ~1, where (P,, = cp and where Mkcp,[ai,. . . , ai]. For the 

sake of clarity we first show how to get (P”_~. Let 6 E C, and (~;_,<a <al. For 

every a E I&I> Mk$[&. . . ) a;_l, a] where 4(x,, . . .,x-1,x)= 

ml > x) cph . . . > x,,); for one can take x, to be czi. Since MS< M, MS b 
(Ir[& . . . ) a;_l, a]. Hence MS kVx +[a;, . . . , al-,, x], hence M satisfies the same 

formula. This means that L dzf {p ( (a;,. . . , al,_l, P)E cl(T,)} is unbounded and 

thus uncountable. We assumed that X did not contain uncountable homogeneous 

sets of color 0, thus there are &, &EL such that f(&, 0,) = 1. Let UT, USE “u be 

disjoint sets such that p1 E U, and f( U;X U$‘) = (1). Let 

%-1(X1,. . ., x,-,)=3GW ( ,4 (XYE u;Acp(xl,. . *,X-l, x3,). 
Clearly M~(P~_~[(Y~, . . . , a:-,]. Suppose (P,,, has been defined and Mk 

(Pm[&. . . > af,,]. Repeating the same argument as before, there are disjoint 

U;l, U!J’E % and & E U;“, E= 1,2, such that f(U;lx UT) ={l}, and Mk 

cp?n[&. ‘. , c~L_~, &I. Let 

Now we start with cpo and inductively pick pi, I= 1,2, j = 1, . . . , n. Since Mkcp, 
there are P:E U:, E = 1,2, such that Mk(p,[fif]. Suppose p:, . . . , p;“, 1= 1,2, 

were defined so that @{E U/ and Mkcp,[@:, . . . , @;“I, l= 1,2. Hence @;“‘l can be 

chosen to satisfy the same induction hypotheses. The fact that M kcp,[ @:, . . . , p;] 
means that (p:, . . . , P;)E cl(T,). Since U;l is a neighborhood of p;“, there are 

a,dy-w:x---~u;“. By (*) and the choice of the Ui’s, LYE U a2 is homogene- 

ous of color 1, a contradiction. We have thus proved that Px,, is C.C.C. 

The union of all elements of a generic subset of Px,, is a homogeneous subset of 

X of color 1. It remains to show that this union is indeed uncountable. 
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It suffices to show that for every u E PX,+ {(Y ( (+ U {a}~ Px,p} is unbounded. 
Suppose by contradiction cr = {aI, . . . , a,} is a counterexample to this claim. Let 
Qx cp (x) mean: “there are unboundedly many X’S satisfying cp”. Using the fact 
that there is 6 E CM such that (Y,-~ < 6 < (Y,, it is easy to see that Mk 

Qx da,, . . . > (Y,,-~, x] where cp(xI, . . . , x,,)=({xl, . . . , x,,} is homogenesous of 
color l)r\({y) {x1,. . . , x,,, y} is homogeneous of color 1) is bounded). For every p 
satisfying ~(a~, . . . , (Y,_~, x) let va be a bound as assured by cp. Let {pi ( i CH,} be 
a separated set such that for every i <j <K,, Ml=cp[a,, . . . , (Y,-~, pi] and pi > ~a,. 
The set {{a,, . . . , (Y,_~, pi} ) 0 < i <KS is an uncountable antichain in Px,e a 

contradiction. q 

The use of topological terminology and especially the use of the HausdorfT 
condition in Theorem 1.1 was redundant; we did not lose however any generality. 
We now give an equivalent formulation of the theorem that does not involve 
topology. Let \A( = K, and f be a coloring of A in two colors. A semibase for f is 
a family {(Ci, Di) ( i Co} such that f-‘(l) = Ui<p Ci X Di. 

Theorem. It is consistent with ZFC, that for every coloring f of K1 in two colors 

which has a countable semibase, X1 contains an uncountable f-homogeneous subset. 

Theorem 1.2 (Consequences of SOCA). Assume SOCA, then: 
(a) If f s R x R is a l-l uncountable function, then there is a monotonic uncount- 

able g G f. (A model satisfying this property was built in [ 11.) 
(b) If f G R x Iw is a l-l uncountable function, then there is an uncountable g E f 

such that g or g-l is a Lipschiz function. 
(c) If A G P(o) is uncountable, then either A contains an uncountable chain, or 

A contains an uncountable set of pairwise incomparable elements. If 33 is an 
uncountable Boolean algebra, then B contains an uncountable set of pairwise 
incomparable elements. (A model satisfying this axiom was built by Baumgartner 
in [3].) 

(d) Let R 5 D(X) be open, then there is an uncountable A C_ X such that either 

D(A) E R, or D(A) n R = Q or R rA is a linear ordering on A. 

Proof. (a) Since f E [w x R, f is equipped with a second countable topology. Let c 

be the following coloring of f : c(al, a*) = 0 if {a,, u2} is an order preserving 
function, and otherwise ~(a,, a2) = 1. Since f is l-l both c-‘(O) and c-‘(l) are 
open, hence the claim of (a) follows. 

(b) We regard f as a topological subspace of R x[W. For (a,, b,), (a2, bJEf let 

c(&, b,), (a,, bJ) = 1 if l(b2- bdl(a,- 4 < 1, otherwke c(k, bd, (6, bd) = 0. 
Clearly c is a SOC, hence (b) follows. 

(c) The relation of incomparability on P(o) has a countable semibase since 
T, cr E P(o) are incomparable iff for some distinct n, m E o, n E r$ m and n$ (+ 3 m. 

Hence the first part of (c) follows. 
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Let B be an uncountable Boolean algebra. If B does not contain a countable 
dense subset, then by a theorem of Baumgartner [3], B contains an uncountable 
set of pairwise incomparable elements. Hence w.1.o.g. B contains a countable 
dense subset, so B is embeddable in p(w). By the first part of (c), B contains a 
chain or an anti-chain. If the latter happens, then our claim is true; otherwise let 
C be an uncountable chain in B. A subset of P(o) which is a chain must be 
embeddable in (R, <), since the lexicographic ordering between the characteristic 
functions of the elements of C is identical with the containment relation on C, and 
on the other hand p(w) together with its lexicographic order is isomorphic to a 
Cantor set. 

Let dgC be such that C’dgf{cEC(cCd} and CZ*f{cECIdzc} are un- 
countable. Let f : C1 -+ C2 be a l-l function. By (a) there is an uncountable 
monotonic g E f. If g is order reversing let D = {c U (g(c) - d) ( c E Dam(g)), then 
D is an uncountable set of pairwise incomparable elements. If g is order 
preserving let D = {(d - c) U (g(c) - d) ) c E Dam(g)}; again, D is as required. 

(d) Let R’(x, y) =R(y, x), hence R’ is open in XXX, Let f(x, y) = 1 if R(x, y) 

or R’(x, y) holds; and otherwise f(x, y) = 0. Hence f is a SOC. Let A be an 
uncountable f-homogeneous subset of X. If A has color 0, then D(A) II R = @, 

and thus A is as required. Otherwise, for every distinct a, b E A, R(a, b) or 
R’(a, b) holds. Let g: D(A)+{O, 1) be defined as follows: g(a, b) = 1 if R(a, b) 
and R’(u, b) hold; and otherwise g(u, b) = 0. g is a SOC, hence let B be an 
uncountable g-homogeneous subset of A. If the color of B is 1, then D(B) E R, 

hence B is as required; otherwise R rB is an antisymmetric connected relation on 
B. Let < be a linear ordering of B such that (B, <> is embeddable in (R, <>. Let 
c :D(B) * {0, l} be defined as follows: c(u, b) = 1 iff a < b @ R(u, b). Obviously c 
has a countable open semibase, and R is a linear ordering on any c-homogeneous 
set. 0 

Strengthenings of SOCA 

Proposition 1.3. SOCA+MA is consistent with ZFC. 

proof. In the proof of the consistency of SOCA we iterated C.C.C. forcing sets. We 

had the freedom to include in the iteration any c.c.c iterands, and SOCA would 
have still held. So we interlace in the iteration all Pxf’s and all C.C.C. forcing sets 
of power Xi. If P is the forcing set gotten as the limit of such an iteration, then 
VPkSOCA+MA. 0 

Proposition 1.4. Suppose Vk SOCA+ MA. Let f be a SOC of a space X such that 
X does not contain uncountable O-colored sets, then X is u countuble union of 
1 -colored sets. 

Proof. Let P be the following forcing set. 

P=cf] Dom(f) Rng(f)s w, and for every i 60, 

f-‘(i) is a homogeneous set of color 1). 
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It suffices to show that P is C.C.C. Let (fcl ( (Y <X1}~ P. W.1.o.g. for every cllf 0, 

Dom(fJ nDom(f& = 8, and (~(0, O), . . . , ~(0, m,), . . . , a,h Ok. . . , a,(n, m,)> 
is a l-l enumeration of DomCf,) such that for every i = 0, . . . , n and j = 
0 .., miy f,(u,(i, j)) = 1. We can further assume that for every i = 0, . . . , n, 
0’2 j< k srni and a, p <K,, f(a,(i, j), a,(i, k)) = 1. Recalling that X does not 
contain uncountable O-colored sets, we apply successively SOCA to the subsets 
{a,(i, j) ) a <Xl} of X. Hence we obtain an uncountable subset A c_X, such that 
for every distinct (Y, @ E A and for every i and j, f(um(i, j), ap(i, j)) = 1. Hence 
every finite subset of cf, 1 CY E A} is compatible. Cl 

Remark. Note that we needed a rather weak form of MA since P has the 
property that every uncountable subset of P contains an uncountable set of 
finitely compatible elements. 

We do not know whether the analogue of Proposition 1.4 for the color 0 is true. 

Question. Is conjunction of the following axioms consistent? MA+ SOCA+ 

“There is a pair (X, f) such that f is a SOC of X, X does not contain uncountable 
l-colored sets but X is not a countable union of O-colored sets”. 

We can still say something about the analogue of 1.4. Let SOCAl be the axiom 
which says that for every pair (X, f) such that f is a SOC of X: X contains an 
uncountable homogeneous set, and if for some 1~{0, l}, X does not contain 
uncountable I-colored sets, then X is a countable union of (1- I)-colored sets. 

Theorem 1.5. MA+SOCAl is consistent. 

Proof. The proof is as the proof of Theorem 1.1 except that the first claim in 
Theorem 1.1 has to be strengthened as follows. 

Claim (CH). Let f be a SOC of X, and X is not a countable union of O-colored sets. 

Then there is a c.c.c forcing set P&,,= P of power K1 such that Itp “X contains a 
l-colored uncountable set”. 

Proof. Assume X is not a countable union of O-colored sets. Let {Fi 1 i <K,} be an 
enumeration of all O-colored closed subsets of X. Choose by induction a sequence 
{Xi 1 i<KJrX such that for every i, q 6 lJiGi F;- U {xi ( j < i); this choice is possible 
since X is not a countable union of O-colored sets. Let Y = {Xi ( i <HI}: clearly Y 
is a second countable Hausdorff space of power K1 and f 1 Y is a SOC of Y. We 
show that Y does not contain a O-colored uncountable subset. Suppoe it did, and 
let A be such an example. cl(A) is also homogeneous of color 0, hence for some 
i -CR,, cl(A) = Fi. Since A is uncountable, for some j > i, A 3 xi. This contradicts 
the definition of {xi 1 j <K1}. 

Let I% = &,f py7 clearly P$,f is as desired. q 
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To prove Theorem 1.5, we start with a universe V satisfying CH+(2”1= NJ. 

We make a list of tasks which includes all possible names of pairs (X, f) and all 

possible names of c.c.c forcing sets of power X,. Let this list be {R, 1 a <X2}. We 

define {P, 1 a 6X,} as follows: P,, is a trivial forcing set, and for limit 6 P6 = 

iJorcG P,. Suppose P, has been defined. If R, is a Pa-name of a C.C.C. forcing set 

we define P,+1 = P, *%. If R, is a name of a pair (X, f) such that X is not a 

countable union of O-colored sets, then Pa+1 = P, *P&. In all other cases Pa+, = 

P,. This concludes the proof of 1.5. 0 

Some easy counter-examples 

One can try to strengthen SOCA in various ways. 

(1) Increase the number of colors, namely consider f’s from X to o in which 

for every i E 0, f-‘(i) is open. 

(2) Consider colorings of unordered n-tuples rather than coloring of pairs. 

(3) Consider colorings f in which for every i, f-‘(i) is a Bore1 set. 

(4) Try to decompose X into countably many homogeneous sets. 

Appropriate versions of (2) and (4) are consistent, this will be proved in Section 

3. (1) and (3) are inconsistent. We give counter-examples to (l)-(4). 

Example 1.6. There is an open coloring f of the unordered pairs of “2 in X, 

colors, such that “2 does not contain an uncountable homogeneous subset. 

For distinct n, v E “2 let f(n, v) be the maximal common segment of n and v. 

Example 1.7 (Blass [4]). There is an open coloring f of the unordered triples from 

“2 in 2 colors such that “2 does not contain an uncountable homogeneous subset. 

Let 17, v, 5 E “2 be distinct and q < Y < 5 lexicographically ordered. f(n, v, 6) = 0 

if the maximal common initial segment of 5 and n is a proper initial segment of 

the maximal common initial segment of v and q. Otherwise f(q, v, 5) = 1. 

Example 1.8. There is X E IR X R’ of power X1 and a SOC f of X such that X is not 

the countable union of homogeneous subsets. 

Let A s[FB be a power X,, X = A xA and f(h, Y&, (x2, YJ) = 1 iff 
{(xi, yl), (x,, yJ} is a strictly order preserving function, and otherwise the value of 

f is 0. 

Clearly f is a SOC of X. For B c X let Ds = {a E A ( there are distinct bl, b2 E A 

such that (a, b,), (a, b2) E B}. If B is a l-colored homogeneous set, then I& = 8. If 

B is O-colored, then it is easily seen that IDsI <X0. Let {Bi 1 i E co} be a family of 

homogeneous subsets of X, and let a E A - lJie,,, DB,, hence {b 1 (a, b) E Uiso Bi} is 

at most countable. Thus IJiG,,, Bi # X. 

Questions about Bore1 partitions of subsets of R of power Xi, are equivalent to 

questions about general partitions of K,. Galvin and Shelah deal with such 
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questions in [6]. This fact is expressed in the following observation, which is 
due independently to K. Kunen, B.V. Rao, and J. Silver. 

Observation 1.9. Let R be an n-place relation on K,. Then there is a G8 relation S 
on the Cantor set C and a subset A of C such that (A, S r A) = (K,, R). 

Proof. For the sake of simplicity we take an R which is binary symmetric and 
h-reflexive. We represent C as o 5. Let {aa ( a <Xl} be a family of almost disjoint 
infinite subsets of o. For every QL <X1, let {a; ( p s a} be a family of pair-wise 
disjoint subsets of o such that for every p < a! the symmetric difference of a: and 
a@ is finite. Let {b” ( (Y <HI} be a family of infinite subsets of o such that for every 
a<fl<K,, b”- bP is finite and bP - b” is infinite. For every (Y <K, we define 
qa ~~5. q,(2i + 1) = 1 if i E b” and otherwise q,(2i + 1) = 0. q,(2i) = 2 if i E a:, 
q,(2i) = 3 if for some @ <a, i E a”p and (0, (Y)E R. Otherwise q,(2i) = 4. Let 
S,={(r), v>l q, vE_5, {i) v(i)= 1 and q(i) = 0) is infinite and {i 1 v(i) = 3 and 
q(i) = 2) is infinite}, and let S = S, U S;l. Let A = {qa 1 a <HI}; clearly S is a G8 
set and (A, S 1 A)=#,, R). Cl 

Question 1.10. Using oracle forcing it is easy to construct a model of set theory in 
which Iw contains a second category set of power K1, and in which for every second 
countable space Y of the second category and every SOC of Y, Y contains an 
uncountable f-homogeneous subset. We do not know whether 

SOCA+(3XrIW) (IX\= K1 and X is of the second category) 

is consistent. 

Question 1.11. If in SOCA one replaces everywhere K1 by X2 is the resulting 
axiom still consistent? 

Question 1.12. If in observation 1.9 one replaces X, by Xz is the resulting 
statement consistent with ZFC? 

2. Tbe explicit contradiction method, and the increasing set axiom 

Suppose that we want to construct a model of MA+ X,<2”0 or of MAXI, and 
at the same time we want to preserve a certain property @ of a certain set A. 
There is a problem when we encounter a C.C.C. forcing set P which ruins property 
@, that is, in VP, A does not satisfy @ anymore. In such a case we shall find a 
C.C.C. forcing set Q such that in V Q P is not c.c.c., and A still has property @. We , 
call the particular method in which we do this ‘the explicit contradiction method’. 

We take the liberty to explain this method by an application which yields a 
known result. We do so in order not to start with applications that involve more 
than one tehcnique. 
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Definition. Let A EIW be of power 8,; A is called an increasing set, if in every 

uncountable set of pairwise disjoint finite sequences from A there are two 

sequences (a,, . . . , a,,), (b,, . . . , b,,) having the same length such that a,< 

b 1, . . ., a,, -C b,. 

Axiom ISA. These exists an increasing set. 

The following theorem is due to Avraham and Shelah [l]. It follows from 

Theorem 2 there, together with the discussion preceding it. 

Theorem 2.1. MA,, + ISA is consistent. 

Remark. The proof in [l] is slightly different from ours and does not use the 

explicit contradiction method. Instead, there, a model VP is constructed such that 

VP L “Every uncountable l-l function from A to A contains an uncountable OP 

subfunction”. This implies that there is no C.C.C. Q E VP such that in VP, IF, A is 
not increasing. 

This slight difference between the proof becomes essential, if one wants at the 

same time to carry out some task that requires CH in the intermediate stages. 

E.g., Theorem. MA is consistent with the existence of a tigid increasing set. (‘Rigid’ 

means there are no order automorphisms except for the identity.) 

Proof. Let V be any universe. Let us add to V a set A of X1 Cohen reals. It is 

easy to see that in this Cohen extension of V the set A is increasing. (This fact 

and more appears in [ 1, Q5 Remark 211.) Hence we can w.1.o.g. assume that this is 

our universe V and there is an increasing set A. 

As usual we will define a finite support iteration {Pi ) i < 2’1) in which all 

possible C.C.C. forcing sets of power X, are considered. For each single step in the 

iteration we need the following lemma in which the explicit contradiction method 

is used. 

Lemma 2.2. Let A be an increasing set in V, P be a C.C.C. forcing set p E P, and 

p IFp “A is not increasing”. Then there is a C.C.C. forcing set Q = Qp,,, of power Xl 
such that IF0 “A is increasing and P is not c.c.c.“. 

Proof. Let B be a P-name of a set of pairwise disjoint l-l sequences of length n 
such that p Itp “fi is a counterexample to the increasingness of A”. Since P is 
C.C.C. it is easy to pick a sequence {(pi, b’) ) i <Xl} such that: (1) for i :pi “p and 
pi IF, b’ E 6 and (2) let b’ = (bi, . . . , b;), then for every if j, {b& . . . , b3r-l 
{b;, . . . , b’,}=@ 

Let ~=(a,,. ..,a,>, b=(b,,. .., b,) E KY be distinct, we say that {a, b} is order 
preserving (OP), if for every 1 s k s 1 s n uk < bk e a, -C b(. We say that pit pi are 
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explicitly contradictory if {b’, b’} is OP. The main point is that if pi and pi are 
explicitly contradictory, we indeed know that they are incompatible in P; for if 
r 3 pi, pi, then r 2 p, hence r Il-p “6 is a counterexample to the increasingness of A, 
and b’, b’ E B”. This is of course a contradiction. Recall that we are looking for a 
Q that will add an uncountable anti-chain to P. Hence our choice for Q is 
obvious. Let u E P,,(Kr) and qadsf {pi 1 i E a}. Let Q’= {q_ 1 (T E pK,(K1) and for 
every i # j E a, pi and pi are explicity contradictory}. q7 < qm if T s CT. 

Obviously a Q’-generic set adds an antichain D to P. Once we show that Q’ is 
c.c.c., there is a standard way to find some qOE Q’ such that q,, I1,, “D is 
uncountable”. Hence we shall take Q to be {q E Q’ 1 q,,< q}. 

We thus show that Q’ is C.C.C. Let {q_, 1 i <K,} be an uncountable subset of Q’. 
W.1.o.g. {oi 1 i <K,} is a A-system and for every i, q ={a’, . . . , ak, ai,‘, . . . , air’} 
where cwl<...<ak<a’,l<...<cu”‘. Let ~=b~‘~...~ba*~~~((~~,.. . ,G,,>, and 
ci = b”“‘-. . .-&Xi” &f(& . . 

. 7 ck). For every 0 let U$ . . . , Uf be rational neigh- 
borhoods of I$, , . . , cf respectively such that for every 1~ i, j sr for every 
di E Up and di E Us : cf < cpe 4 c di. By choosing a subsequence, we can assume 
that for every i, Up is independent of p. 

Let 6, y be such that {ce, cY} is OP. Hence for every 1s i =Z k, {b”“i, /Yi} is OP. 
If i# j, then since {b”“‘i, b”lsi} is OP, and since we uniformized the Uf’s, also 
{b”““, b”“} is OP. H ence {qa, U qVY}E Q’. So Q’ is C.C.C. 

Our next goal is to show that IF,, “A is increasing”. The proof is very similar to 
the proof that Q’ is C.C.C. Suppose by contradiction fi is a Q’-name, qoE Q’ and 
q. II-,, “fi is a name of a counterexample to the increasingness of A”. Let 

{(qo,, aa) I a <X,} be a sequence such that for every CX, qo6 qC_, qa, I1a” E & and 
for every af p, a0 and np are disjoint. As in the previous argument we assume 
that the U~‘S form a A -system, and we choose Up = Vi with the same properties. 
Define the cm’s as in the previous argument, and find p, y such that {cp- d’, 
cy- dY} is OP; then q_ U qo, E Q’, {d@, d’} is OP, a contradiction. Cl 

Continuation of the proof of Theorem 2.1. It follows from Lemma 2.2 that if P is a 
C.C.C. forcing set such that 11, “A is increasing”, and if Q is a P-name of a C.C.C. 
forcing set, then there is a P-name fi = l?o such that Ikp (Z? is a C.C.C. forcing set 
and 11, “A is increasing”), and for every p E P: if p Ii-p (lko A is increasing), then 
p Il-,l? = 0; and if ~ll-~(3q E 0) (q #,A is not increasing), then p Ikp (It-~6 is 
not c.c.c.). 

Let {Ni ) i <2’1} be an enumeration of PKT(2’l). We define by induction an 
increasing sequence of forcing sets. PO is the trivial forcing set, and if S is a limit 
ordinal, then P, = lJics Pi. Suppose Pi has been defined; if IJ$, “A is increasing” 
or if Ifpi “Ni is a C.C.C. forcing set”, then let Pi+l= Pi ; otherwise let Pi+l= Pi * &. 

We first show that for every i, IF, “A is increasing”. By our definition if this 
happens for Pi, then it happens for Pi+l. 

Let cf(G)>K,, and suppose for every i <6, 11, “A is increasing”. Suppose by 
contradiction that G is a P,-generic set and B E V[G] is a counterexample to the 
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increasingness of A. Let Gi = G 0 Pi. There is i -C S such that the closure of B in 
A”, fi, belongs to V[ Gil. It is easy to see that there is B’E V[ Gi] such that B’ is 
an uncountable subset of fi consisting of pairwise disjoint sequences. Hence there 
cannot be two sequences in B’ which form an OP pair. Hence A is not increasing 
in V[G,], a contradiction. 

Let cf(6) = X0, suppose our claim is true for every i -C S. Let G be a Pa-generic 
set and let I3 E A” and I3 E V[G]. Then there are {Bi ( i E o} such that UiEwBi =B 
and for every i there is yi <S such that Bi E V[GJ. Hence one of the B,‘s is 
uncountable, hence if I3 is a counterexample to the increasingness of A, there is 
such an example belonging to a previous V[G,], and by the induction hypothesis 
this is impossible. 

Let P = Pp,, the argument showing that MA+ holds in VP is standard. 0 

Remark. Note that if MA,, holds, then A is increasing iff for every l-l un- 
countable f E A x A there is an uncountable OP function g G fi 

3. The open coloring axiom, and how to preassign colors 

In [l] it was shown (Theorem 6) that it is consistent with ZFC that every l-l 
f 5 R’ x R of power X1 is the union of countably many monotonic functions. This 
fact is a special case of the open coloring axiom (OCA) to be defined below. (S. 
TodorEeviC proved that, under MA, OCA is a consequence of this fact.) 

Let X be a second countable HausdorlI space of power K1. An open coloring of 
X is finite cover %!={U,,..., I-J,,_,} of D(X) such that for every 1, Vi = 
{(y, x) 1 (x, y)~ Ur}. A GX is %-homogeneous if for some color 1, D(A) E U,. A 
Q-homogeneous partition of X is a countable partition {Xi ( i E o} of X consisting 
of %-homogeneous sets. 

The open coloring axiom is as follows. 

Axiom OCA. For every X and every open coloring % of X, X has a 4!L- 
homogeneous partition. 

It turns out that in a universe V satisfying MA+ OCA+ ISA, the set of real 
order types of power K1 has nice properties, e.g. there are exactly three 
homogeneous such order types; so our first goal is to prove the consistency of the 
conjunction of these three axioms. As seen in the following theorem we do a little 
more, and add to the above axioms also SOCA. 

Theorem 3.1. MA + OCA + SOCA + ISA is consistent. 

Later in the section we shall prove a generalization of OCA. 
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Proof of Theorem 3.1. We start with a universe V satisfying CH + (2’1= NJ and 
with an increasing set A E V. We construct a finite support iteration {Pi ( i <X2}, 
according to a list of tasks of length X, which is prepared in advance. In each 
atomic step of the iteration we deal with one of the following tasks. 

(1) For a given C.C.C. forcing set Q of power K1, we have to find a C.C.C. forcing 
set P = PO of power K, such that Ikp “A is increasing”, and either Q is not C.C.C. 
or there is a Q-generic filter over V. 

(2) For a given X and a SOC f of X we have to find a C.C.C. forcing set P = Px,, 
of power X1 such that Il-p “A is increasing”, and X contains an uncountable 
f-homogeneous subset. 

(3) For a given X and an open coloring % of X we have to find a C.C.C. forcing 
set P= Px,% of power K1 such that 11, “A is increasing”, and X has a %- 
homogeneous partition. 

We expect the reader to known how to define the list of tasks, how to define the 
iteration and why V[PK2] satisfies all the four axioms. We shall concentrate only 
on the atomic steps of the iteration. 

The existence of P = Pa satisfying the requirements of (1) was proved in the 
previous section (Lemma 2.2). 

We start with task (3) where the additional trick of preassigning colors is used. 
This method appears also in [l, Theorem 61. There, a special case of OCA is 
proved. In the present application there is an additional complication, since at the 
same time we want to preserve the increasingness of A. 

Lemma 3.2. Suppose Vk“CH, A E V is increasing” and Ql = {U,, . . . , U,,_,} is an 
open coloring of X. Then there is a C.C.C. forcing set P of power HI such that ll-p “A 
is increasing”, and X has a %-homogeneous partition. 

Proof. W.1.o.g. A, XGK,. As in Theorem 1.1 we form a model M with universe 
X1 that includes enough set theory, and includes also A, X and % as predicates. 
Let M, be the submodel of M whose universe is (Y, and let C = C, = 
(a )Mf-la<M}. 

We know that each element of X should be put into one of a countable set of 
homogeneous subsets of X, and our first aim is to decide in advance what will be 
the color of the homogeneous set to which each element a of X should belong. 
Let {aj 1 i <K,} be an isomorphism between (K,, <) and (C, C), let 6 = 
{p 1 ai =S /3 -C ai+l}, and let 7% = {Ei 1 i <KS; we call 8 the set of C-slices. For every 
i <K, let {at 1 1 E o} be an enumeration of X n Ei such that a: = min(X n Ei). Let 

44x) = 44%. . . , x~) be a formula in the language of M and possibly with 
parameters from JM\, Qxq(x) abbreviates the following formula Va! (3x1> 

a) . * * (3x* > a) p(x). Let 6 = (60,. . . ) 6l_1) E ‘n be a sequence, and cp(x, y) = 
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cp(xo, . . . 7 x1-1, Yl, . . . 3 y,,,) be a formula with parameter from IMI; we denote 

1-l 
~l,,s~~(~,y)~cp(x’,~‘)~ 

( 
/J&X A 

) ( 
&Y~,Y:~A 

) 

( 

I-1 

A Ao(~,&)~ G_ 
) 

A ({Y, y’> is OP) 

where x’, y’ are disjoint sequences of distinct variables disjoint from x and y. 

Claim 1. Let i <X1. Then for every 1 E w there is 6 E ‘n such that for every m E w and 

every cp(x, y) = cp(x0,. . . , x1-1, YI, . . . , y,) with parameters from IM,l: if there are 
b . . . ) 

&, 

b, EA n(IMI-IM,I) such that Mkq[ab,. . . . , af-,, bl,. . . , b,], then MF 

Y Qx', Y’ h,s. 

Proof. Suppose by contradiction the claim is not true, so for every S E In let 

cps(x, y”) be a formula showing that 6 is not as required in the claim. We assume 

that the y “s are pair-wise disjoint sequences of variables, and that their concate- 

nation is y = (yI, . . . , y,). Let 

46 y)’ A ‘ps9 
ss’n 

and x(~,y)-~(x,y)~(~~y*tA). 

By the choice of the cps’s there are bl, . . . , b, E A n ([MI- IM,I) such that 

Mbcp[ab,. . .,af-l, bl,. . . , b,], hence 

(1) ML Qx, Y x(x, Y 1. 
On the other hand it is clear that for every 6 

(2) M!=lQx, Y Qx', Y’+V,~. 
Hence there is /3’<Kr such that for every Q E IMI’ and b E IMl”’ if @‘<a, b then 

there is p = /3(a, b) such that for every S E I, and a’, b’> 0, MFlG,,Ja, b, u’, b’]. 
We define by induction on j <K,, ai E X’ and b’ E A”, our induction hypothesis 

is that for every j <K,, ui, b’ > &,. Suppose ak, bk have been defined for every 

k Kj. Let pj >P”UUkci P(ak, bk). Let d EX’, 6’ CA”’ be such that u’, b’ >fij, 
and M!=q[a’, b’]. This choice is possible by (1). 

By the increasingness of A there are k < j such that {bk, b’} is OP. Let 
aj = (a’,‘, . . , , aj*‘-l) and ak = (ak,O, . . . , akJ_’ ), and let 6, be such that (a’,‘, a k3t) E 
U,. Let 6 = (a,, . . . , i3_1). Ml=x[ak, bk], and MFx[a’, 6’1; however since a’, b’> 
Pi, Mk-~$,,,[a~, bk, d, b’]. This is a contradiction, and the claim is proved. 0 

Let i <Xl; for every 1 E o let 6f be the least element in $I according to the 

lexicographic order of In, which satisfies the requirements of Claim 1. Recalling 

that for every 1 E w, a;< a’, it is easy to see that if k < 1, then 6: is an initial 

segment of Si. Let (&,, Si, . . .)= &,,,&. If a EX and a aao, then for some i and 

1, a = af; we denote 8(a) = 8; and call 8(a) the color of a. We have thus assigned a 
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color to every a in X - cuodg* X’, and when we construct P we shall put each a E X’ 
in a homogeneous set of color 6 (a). 

We are ready to define the forcing set P which satisfies the requirements of the 
lemma. 

Let (4 ( i E o} be an enumeration of the set of colors at such that for every I < n, 

{i 1 n, = 1) is infinite. Let P be the set of finite approximations of a homogeneous 
partition {Xi ) i E w} of X’ which respects the preassigned colors, and in which Xi 
has the color r~. More precisely, P =cf 1 DomCf)E P&(X’), Rngcf) 2 w, and for 
every a, b E DomCf) if f(a) = f(b) = i, then (a, b) E U, and 8(a) = 6(b) = n,}. 

Clearly Il-p “X has a U-homogeneous partition”. We have to show that P is 
c.c.c., and that Il-p “A is increasing”. The proofs of these two facts are similar, we 
thus skip the first, and assuming that we already know that P is c.c.c., we prove 
that Ikp “A is increasing”. 

Suppose by contradiction there is p” E P and m E o such that p” Ikp “There is a 
family (6” ) a! <K,}EA” of pair-wise disjoint sequences such that for no (Y# /3, 
{b”, b@} is OP”. Let fi be a name for this family. Let {(p,, b”) 1 a <K,} be such 
that (1) pa 2 p”; (2) pOIFpb” E fi; and (3) if (Y # p, then b” and bP are pairwise 
disjoint. 

W.1.o.g. the pa’s form a A-system, and they all have the same structure. More 
precisely, we need the following uniform behavior of the (p,, bQ)‘s. 

(1) {Dom(p,) 101 <Xl} is a A-system. 
(2) Let Dom(p,) = {u,,~, . . . , Q} where a,,o< - * - <A_[ and the first r ele- 

ments form the kernel of {Dom(p,) I a <K,} and 6” = (b,,l,. . . , b,,,). Then for 
every o,@<K1 for every i,j<l and l<k, tSm:S(U,,i)=6(Up,i), p,(U,,i)= 

Pe(Up,i), k,k = U,,i ifi bp,k = Up,i and k,k s L ifi b6.k s b,t. 

We can assume that for every a! <XI, b,,, < * * * ( b,,,. 
Since X is second countable, we can further uniformize the (p,, ba)rs in the 

following way. 
(3) There are open sets V,, . . . , V, c X such that for every (Y <K, and distinct 

i,jE{O,..., I>: acs,i E vi, if Pcx(aa.i> = Pm(Q) then Vi X Vi s US(~_.)- 
Let d, = (G,~, . . . , a,,l, kl, . . . , b,,,), and let D be the topological closure of 

{d, 1 a <Xl} in X’+lxA”‘. Since X is second countable D is the closure of a 
countable set, hence it is definable by a parameter d in M. Let y E CM be such 
that d, u,,~, . . . , u,,~_,E \I$\, (recall that {a,,o,. . . , u~,,-~} is the kernel of 
{Dom(p,) ) p<K,}.) We choose a! such that a,,,, . . . , a,,(, b,,l,. . . , b,,,$llQ1. We 
intend to apply the duplication argument to d,. 

Let do=(ao ,..., al,b, ,..., b,), a=(a, ,..., al> and b=(b, ,..., b,). Let 
El, . . . , Ek be those &-slices E for which there is 4, r s i s 1, such that a, E E, or 
there is b, 1s j<m, such that bi EE. Let Q = a’-* . *-ak where a’= 

(a09 . . ., tz_& is the sequence of those elements of a which belongs to Iw(, and 
for i >O, ai is the sequence of those elements of a which belong to E’. Let 
b=/,l-. . .- bk where b’ is the sequqnce of those elements of b which belong to 
E’. Let pi be the minimal element of E’. 
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We define by a downward induction formulas Qk, . . . , cpo. The induction 

hypotheses are: (1) the parameters of Qi belong to Ii&l, and (2) ML 

Qi[U', . . . ) U', b',. . . ,b']. Let Qo"(Uo,...,~_,)-...-rk-yl-. .*^y%D. 

SUppOSe that Qi+l(X1,...,Xi+',yl,..., y “I) has been defined. Let s be the length 

of bit’, let (~~+‘=(a’,, . . . , a:), and let ai = a(~;), j= 1,. . . , t. The formula 

Qi+l(ul,.. .,Q~,x~+~, b’9.m. , b’, yi”) has parameters from IMa,+,/, hence by the 

definition of S there are cl = (c:, . . . , ci) and d’, I = 1,2, such that: (1) ME 

Qi+l[ul,...,ui,c', b’,... , b’, d’], 1 = 1,2; (2) for every j = 1, . . . , t, (cf, C$E Us, ; 

and (3) {d’, d’} is OP. 

For 1= 1,2, j = 1, . . . , t let Vj+‘*’ be basic open sets in X such that (c,?, C~)E 
V:+‘,‘x V1’132~ LJ%; and let Vi+l,l= V;+l,l x . . . x V;+l.l. For 1 = 1, 2 let W’+‘,’ be 

basic open sets in A” such that d’ E Wi+‘*‘, 1= 1,2, and for every d, E w”lzl and 

d2E wi+1*2, {d,, d,} is OP. Let u’ = (u”,, . . . , uf), u’ = (II:, . . . , 0:) be sequences of 

variables. Let 

Qi(X1,...,Xi, yl, . . . . y') 

E3U1~U2,U1,U2 lilQi+l(X1, . . . . Xi,U’,yl ,..., yi,U’)) 

( 
2 

) ( 

2 
A /“\ *1 E vi+lJ A A ul E wi+lJ . 

1=1 I=1 ) 

Clearly Qi satisfies the induction hypotheses. We have thus defined cpo. 
As it was done in Theorem 1.1 starting with cpo we can choose two sequences 

U 
I,1 - . . . - uk.l-bl,l - . . . - bk,‘gfel 1 = 1 2 such that u"- 

Hnd ii.;- 

e',uO- e2 E D, for every 
i=l,...,k, a i.1 -ui,2 E vi.1 x vi,2 biz2E w1 x w’-2.Do = {da E a 44,) 
was dense in D, hence there are &(()E Do, 1 = 1,2, such that 

d 
n(l) 

EX’-‘X V’.‘x.. . v’.’ x ~1.’ x . . . wkJ_ 

It is easy to see that pacl, U pac2) E P and {bpcl), bac2’} is OP. This contradicts the 

assumption that p” Ii-p “6 is a counter-example to the increasingness of A”. 
Hence Lemma 3.2 is proved. 0 

We turn now to the last kind of tasks that we have got to carry out. 

Lemma 3.3 (CH). Let A E V be an increasing set, and let f be a SOC of X, then 
there is a C.C.C. forcing set P of power XI such that Itp “A is increasing, and X 
contains an f-homogeneous uncountable subset”. 

Proof. Let us first assume that (*): there is no n ~0 and an uncountable l-l h 
such that Dom(h)c X, Rng(h) c A”, every two distinct elements in Rng(h) are 

disjoint and whenever x, y E Dam(h) and f(x, y) = 1, {h(x), h(y)} is not OP. (Note 

that for n = 0 this means that there are no uncountable O-colored homogeneous 

sets.) 
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Let M be a model including enough set theory and including X, f, A. Let 

P = {a E PKO(X) E u is homogeneous of color 1 and is &-separated}. 

Clearly by the proof of 1.1, It-p “X contains an uncountable homogeneous 
subset”. Suppose by contradiction there is p E P such that p It-n “A is not 
increasing”. Let 6 be a name of a subset of A” such that p forces that 6 is a 
counter-example to the increasingness of A. Let {(p,, b”) 1 a! <K,} be such that for 

every a, pa 2 p, pa II-b” E & and for every Q # 0, b”, bP are pairwise disjoint. Let 
pP={a&..., u”,,_~} where a;<* . * <a”,_,, let aa = (a;, . . . , u”,,_~) and b” = 

(K . . . , bz). W.1.o.g. (1) for every a, m, = m ; (2) {pa 1 a <K,} is a A-system with 
kernel {a,, . . . , q_,}whereforeverya<K,andi<r-l,u~=uiandforeverya 
and 0, per U p,., is &-separated; for every 0 <i<j<m anda<p<K,,f(uF,up)= 
1; and (4) for every (Y, by< * * * <b:. Let D,= {a”-b” 1 (Y <Xl}. Hence D,r 
X” X A”, let D be the topological closure of Do. Let y <K, be such that D is 
definable in M by a parameter belonging to lM\, and let a be such that 

pPnlMl=+,,..., 4-J and Rng(b”) n IM,I = fl. 
We shall now duplicate a”-b”. Let a” = a=(~,, . . . , u,,,_J, b”= b= 

1 E” be the set of all those C&-slices which intersect 
~~~:.‘::2”~~~;b~.~....,.~~~. We represent a as aon*. +-ak and b as b,-* * .^bk 
where a0 = (a,, . . . , a_J, and for i > 0, q, bi are respectively the subsequences of 
a and b consisting of those elements which belong to E’. Note that since p, is 
&-separated, then for every i > 0, ai is either empty or consists of one element. 

We define by a downward induction formulas cpi, i = k, . . . , 0, with parameters 
in \M\ such that Mbcpi[a,, . . . , q, b,, . . . , bi]. 

cpk =a,-~,-. . .-xk-yl-. . .-yk ED. 

Suppose (Pii-1 has been defined, and we want to define cpi. There are two cases: (1) 
Xi consists of one variable and (2) q is an empty sequence. Since Mk 
(Pi+l[Q1, . . . , @+I, b,, . . . , b,+l], it follows that 

M’Qxi+l, Yi+l pi+JQl> * . . > q, JG+~, bl, . . * > 4, Yi+ll. 

By (*) in case (l), and by the increasingness of A in case (2), there are cl, d’, 
I = 1,2, such that MFcpi+I[aI, . . . , q, c’, bl, . . . , bi, d’], {d’, d*} is OP, and if 
c’ = (c’), 1 = 1,2, then f(c’, c”) = 1. Let Vf+I be basic open sets in X such that 
(c’ E v;,, and 1 = 1,2, and f(V,‘,, X V?+‘,,) = {l}, and let W’, 1= 1,2, be a product 
of basic open sets in A such that d’ E W’, 1= 1,2, and for every e1 E W1, e26 W*, 
{el, e*} is OP. Let 

cPl~~xlf+l~ $+I, Y,',l, Y,?,l ( 

2 

A (Pi+lCxl, * . . 2 xi, Xf+l, Yl, . * . 9 Yi9 Y:+J 
I=1 

A({Y,!,~, y?+d is OP)~f(x,l,~, x?+J = 1 

The last conjunct is added only in case 1. 
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Starting now from cpO and using successively cpl, . . _ , qk we can construct 

c’=(c’, . . .) c!,-~), and d’, 1= 1,2, such that: (a,, . . . , ~~_~)r\c’r\d’~D, {dl, d2} 
is OP, and for every i = 0, . . . , m - 1, f(cf, c:) = 1. Since Do is dense in D, there 

are pl, p2<X1 such that aa’r\b@ is close enough to (a,, . . . , ~_,)Ac’Ad’, 1= 
1,2; but then pal U P~ZE P and {bB’, fr@‘} is OP. A contradiction and hence P is as 

desired. 

So far we have dealt with the case when (*) holds. Consider now the case when 

l(*) holds. So, there is a sequence {(a,, 6”) ( a <Xl} such that the a,‘s are distinct 

and belong to X, the b” belong to A” and they are pair-wise disjoint, and 

whenever f(a,, up) = 1, {b”, bp} is not OP. If n = 0, then {a, 1 a <HI} is already an 

uncountable homogeneous set, so P can be chosen to be the trivial forcing. 

Suppose n > 0. We color distinct b”, bP in two colors according to whether 

{b”, b”} is OP or not. This is an open coloring hence by Lemma 3.2 there is a 

C.C.C. forcing set P of power K, which does not destroy the increasingness of A 

and decomposes {b” ( a <Xl} into countably many homogeneous sets. We show 

that P adds an uncountable homogeneous set to X. Let (6” ( a E r} = B be an 

uncountable homogeneous set added by P. Since P did not destroy the increasing- 

ness of A, for every (Y, /3 E F, {b”, bp} is OP, hence f(ap, aa) = 0, and hence 

{a, 1 a E r} is f-homogeneous of color 0. We have thus proved Lemma 3.3, and 

since we skip the details of the iteration this concludes the proof of Theorem 

3.1. q 

Question 3.4. Can SOCA be replaced by SOCAl in Theorem 3.1? 

In the remainder of this section we try to generalize OCA to colorings of 

n-tuples rather than just colorings of pairs. Example 1.7 shows that the most 

direct generalization of OCA is inconsistent. However, the following axiom 

generalizing OCA might still be consistent with ZFC. 

Axiom OCA(m, k). If X is a second countable Hausdorff space of power X,, and 

Q is a finite open cover of X”, then X can be partitioned into {Xi 1 i E co} such 

that for every i E o, (Xi)“’ intersects at most k elements of %. 

Question 3.5. Is it true that for every m there exists a k such that OCA(m, k) is 

consistent? 

In fact we do not even know the answer to the following weakened version of 

the above question. Is there k such that the following axiom is consistent: “If X is 

a Hausdorff second countable space and % is a finite open cover of X3, then there 

is an uncountable A c X such that A3 intersects at most k elements of % “. 

At this point it is worthwhile to mention the following theorem of A. Blass [4]. 

If % is a symmetric partition of the n-tuples of “2 into finitely many open sets, 

then “2 contains a perfect subset in which at most (n - l)! colors appear. 
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We will prove a weaker generalization of OCA; however rather than formulat- 
ing this new axiom in topological terms, we translate it into an equivalent 
statement on colorings of the binary tree. 

We first introduce some terminology. Let T = (““2, G) be the tree of binary 
sequences of length SW ; let T = “‘2 and L = “2. L is regarded as the set of 
branches of T. For Y, q E F, vC~ denotes that v is a proper initial segment of 
q, u A 7 denotes the maximal common initial segment of v and q, A denotes the 
empty sequence, if v c q, then [v, q 1, (v, q) denote respectively the closed and 
open intervals with endopoints Y and q, and [v], [v) denote respectively [A, V] 
and [A,u). If AcL let T[A]={vr\q(v,rl~A and v#v}; note that T[A] is 
closed under A. For B G T let B[“‘= {u E B I(uI = m and (+ is closed under A}. 
Let vCLq denote that v-(O)S:rl and vC,q mean that V-(l)=~:rl. If u, TE T[“’ 
then cr - 7 means that (cr,C=, CR) = (7, CI_, &). A function f: T”“‘+ n is 
called an m-coloring of T; B E T is f-homogeneous if for every u, 7 E B[“” such 
that u - T :f(u) = f(7); A G L is f-homogeneous if T[A] is. 

Let the tree m-coloring axiom be as follows. 

Axiom TCAm. For every A EL of power x1 and for every m-coloring f of T, A 
can be partitioned into countably many f-homogeneous subsets. 

Let TCA = //,,,,, TCAm. 
We shall later present a toplogical formulation equivalent to TCA. For the time 

being the reader can check the following proposition. 

Proposition 3.6. (a) OCA j TCAl. 
(b) MAX, + TCAl j OCA. 

Our next goal is the following theorem. 

Theorem 3.7. TCA+MA is consistent. 

Lemma 3.8 (CH). Let A c L be of power K1, and let &?I= {Di ( i E o} be a partition 
of the levels of T into finite intervals, that is, Di can be written as [q, q+J where 

n, = 0 and n, < n,+l. Then there is a C.C.C. forcing set P = PAS3 of power K1 such that 
after forcing with P, A can be partitioned into countably many sets {Aj 1 j E w} such 
that for every j, T[A,] intersects each Di in at most one point. 

Proof. Let M be a model with universe K, which encodes T, A and Ed, and let 
C = C,. P will consist of all finite approximations of the desired partition 
{Aj 1 j E o} in which each Aj intersects each C-slice in at most one point. To be 
more precise let {cyi ( i <K,} be an order preserving enumeration of C, let 
Ei = [ai, ai+J, and let 6’ = {Ei 1 i <HI}. -% is called the set of C-slices. P = 

cf I Dod_f) E C&Q, Rwdf) - co and for every j EO: for every Di, IT[f-‘(j)]n 
Oil s 1 and for every &, If-‘(j) n Eil s 1). 
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By the standard duplication method one can easily show that P is c.c.c., and 

clearly Itp “A can be partitioned into {Aj ] j E o} such that for every i and i, 

ITIA,]nDi(<l”. Cl 

Let CT E U,,, Pm1 and v E T, u < v denotes that max({v~ 6 16 E CT}) E cr. Note 

that (1) if u < v, then (+ U {v} E U,,, T[“‘] and (2) u can be written as {,$r, . . . , 5,) 
where for each i < m, {cl, . . . , &}E T[” and {ti, . . . , &}< &+I. Let u E Trml and 

v,~ET; v-, q if there is an isomorphism between (a U {v}, C,, -=&) and (a U 

{q}, CL, CR) which is the identity on u. For v E T let Ith(v) be the length of v. Let 

n = {ni 1 i E w} be a strictly increasing sequence of natural numbers, let u G T and 

v E T; we say that a, v are n-separated if for some i: for every 77 E a, lth(q) < Iti 

and lth(v) 2 ni. 

Lemma 3.9 (CH). Let f:T[“‘+‘] + n be an m + l-coloring of T and A EL be 

uncountable. Then there is a C.C.C. forcing set P = P& of power XI such that after 

forcing with P we have the following situation: there is a strictly increasing sequence 

n with n, = 0 and an uncountable B c A such that for every UE TIBlrml and 
v,q~T[Bl: if u<u, q; v-, q and CT, v are n-separated, then f(uU{v}) = 

f(uU{n}). (We call such B a prehomogeneous set.) 

Moreover, (*) there is a countable A’ G A such that for every a E A - A’ there is 

peP such that p k,aEB. 

Before proving Lemma 3.9, let us see how Theorem 3.7 follows from Lemmas 

3.8 and 3.9. 

Proof of Theorem 3.7. As usual we deal just with the atomic step in the iteration. 

So, given a subset A G L of power K, and an m-coloring f of T we have to find a 

C.C.C. forcing set of power X, such that after forcing with it A can be partitioned 

into countably many f-homogeneous subsets. We prove this by induction on m. 

The case m = 1 follows from the proof of the consistency of OCA. 

Suppose by induction for every m-coloring f of T and every A G L of power Ki 

there is a C.C.C. forcing set P = PA,f of power K, such that Itp “A can be 

partitioned into countably many f-homogeneous subsets”. 

Let V be a universe satisfying CH, A G L be of power Xi and f be an 

m + l-coloring of T. Let {Q, ( i E o}, {Pi ( i E w} be a finite support iteration, Q. is 

trivial, Pi is a Qi-name for the forcing set Pa,, from Lemma 3.9 in the universe 

Vq, and Qi+i = Q, *Pi. Let PL,,= Uico Qi. We denote P2,p by Q. In VQ we have 

a family {Bi ) i E o} of prehomogeneous subsets of A, and corresponding to each 

Bi we have a sequence n’. By (*) of 3.9 it is easy to check that IA - lJiao Bi( SK,. 
Let Dj = {v E T 1 nj<lth(v) < ni+l} and 9 = {Dj ( j E o}. Let R be the Q-name of 

the following forcing set. R is gotten by a finite support iteration of PA,ag of 

Lemma 3.8. After forcing with R each Bi is partitioned into countably many sets 

which we denote by {Bii 1 j E o}. It is easy to see that for every Bij: if u E T[B,][“‘, 

V, VE T[Bii], a<v, 9 and v -,n, then f(uU{v})=f(uU{n}). 
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We can now define an m-coloring on each T[Bii]. The color fii(a) where 
u E T[Bir]‘“’ is the sequence of colors of the form f(a U {Y}) where the v’s belong 
to T[B,] and they represent all equivalence classes of -(r in which (+ < v. More 
precisely for every CT E T[B,]t”’ let v;T, . . . , ~;~:_>a be such that for every v > (+ 
there is a unique i such that v -o VT. Moreover we pick the v?s in such a way 
that if r - v, then for every i there is an isomorphism between (T U {VT}, CL, C,) 
and (u U{vy}, -CL, CR) which maps 7 onto u. We define fij(a) = 

V(o U{v3), . . . 7 f((+ wg>. 
By the induction hypothesis there is a C.C.C. forcing set S of power X1 such that 

IIs “Each B, can be partitioned into countably many fij-homogeneous sets”. It is 
easy to see that if B c B, is f,-homogeneous, then B is f-homogeneous. Hence 
after forcing with Q *R * S, A can be partitioned into countably many f- 
homogeneous subsets. This completes the proof of Theorem 3.7. 0 

Proof of Lemma 3.9. For B c T and a E T, let Brmal = {cr E B[“’ ( there is v E cr 
such that v< a}. Let f : Tt”‘+‘] *lt and A be as in 3.9, let M be a model with 
universe Kr which has T, f and A as predicates. Let {a, ( i <Xl} be an order 
preserving enumeration of CM, Mi = Mrai, Ei = [ai, (Yi+l) and A” = A n [CQ, XI). 
For every a E A” we define a coloring f, : Tt”‘@]+ n. Suppose a E Ei, for every 
finite subset C G T there is a function g, : Ctm,al+ n such that for every formula 
g(x) in the language of M, and with parameters from Mi: if Mb ~[a], then for 
every a<K, there are b,cEA such that b,c>a, MFrp[b]r\q[c] and for every 
u E C[“,“l, u < b A c and f(u U {b A c}) = g&u>. The existence of such & is proved, 
as in the analogous argument in the proof of the consistency of OCA. By Konig’s 
lemma we can choose the go’s to be pairwise compatible. Let f, = 

U kc 1 C E f’,,(T)). 
We are ready to define the forcing set P = P& of Lemma 3.9. An element p of 

P is an object of the form (n, C) where n = (no, . . . , +_I> is a strictly increasing 
finite sequence of natural numbers with no = 0, C is a finite &-separated subset 
of A” and the following conditions hold: (1) for every distinct a, b E C, lth(a A b) < 

nk-1, denote by na,b the maximal n, such that ni <lth(a~ b); (2) let f’ ] k 
abbreviate fa 1 {v E T 1 lth(v) < k}[“@], then for every distinct a, b E C, f, r na,b = 

fb 1 na,b; and (3) for every distinct a, b E C and for every u~Dom(f, r n,&), 

f(o U {a A b}) = f,(u). We denote n = np, r$ = nf’, C = C, and na,b = n&. 
Let p,qEP, then p<q if np~nq and CpsCq. 
We prove that P is C.C.C. Let {p, E Q: <K,}c_ P. W.1.o.g. (1) for every (Y, /3 <XI, 

nP,= nPB=n=(n,,..., n,_,), and {Cp_ ( (Y <HI} is a A-system; (2) for every (Y < 
@ <XI, Cpa = {a,,,, . . . , CZ~,~-~, a,,,, . . . , aa,s_l} where {Q,, . . . , CI,,,-~} is the kernel 
of the A-system, and a,,,<. * . < CZ,,~_,< ap,r; (3) for every (Y, p <XI and i <s, 

%,i 1 nk-l=%i 1 nk-1 and fs.i r nk-l=f%.i 1 nk-l. 

We regard each Cp_ as an element of L”. We use the usual topology on L and 
define D to be the topological closure of {Cp_ 1 a! <HI} in L”. D is definable from 
some parameter e in M. Let i, be such that e, a,,,, . . . , a,,,_, < aio, and let p, be 
such that czbsaa,,, . . . , a,,,_l. 
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We apply the duplication argument to p,. Let us denote p_ = p, C, = C and 

aa,i = 4. We define by a downward induction formulas 

+J-~(%, . . . ,x,-J,. . . , q,(q), c~,-~ with parameters <+, such that Mk 

cPi[%. . . > ail. CP,-~~, . . . , x,-d is the formula saying that 

&I, . . .,Gl,xr,..., x,-~)E D. Suppose cpi+1 has been defined. By the definition 

of f, there are b’, b2 such that M~(P~+J~, . _. , q,, b’], j= 1,2, lth(b’r\ b2)2nk--l 
and for every u E DomCf,+l 1 IZ~_~), f(o U {b’r\ b*}) = f,+l(a). Let y+I = b’r\ b* 
and 

cPi(%..., Xi)E3y1, y* iil Cpi+l(Xl,. . . 9 3, Y’)~CY’AY*=Y,+d)- 

Next we construct by induction sequences (b’,, . . . , b’,-,) = b’, j = 1,2 such that: 

(a,, . . . , a,-,> -b’eD, and for every i=r,...,s-1, b:r\bf=q. Since 

{Cp, 1 a <rC,} is dense in D there are CY, p <K, such that for every i = r, . . . , s - 1, 

Q A u@,~ = vi. Let nk > max({lth(y) ( i = r, . . . , s - l}); recalling that for every i, 
f,,, 1 nk-l = f,,, 1 nk-_1, it is easy to see that (It-(&), CF_ U Cp,) E P. Hence P is 

C.C.C. 

P is not yet as required in Lemma 3.9, since if G is P-generic, U {C, ( p E G} 

need not be uncountable. However, by a standard argument, it is easy to find a 

countable set A’ g A such that if P’ = {p E P 1 C, n A’ = @}, then for every P’- 

generic filter G 

3.9. cl 

U {C, ( p E G} is uncountable. P’ is obviously as required in 

This concludes the proof of Theorem 3.7. 

Remark. As in Lemma 3.2 we can also prove that TCA + MA + ISA is consistent. 

Question 3.10. Prove that TCAm=$ TCAm + 1. 

Our next goal is to find a generalization of OCA which is equivalent to TCA. 

Let D,,,(A) be the set of l-l m-tuples from A. Let X be second countable and 

of power K,. An open m-coloring of X is a finite open cover % = {U,, . . . , U,} of 

D,(X) such that each Ui is symmetric. We next define what it means for an open 

m-coloring to be strongly open. We define by a downward induction 

(PiCvl,. . . 2 Vi) where cpi is a property of i-tuples of open sets from X. 

-3ui (V,X.. * X V,,, G Ui). Suppose Cpi+l has been defined; 

. . > vi)-(VX,,X2EVi)(X1#X2+(3V1,V2)(X1EV1AX2EV2 

A (V’, V* are 0pen)A (P~+~(V~, . . . , Vi-*, V’, V”))), 

. . , Vi) -A {(PI(v7r(1)> . . . 7 V,ci,) ) T is a permutation of i}. 

Definition 3.11. Let ‘11 be an open m-coloring of X. % is strongly open if cpl(X) 

holds. 

Let t, be the number of isomorphism types of models of the form (a, XL, C,) 
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where cr E T[“‘]. Let ‘% be an m-coloring of X. A c X is %-homogeneous if there 
is a subset %‘G% such that ]%‘)~t,,, and D,,,(A)GU{U( UE%‘}. 

Axiom OCAm. If X is second countable and of power K, and % is a strongly 
open m-coloring of X, then X can be partitioned into countably many “u - 
homogeneous subsets. 

Theorem 3.12. (a) OCAm + 1 j TCAm. 
(b) TCAm + A&& 3 OCAm + 1. 

Proof. (a) Assume OCAm + 1, and let f: Tt”” + y1 be an m-coloring of T and 
A G L be of power Ki. For every i E N and (+ E T[“] we define a symmetric open 
subset of D,,,+,(A): 

ucr,i = {taO, - . . T a,,,> e R,(A) 1 O’[{G,, . . . 3 GJI, 5, -GA = b, -=G, -a 

and f(T[{a,, . . . , a,}] = i)}. 

Clearly % ‘sf { U,,i 1 (+ E T[“’ and i E n} is a finite open cover of D,+,(A), and it is 

easy to check that Ou is a strongly open (m + 1)-coloring of A. Applying OCAm + 
1 to A and % one gets a countable partition of A into %-homogeneous subsets. 
It is easy to check that these sets are in fact f-homogeneous. 

(b) Assume MAN1+TCAm. Let % = {Vi, . . . , U,,} be a strongly open (m + l)- 
coloring of a second countable space X of power K1. W.1.o.g. X is Hausdorff. Let 
93 be a countable open base of X. A tree approximation of %! is a function g such 
that: Dam(g) G T, Rng(g) G 93 and (1) if q < v E Dam(g), then q E Dam(g); (2) let 
Y, q E Dam(g); then if v and q are incomparable with respect to S, then 

g(v) (7 g(n) = 89 and if u~q, then g(v) z g(q); and (3) if i G m and v,,, . . . , y E 

Dam(g) are incomparable in T, then cpi+r(g(vO), . . . , g(q)) holds. Let g be an 
approximation of %, and let B c X; we say that g is an approximation of % on B 
if: (1) for every b E B there is a branch tt, of Dam(g) such that b E f-l {g(v) 1 u E tb}; 

and (2) the function mapping b to tt, is l-l. 
Using MAN1 it is easy to see that there is a family {(g,, Bi) 1 i E w} such that gi is 

an approximation of ‘Jl.l on Bi and UiEoBi = X. W.1.o.g. Dom(gi) = T. Let Aj = 
{tb 1 b E Bi}, hence Ai E L. For every i we now define an m-coloring fi of T. Let 
a E Tt”“; if there is no C C_ Ai such that T[ C] = o, define fi(a) = 0; otherwise, let 

tb,, . . . , tb, be such that T[{&, . . . , tbm}] = c and let f(c+) = i where (b,, . . . , b,,,) E 

Ui. Clearly, f(a) does not depend on the choice of bo, . . . , b,. One can easily 
check that if A c Ai is fi-homogeneous, then {b 1 tb E A} is %-homogeneous, 
hence OCAm + 1 follows. q 

Remarks. (a) We did not mention the polarized versions of TCA, however the 
proof that they are consistent resembles the proof that TCA is consistent. 

(b) The consistency of OCAm or TCA implies by absoluteness a special case of 
Blass’ theorem [4], namely that if %! is a strongly open coloring of “2, then “2 
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contains a perfect set in which at most t,,, colors appear. The existence of such a 
perfect set is a 2: statement, and since it holds in some extension it must exist in 
the ground model. 

The main question in this matter is whether our consistency result can be 
strengthened to include all open colorings as in Blass’ theorem. 

An open coloring can be regarded as a continuous function from XXX to the 
set of colors equipped with its descrete topology. It seems thus natural to examine 
partition theorems for general continuous functions. We did not investigate these 
questions thoroughly, however here is one example of such a theorem. 

Let the nowhere denseness axiom be as follows 

Axiom NWDAZ. If X and Y are second countable Hausdorff spaces, 1x1 =X1 

and Y is regular and does not contain isolated points, and if f : D,(X)-+ Y is a 
symmetric continuous function, then X can be partitioned into {Ai ( i E o} such 
that for every i, j E o, f(Ai X Ai) is nowhere dense. 

Note that even the weakest form of NWDA does not follow from ZFC, for if 
A ER is an uncountable Lusin set (i.e. its intersection with every nowhere dense 
set is countable) and f(a, b) = a + b, then for every uncountable B g A, f(B X B) if 
of the second cateogry. 

Question 3.13. Does NWDA2 follow from M&,? 

Theorem 3.14. MA+NWDA2 is consistent. 

Proof. We deal with the atomic step in the interation, and we assume CH in 
every intermediate stage. Let X, Y, f be as in the axiom, let 9 and % be 
countable bases of X and Y respectively, and let M be a model whose universe is 
K1 and which encodes f, X, Y, S!8 and %. Let {Ei ) i <K,} be an enumeration of the 
&-slices in an increasing order. Let US Y be a finite union of elements of %‘, 
and let a E Ea. We say that U is permissible for a, if for every formula cp(x) with 
parameters in lJpcor Ep : if Mk ~[a], then there are distinct b, c such that 
Mkq[b], Mkcp[c] and f(b, c)$cl(U). Let 

P = P&J,, = {(o, U> I CT E P&X), CT is CM-separated, 

f@&(o)) n cl( U) = (a, and for every a E o, U is permissible for a}. 

((+i, U,) s (cz2, UJ if u1 c a2 and U, E U,. 
One can easily check that if U is permissible for a and VE Y is open and 

non-empty, then there is U, 2 U such that U1 n V# fl and Y, is permissible for a. 
It is easy to check by the duplication argument that P is C.C.C. Let G be P-generic 
and A = IJ {a 13 U ((a, U) E G}. Then f@,(A)) is nowhere dense. Let P$,y,f be 
the forcing set gotten by iterating P &,Y,f o times with finite support. It is easy to 
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check that if G is P$,,f g eneric, then in V[ G], X has a partition (Ai ( i E w} such 
that for every i E o, f(D,(A,)) is nowhere dense. 

The proof will be completed if we show the following claim. q 

Claim. Let {Ai ) i E o} be a family of second countable spaces of power X1, Y be a 
second countable space without isolated points, and for every i G j let fji : Aj x Ai -+ Y 
be a continuous function. Then there is a C.C.C. forcing set P of power X1 such that 
after forcing with P each Ai can be partitioned into {Aii ( Jo o} such that for every 

distinct (i,, jl), (iz, jJ, filil(AiljlXAij2) is nowhere dense. 

We leave it to the reader to construct such P. (Here one does not have to 
assume CH in the ground model.) 

Question 3.15. Let NWDAm denote the axiom analogous to NWDA2 where 
m-place functions replace 2-place functions. Prove that NWDAm is consistent. 

4. The semi open coloring axiom does not imply the open 
coloring axiom; the tail method 

In this section we present another trick called the “tail method”. This method is 
used in the proof of the following theorem. 

Theorem 4.1. MA+ SOCA+ 10CA + 2”o = K, is consistent. 

Indeed in Section 11 we prove that MAR1 + OCAj 2K” = Xz and in Section 5 we 
prove that MA,, + SOCA+ 2”o>X, is consistent, hence this means that MA,,+ 
SOCA+ 10CA + 2Ko> K2 is consistent. 

Still Theorem 4.1 adds some information, but more importantly it is a simple 
application of the tail method and thus will well serve in presenting this method. 

The consistency of MA,, with the existence of an entangled set which is proved 
in [ 11, implies that MA,, + 1SOCA + 1OCA is consistent. 

However we were unsuccessful in proving or disproving the following. 

Question 4.2. Does OCA imply SOCA? Does MA+ OCA imply SOCA? 

Proof of Theorem 4.1. We give a detailed description of the proof, but skip the 
details which are standard; we also skip some formalities in order to simplify 
notations. 

Definition. (X, f) is a SOC pair if f is a SOC of X; it is called an OC pair if in 
addition f-‘(O) is open in D(X). 
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We want to construct a universe W in which MA+ SOCA+ 1OCA holds. To 

do this we start with a universe V and an OC pair (Y, g)E V such that 

V L “CH + 2”1= X2 and Y does not contain uncountable g-homogeneous subsets”. 

W is gotten from V by a finite support iteration of forcing sets {P, 1 a SF&}, and 

we want that (Y, g) will be a counter-example to OCA in W. So we prepare in 

advance a list of tasks which will enumerate all possible SOC pairs (X, f) and all 

possible C.C.C. forcing sets of power Ki. In addition we prepare a l-l enumeration 

{yp 1 p <HI} of Y. We define by induction on (Y <rC, a forcing set P, and a club 

C, ~8~. Let Y, = {yp ( @ E C,}. We call Y, the czth tail of Y. Our induction 

hypothesis is that Il-, Y, does not contain uncountable g-homogeneous subsets. 

Let P = PK2. It is clear that the induction hypothesis assures that Ii-p “Y is not a 

countable union of homogeneous sets”. 

If 6 is a limit ordinal, then Ps = IJac6 P,. We choose a club C, E K, such that 

for every CY < 6, ]C, - C,] <X0. We want to check that the induction hypothesis 

holds. 

Case 1. cf(6) = K1. Suppose by contradiction for some P,-generic filter G there 

is A E V[G] such that A is an uncountable g-homogeneous subset of Ys. Since 

(Y, g) is an OC pair we can assume that A is closed; and since Y is second 

countable there is (Y <S such that A E V(G II P,]. A n Y, is an uncountable 

homogeneous subset of Y, belonging to V[ G nP,], and this contradicts the 

induction hypothesis. 

Case 2. cf(S) = K,,. Suppose by contradiction that there is a Pa-generic G and 

A E V[ G] such that A is an uncountable homogeneous subset of Y,. Let {oi ) i E 

o} be an increasing sequence converging to 6. Then there are Ai, i E o, such that 

A = IJi_ Ai and Ai E V[G nP,]. Some Ai is uncountable, hence Ai n Ys is 

uncountable. This again contradicts the induction hypothesis. 

Let us see how to define P,+l, C,,, in the successor stage. If our (Y th task is to 

deal with a C.C.C. forcing set P,, we will use a version of the explicit contradiction 

method, this will be explained later. 

We first deal with the case when the (Y th task is a Pa-name of a SOC pair 

(X,, fa). For a SOC pair (2, h) such that Z does not contain uncountable 

O-colored sets, let M(Z, h, Y, g) = M be a model whose universe is Xi, and which 

encompasses enough set theory, and Z, h, Y and g. Let C, be the club of initial 

elementary submodels of M. Let P(Z, h, Y, g) be the forcing set consisting of all 

&-separated finite l-colored subsets of Z. 

Suppose X, does not contain uncountable O-colored sets. We want to add to X, 

an uncountable l-colored set without destroying the induction hypothesis. For 

this we need the following lemma. 

Lemma 4.3 (CH). Let (Y, g) be an OC pair which does not contain uncountable 
homogeneous subsets, and let {yo j/3 -CR,} be a l-l enumeration of Y. Let (X, f) be 
a SOC pair which does not contain uncountable O-colored subsets. Then there is a 
club CcX, an uncountable X’E X and a C.C.C. forcing set P,,,,= P of power RI 
such that It, “{ye ] fi E C} d oes not contain uncountable homogeneous subsets”. 
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Let (6, ( y <K,} be an order preserving enumeration of C,. In order to define 

P C-+1 a+1, we apply Lemma 4.3 to (Y,, g), (X, f) and the enumeration {yp, ( y < 

K,} of Y,. Let X’, C be respectively the subspace of X and the club whose 
existence is assured in 4.3. We define P,+1 to be P, * P,,,f and Ca+l = (& ) y E C}. 
It is clear that P,+l, Co+1 satisfy the induction hypothesis. 

Lemma 4.3 is broken into two claims. 

Lemma 4.4 (CH). Let (X, f) be a SOC pair, (Y, g) be an OC pair and {yp 1 0 <K,} 

be a l-l enumeration of Y. Suppose X does not contain uncountable O-colored 

subsets, and Y does not contain uncountable homogeneous subsets, then there are 

uncountable X’ E X and a club C E K, such that letting Y’ be {yp 1 p E C}, for every 
uncountable l-l function h c_ X’ x Y’ and every 1 E (0, l}, there are x1, x2 E Dam(h) 
such that f(xl, x2) = 1 and g(h(x,), h(xJ) = 1. 

Lemma 4.5 (CH). Let (X’, f), (Y’, g) b e as assured by Lemma 4.4, and let 
P = P(X’, f, Y’, g), then Ikp “Y’ does not contain uncountable homogeneous sub- 
sets”. 

Proof of Lemma 4.4. We first prove the following claim. 

Claim 1. Let (X,f), (Y,g) and {ya Ip<X,} be as in 4.4, let FcXx Y and 
IE{O, l), and suppose that for every x1, X~EX and y,, y2e Y: if xl# x2, yl# y,, 
(x1, yJ, (x2, y2)+zF and f(x,, x2) = 1, then g(y,, y2) = 1. Then there are at most 

countably many x’s in X for which \{y 1 (x, y) E F}I >X,, and there are at most 
countably many y’s in Y for which 1(x ) (x, y)~ F}\ >K,. 

Proof. Let F(x) = {y ) (x, y) E F} and F-‘(y) = {x ) (x, y)~ F}. Suppose by con- 
tradiction that A ef{x I IF(x)\ = NJ is uncountable. Since Y does not contain 
uncountable l-colored sets, for every x E A there are y:, yz~ F(x) such that 
g(yjE, yz) = 1- I, and the choice of the y:s can be made so that for every uf v in 
A, {yt, yz})n{y,l, yz} = Q. By the second countability of Y and the openness of g, 
there is an uncountable B G A such that for every distinct u, v E B, g(y’, y’) = 
1 - 1. Since X does not contain uncountable O-colored sets there are u, v E B such 
that f(u, v) = 1. This contradicts the assumption about F, since f(u, v) = 1, ylf # y,’ 

for (u, Y:>, (v, Y~)E F but dyk Y,‘> # 1. 

The agrument why l{y I ~F-l(y)~>X,}~~KO is similar. 0 

We now return to the proof of Lemma 4.4. For F as above let D(F) = 
{x 1 IF(x)\ <I+,} and R(F) = {y 1 \F-‘(y)\<HK,}. Let {Fi ) i <Xl} be an enumeration 
of all closed subsets F c X x Y which satisfy (*): there is 1= IF E (0, 1) such that for 

every x1, x2cX and yl, YZE Y: if fh x2) = 1, yl# y2 and (XI, YI>, (~2, YZ)EF, 

then gh, YJ = 1. 

We define by induction on i <Xl, Xi E X and pi <X1 with the purpose that X 
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will be {xi ) i <Xl} and C will be {pi 1 i <Xl}. Suppose xi, pi have been defined for 
every j< i. If i is a limit ordinal let pi = Sup({@j ( j< i}), otherwise let pi be an 
ordinal greater than any ordinal in the set {r ) yr EU {Fk(%) ) k, j<i and 
xj~D(F,)}}U{fij 1 j<i}. Let xiEX--(xi 1 j<i}-U{F;;l(y,) 1 k<i, jsi and 

~0, E RWI. 

Let C = {pi ( i <Xl} and X’ = {xi ( i <Xl}. Clearly X’ is uncountable and C is a 
club. Let Y’= {yp 1 p E C}. Suppose by contradiction there is an uncountable l-l 

h EX’X Y’ and IE{O, l} such that for every x1, seldom: if f(xl, x2) = 1, then 
g(h(x,), h(x,))= 1. Let FEXX Y be the closure of h in XX Y. Since f-‘(l) is 
open and g-‘(I) is closed, F satisfies (*), hence for some i, F = Fi. Let (Xi, yn,) E h 
be such that i < j, &, 3 E D(F) and yak E R(F). If j a k, then we picked 3 not in 
F-‘(y,), a contradiction. If j < k and k is a successor, then we picked & such 

that yp,ti F,(%), a contradiction. Suppose j < k and k is a limit ordinal. Let 
j < k,< k be a successor ordinal. Then & > &, and Pk, is greater than any 
element of the set {y 1 yv E Fi(Xj)}, hence &$ (7 ) yv E fi(Xj)}, a contradiction. This 
concludes the proof of the lemma. q 

Proof of Lemma 4.5. Lemma 4.5 is very similar to the first part in the proof of 
Lemma 3.3. We leave it to the reader to translate the first part of the proof of 3.3 
to a proof of this lemma. 

We next have to deal with the following case. Suppose P,, C, have been 
defined, and the ath task is as follows: we are given a Pa-name of a C.C.C. forcing 
set R, of power <X1, and we have either to add a generic filter to %, or to 
destroy the c.c.c.-ness of R_ If II-, “Ya does not contain uncountable 
homogeneous sets”, then P,+l = P, *R, and C,,, = C,. We deal with the case 
when there is r E R, such that r Il-, “Ya contains an uncountable homogeneous 
set”. In this case we will construct a C.C.C. forcing set Q, such that IF, “%I is not 
c.‘c.c., and Y, does not contain an uncountable homogeneous set”. 

Lemma 4.6. Let (Y, g) be an OC pair that does not contain uncountable 
homogeneous subsets, let R be a C.C.C. forcing set and r E R be such that r ItR “Y 
contains an uncountable homogeneous set”. Then there is a C.C.C. forcing set Q of 
power X1 such that 11, “R is not C.C.C. and Y does not contain uncountable 
homogeneous subsets”. 

Remark. The proof resembles Theorem 2.4 in [l]. 

Proof. Let M be a model with universe X1 encompassing the space Y, the 
function g and enough set theory. Let CM = {a! ( M 1 a-c M). Let B be an 
R-name, r E R and 1 ~(0, 1) be such that r II-, “6 is an uncountable 2-colored 
subset of Y”. W.1.o.g. r = Oa and 1= 1. We choose a sequence {(r,, yi, ys 1 a <HI} 

such that: for every (Y, r, It, “yb, yt~ fi”; for every o! <p <H,, yi<yi<yk, and 
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{y& yz, y& yi} is &-separated. W.1.o.g. there are basic open sets Ut, UZ of Y 
such that for every (Y<X, and i~{1,2}, YLEU~ and g(U,XUJ={l}. 

We define Q as follows. Q = {u E I’,&,) 1 for every distinct (Y, p E (T there is 
i E {1,2} such that g(yb, yg) = 0). Note that the last clause in the definition of Q is 
just the ‘explicit contradiction’ clause, hence if IX, p E cr E Q are distinct, then r, 
and rp are incompatible in R. The partial ordering in Q is of course: cr<r if 
cr c_ 7. 

The proof that Q is C.C.C. resembles the analogous proof in Section 3. The 
argument why IF, “R is not c.c.c.” is also as in Section 3. 

Let us show that Ito “Y does not contain uncountable homogeneous subsets”. 
Suppose by contradiction that the above is not true. Then there is a sequence 
{(qa, ye) ( p <K,} and 1 E (0, 1) such that for every (Y < fi <K,, qa E Q, yp # yp and if 
qa U qp E Q, then g(y,, ya) = 1. As usual we uniformize the sequence {(qp, ye) I/3 < 

W as much as possible, hence we may assume that qp = 
{%, . f. > ak-1, a&, . . . , c~f5-~} where for every PC-y, ao<*. ‘<ak_l<ac<m * .< 

a:_l < (Yyk. Let us denote y;r by y&j, i), and vh, by y(j, i). Let Y = 
(Y(0, O), Y(0, I), . . * 9 Y(k - 1, m Y (P, i) = (Y (0, i, 01, Y (6, k I)), Y(P) = 

Y -Y(P, k)-. . .- ~(0, a-- 1) and z(p) = y(p)-(ya). Recall that if we take two 
pairs y (0, i) and y (p, j) where i # j, then either their first or their second 
coordinates have color 0, i.e. either g(y (P, i, O), Y (P, j, 0)) = 0 or 
g(y(p, i, l), y(p, j, 1)) = 0. Hence by more uniformization we can assume that 
there are m,‘s for k s i < j s n - 1 such that for every p, i and j, g(y(@, i, mii), 

y(@, j, mij)) = 0, and that there are basic sets Uy, i = k, . . . , n - 1, m = 0, 1, such 
that for every p, y(& i, m) E UT and for every k <i <j G n - 1, g(UFiX Up) = 0. 
Let F be the closure of {z(p) ) p <HI} in Y”+l, let yO~ C, be such that F is 
definable in M from a parameter belonging to yo. Let /3 be such that all the 
elements of z(p) except the first k of them do not belong to yo. We duplicate 
z(p). Note that y(p) is separated. Let E be the C,,,-slice to which ye belongs. 
Hence there is at most one element of y(p) which belongs to E. To simplify the 
notation let us assume that this element is y(p, k, 0). Hence by the duplication 
argument, and since we know that Y does not contain homogeneous uncountable 
subsets, we can find z’= y-(yi(k, 0), yi(k, l), . . . , yi(n- l,O), yi(n- 1, l), y’)~ 
F, i = 1,2, such that g(yl, y’) # 1, and g(y’(t, j), y*(t, j)) = 0 for (t, j>= (k, l), 
(k + 1, 0), (k + 1, l), . . . , (n - 1, 0), (n - l,l). Since g is continuous we can find 
neighbourhoods VI, V, of zl, z* respectively such that the same equalities hold 
whenever we pick Z~E VI and Z*E V,. Let Z((Y)E VI and z(@)E V2 it is easy to 
check that qa U qp E Q but g(y,, y,) # 1, a contradiction. Cl 

This concludes the proof of Theorem 4.1. 
The tail method will be used again in Section 9 and 10. The reader can check 

by himself that combining the club method, the explicit contradiction method and 
the tail method one can e.g., get the following consistency result that was 
mentioned in Section 2. 
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Theorem 4.7. MA+SOCA+3A (A is increasing and rigid) is consistent. 

5. Enlarging the continuum beyond K2 

According to our presentation in the previous sections, we always had to 

assume CH in the ground model in order to apply the club method. Thus in the 

resulting models of set theory 2’0 had to be equal to X,. 

The goal of this section is to find a weaker assumption under which the club 

method can work. Hence we will be able to prove that some of the axioms 

considered in the previous sections are consistent with 2*“>K2. 

Indeed CH was used in more than one way. In Theorem 1.5 we used CH in 

order to prove the following claim. If (4 ) i E I} is a family of closed subsets of X, 

and X is not the union of countably many Fi’s, then there is an uncountable 

X’ c X which intersects every Fi in at most countably many points. In Section 3 

we used CH in order to preassign colors, and in Lemma 4.4 we used CH in still 

another way. 

It so happens that MA+ OCA implies 2’0 = K,. However, MA+ SOCA + 2’0 > 

K2 is consistent. We present the new method by means of an example. We will 

show that MA+ SOCA+ (2Ko > KJ is consistent. The reader will be able to check 

that the consistency of MA+ NWD2 + (2’a>K2) can be proved by the same 

method. The proof that MA+ OCA+ 2’0 = X2 will be presented in Section 11. 

But some questions remain open, and we will mention them in Section 11. 

In view of this section and Section 11, certainly MA + SOCA+ OCA, hence we 

do not have to prove Lemma 4.4 in the absence of CH, however since the proof 

exemplifies what can be done without CH we take the liberty to present its short 

proof. This is done in Lemma 5.5. 

Let A c B denote that IA - B 1 <Xc,. Let M be a model in a countable language 

such that IMI 2 X1, and let D be a finite subset of IMI; we denote CM,, dzf {(Y E 

K, 1 there exists N< M such that D c INI and (Y = JNI nK,}. Clearly CM,, contains 

a club. A club C of X1 is called M-thin, if for every finite D g 1~1, Cc_ CM,,. 

Let us reconstruct the proof of Theorem 1.1. The central point in the proof was 

to construct for a given SOC f of a second countable space X, a forcing set Px,p 

which adds to X an uncountable l-colored subset. To do this we constructed a 

model M which included all the relevant information about X and f, and defined 

Px,f to be the set of all finite, &-separated, l-colored subsets of X. In the proof 

that Px,f was c.c.c., the only property of C, that was used, was its M-thinness. 

Let W be a universe in which 2%1 >X,. In order to be able to repeat the 

construction of Theorem 1.1. starting with W as the ground model, we thus need 

that W will have the following property. If PE W is a C.C.C. forcing set of power 

<2Kl, G c P is a generic filter and ME W[ G ] is a model which is constructed for 

some (X, f)E W[G], then W[G] contains an M-thin club. 

We will show that such w’s can be constructed, and in fact, the w’s that we 
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construct will contain M-thin clubs for a wider set of M’s rather than for just 
those M’s that come from some (X, f). This fact will be important in other 
applications of the method. 

We define the countable closure of a set A. For i <HI we define by induction 
A”‘: A(‘) = A; if S is a limit ordinal, then A(*)= Ui<s A(‘); and A(‘+‘)= 
A”‘U{BEA(‘)I (B\<&,}. Let A”=A (‘1) A” is called the countable closure of A. 
For a model M, let M” be the followin; model. IM’I = IMP, the relations in MC 
are those of M, and in addition: the belonging relation on IMI’, and a unary 
predicate which represents (Ml in MC. A model of the form MC, where \IM\I<2”1 
and M has a countable language is called a low model. 

Axiom Al. If P is a C.C.C. forcing set of power <2’1, and if M is a P-name of a 
model, such that II-, “M is a low model”, then It-p “there is an M-thin club”. 

Proposition 5.1. Let W be a universe of set theory which satisfies Al, then there is 
a C.C.C. forcing set Q of power 2K~ such that WQ l=SOCA. 

To prove the above proposition one has to reexamine the proof of Theorem 
1.1. and check the following fact. Let f be a SOC of X, and suppose X does not 
contain uncountable O-colored sets. W.1.o.g. X = K,; let M = (K, U 93; E, <, f) 
where W is a countable base for X, E is the belonging relation between elements 
of X and elements of 93, and < is the ordering relation on X1; and let C be an 
MC-thin club. Then if P is the set of all finite C-separated l-colored subsets of X, 
then P is c.c.c., and Il-p “X contains an uncountable l-colored subset”. We leave 
all the other details to the reader. 

Our next goal is to construct a W in which 2’1 >K, and which satisfies Al. Let 
us explain how such a W is constructed. We start with a universe V which satisfies 
CH. Let A be a regular cardinal in V such that h”l = A. 

We define a countable support iteration {(P,, ma) 1 a s A} in which each ma is 
the name of a forcing set which adds a club C to K1, such that C is almost 
contained in every club which belongs to VP-. We will show that in VP&, 2*1= A 
and Al holds. 

Let P, = {(D, f> I D is a closed and bounded subset of K1, F is a club in XI and 

D E FI. let (D,, F,), (D2, 6) E Pcb, then (I& F,)<(D,, Fz) if D1 is an initial 
segment of D2 and F, E F,. 

Proposition 5.2 (R. Jensen). (a) Pa is o-closed. 
(b) (CH) Pcb is X2-C.C. 

(c) U-0 Let ({P&a) 1 a! S A}, {~~(a) ( a < A}) be a countable support iteration; 
Pa(O) is a trivial forcing set, and for every CY <A, T&(Y) is a P,(a)-name of the 
forcing set Pcb of the universe V pa(a’. Then P,(A) is o-closed and KS-c.c., and if 
AK’ = A, then lkP,(h) 2”1= A. 

Proof. Well known. 
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Lemma 5.3. Let P, Q E V be forcing sets such that P is C.C.C. in V and Q is 
o-closed in V. Then VP is closed under w-sequences in VPxQ. 

Proof. It suffices to show that every w-sequence of ordinals in VPxQ belongs to 

VP. Let T be a P x Q-name of an w-sequence of ordinals. We show that for every 

q. E Q there is q 1 > qO with the following property: 

(*) For every pO E P and n E w there is pi ~=p and an ordinal a such that 

(pl, q1)lk7(n) = CC Suppose by contradiction q”E Q and there is no qi >q” which 

satisfies (*). We define by induction on i a sequence {(qi, pi, ni) ( i <XI}. Let 

gOa q”, pOe P, nOE w be such that there is a0 such that (pO, q,)lkr(nJ = aO. 

Suppose (qj, pi, nj) has been defined for every j < i. Let qi 3 qi for every j < i. Since 

ql>qo, (*) does not hold for q’, and hence there is pi E P and ni E o such that for 

every p 2 pi and an ordinal a, (p, q’)fT(q) = a. Let (pi, qi) ~(p’, qi) and (Yi be an 

ordinal such that (pi, qi)ll- ~(4) = ai. Let i < j be such that n, = nj ; we show that pi 

and pi are incompatible. Suppose by contradiction r > pi, pi. Hence (I; qi)kT(ni) = 
ai. But qi < qj, hence (r, q’) It ~(4) = ai. But r 2 pi 3 p’, hence there is p 2 p’ and a 

such that (p, q’)kr(nj) = (Y. This contradicts the choice of p’, q’ and nj. Let n be 

such that ]{i ) ni = n}l = K1, hence {pi ) ni = n} is an uncountable antichain in P, a 

contradiction. 

For a P x Q-name 7 of an w-sequence of ordinals let D, = {q E Q ( q satisfies 

(*)}. We have thus shown that for every r as above D, is dense in Q. 

Let G c P X Q be a generic filter, and let a E V[G] be an o-sequence of 

ordinals. Let G1, Gz be the restrictions of G to P and Q respectively. We show 

that a E V[ G,]. Let T be a P X Q-name of a. Let q E D, n Gz. For every n E w, let 

p,, E G1 and a, be such that (p,,, q)lk~(n) = o.,. Hence a = (a, ( n E w) and clearly 

ae V[G,J. Cl 

Let ({P, ) a <A}, {ma ] a <A}) be an iteration of length h. We denote by Pa and 

Pa-name of the iteration which is formed from the sequence of names {ma ) /3 s 

a -C A}. Hence Pp * PB = P. 

Lemma 5.4. Let VkCH and let h be a regular cardinal in V such that AK1 = A. 
Then Il-PEb(k) Al. 

Proof. Let Q. = P,(h). Let G E Q. be a generic filter and W = V[ G]. Let P E W 
be a C.C.C. forcing set of power ~2~1, let H c P be generic and U = W[H]. Let 

ME U be a model in a countable language such that X1 E ]M] and ]]M]] < 2’1. Since 

QO is KZ-c.c., (PI <2”0 and (2”1)‘w’ = A it follows that for some (Y <A, PE 
V[G fops]. Similarly for some (Y s p < A, ME V[ G II P,(P)][H]. Let G1 = 

G nP~&3, V1 = V(GJ and Q1 = VGl(~a(Sh and let G, be the generic filter of 

Q1 determined by G. Hence P is C.C.C. in VI, Q1 is o-closed in V,, HX G, is 

P X Qi-generic and V,[H][ G,] = U. By the previous lemma V,[H] is closed under 

w-sequences in U, and thus since ME V,[H], also M’E VJH]. Let D be the club 
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of X1 which is added by the restriction of G to rr,(p), hence D is almost 
contained in every club of V1. However since H is C.C.C. in V,, every club of 
VJH] contains a club of V,, and hence D is almost contained in every club of Vi, 
and hence D is almost contained in every club of V,[H], and obviously this 
implies that D is MC-thin. q 

Lemma 5.5. Lemma 4.4 is true in a universe VP where Vk Al and P is a C.C.C. 
forcing set of power <2’1. 

Proof. Let CC f), (Y, g>, {yp 1 P <%I b e as in 4.4, and let M be a model which 
encodes X, f, Y, g and {ye 1 /3 <K,}. Let C be MC-thin, and let {E, 1 a CR,} be an 
enumeration of the C-slices in an increasing order. Let D be a club in X, such 

that{cw(E,n{y,(YED]=8] is uncountable, and let X’s X be an uncountable 
set such that for every a<X, if X’nE,#@, then {y, IrED}nE,=@. We show 
that D and X’ are as required. Let Y’ = {y, 1 y 6 D}, and suppose by contradiction 
for some h c X’ x Y’ and 1 ~(0, l}, h is uncountable and l-l and whenever 
x1, x*EX’ and f(x,, x2)= 1, then g(h(x,, h(xJ)= 1. Let F= cl(h). Then F is 
definable in MC. Using the notation of 4.4, F satisfies (*). Hence by the proof of 
4.4 for all but countably many elements x E X’, F(x) lies in the same C-slice that x 
does. This contradicts the choice of X’ and Y’. 0 

6. MA, OCA and the embeddability relation on HI-dense real order types 

Let A ER. A is Xl-dense if it has no first and no last element, and if between 
any two members of A there are exactly K1 members of A. If A, B CR, let 
A* = {-a 1 a E A}, let A = B mean that the structures (A, <) and (B, <> are 
isomorphic, let A < B mean that (A, <) is embeddable in (B, <>, and let A I B 
mean that for no K,-dense C c R : C< A and C < B. f : A --, B is order preserving 
(OP), if for every a,, a26 A, ai<a,+ f(aJ<f(a,); it is order reversing (OR), if 

for every al, a,EA, al<a2+f(a2Wf(al>; f is monotonic if F is either OP or 
OR. Let K = {A s R ( A is Hi-dense}. A s R is homogeneous, if for every a, b E A 
there is an automorphism f of (A, <) such that f(a) = b. Let KH = {A E K I A is 
homogeneous}. It follows easily from ZFC that for every A E K there is B E KH 
such that A s B. Let {Ai ( i <a} G K, and let B E K. We say that B is a shufle of 
{Ai ( i <a} if there are Al such that A: = Ai, B = UiCa Af and for every i < OL and 
bl, b2E B such that b, -C b2 there is a a E At such that bl C a <b,. 

Let A E K; B E K is a mixing of A if for every rational interval I there is A1 
such that Ar z 1, Ar = A and B = U {Ar ( I is a rational interval}. 

Baumgartner [2] proved that it is consistent that all members of K are 
isomorphic. Shelah [l] invented the club method and used it to show that 
MA+K, ~2’0 does not imply Baumgartner’s axiom (BA). He constructed a 
universe in which MA holds but R! contains an entangled set. An entangled set A 
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has the property that there is no uncountable monotonic function g with no fixed 

points such that Dam(g), Rng(g) c A. Thus A is rigid in a very strong sense. The 

consistency of MA+ X1 < 2K~ with the existence of an increasing set was proved by 

Avraham in [l]. An increasing set is an analogue of an entangled set when 

monotonic functions are replaced by OR functions. 

It was natural to ask how much freedom do we have in determining the 

structure of the category whose members are the elements of K and whose 

morphisms are the monotonic functions. In this section we start investigating such 

questions under the assumption of MA+ X1 < 2’0. 

We shall first see that MAKl already implies many properties of K. Next we 

shall see that MA,, + OCA determines K quite completely, namely if we conjunct 

MA,,+OCA with the existence of an increasing set, then KH consist up to 

isomorphism of three elements and every element of K is built from these 

elements in a simple way. On the other hand MA,, + OCA+ 1ISA implies 

Baumgartner’s axiom. 

Theorem 6.1. (M&J. (a) If A E KH, al, bl, a2, b, E A, and a, <b, and a,< b2, 

then there is an automorphism f of (A, <> such that f(q) = a2 and f(b,) = b2. 
(b) Let A, B E K and let {gi 1 i E w} be a family of OP functions such that for 

every a E A and bI < b, in B there is i E w such that gi E B n (b,, b2). Then A < B. 
(c) Let A, B and {gi ) i E w} be as in (b), and suppose in addition that for every 

b E B and a, < a2 in A there is i E w such that g;‘(b) E A fl (a,, a2). Then A = B. 
(d) If A, B E KH, A < B and B f A, then A z B. (Hence < is a partial ordering 

of KH/=.) 

(e) If A E KH, then A is isomorphic to every non-empty open interval of A. 
(f) Let (Ai ) i < cx SW}& KH. Then (a) all shufies of {Ai ) i <a} are isomorphic 

and they belong to KH. In particular,if all the Ai’S are isomorphic to some fixed A, 
then every shuffle of {Ai ) i < } (Y is isomorphic to A; and (b) if B is a shuffle of 
{Ai (i<a} and CEKH and for every i<q Ai(C, then B<C. 

(g) If A E K and B1, B2 are mixings of A, then B1 = B2 and B1~ KH, and if 
CEK~ and A$C, then B1<C. 

(h) IfAEKandforeveryBEKA<B, thenAEKH. 
(i) If for every A, B E K A ( B, then BA holds. 
(j) If IK”/=I = 1, then BA holds. 

Proof. All parts of 6.1 follow easily from (b) and (c). We prove (c), (a) and (j), 

and leave the other parts to the reader. 

(c) Let P = CUE P,,(A X B) 1 f is OP, and for every a E DomCf) there is gi such 

that f(u) = gi(u)}. f c g if f E g. It is easy to see that P is c.c.c.. It is also easy to 

see that for every a E A, D, “sfcfe P 1 a E Domu)} is dense in P, and for every 

b E B, Db ‘Sf CUE P ( b E RngCf)} is dense in P, hence if G is a filter in P which 

intersects all Da’s and Db’s, then U cf ( f E G} is an isomorphism between A and 

B. 
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(a) It suffices to show that for every non-empty open intervals I0 and Jo of A, 
lo= Jo. Let I,,, Jo be such intervals. For every interval J G J,, let {(If, g[) 1 i E o} be 
such that 1: is an interval of A, g[ is an automorphism of A, g{(lf)EJ, and 
Ui.0 I[= A. Let 9 be a countable base for the order topology of J consisting of 

open intervals and let so = {gf ) JEW’, i E w}. Then I,,, Jo and se, satisfy the 
conditions of part (b). By a symmetric argument there is a family $2, such that J,,, 
I0 and %I satisfy the conditions of part (b). Hence 10, Jo and so U {g-’ 1 g E Y&} 
satisfy the conditions of part (c), hence lo= Jo. 

(j) For every A E K let A” be some canonical mixing of A. Let A, B E K, and 
we show that A ( B. Let B1 be a nonempty open interval of B. A Q A” 1 By, 
hence let gB1:A--,B;” be OP. Let By= UisoBi where B’ =B1, and let gi :B1+ 
B’ be an isomorphism. Let hB,,i = g;‘ogB1, hence hB,,iC A X BI. Let {Bi 1 j E w} be 
a dense family of non-empty open intervals of B. Clearly A, B, {hBi,i I j, i E w} 

satisfy the conditions of part (b), hence by (b), A < B. 
It follows from part (i) that BA holds. q 

Theorem 6.2. Let VkMA+ OCA+ ISA, and let A E K be an increasing set dense 
in R. Then: 

(a) A, A*, A U A* E KH, and every member of KH is isomorphic to one of these 
sets. (Of course A I A*.) 

(b) If KSBBA, then BzA. 
(c) If A U A* & B E K, then B = A U A*. (Hence A U A* is universal in K.) 
(d) If B E K is dense in IR, then there is a nwd set C E IR, a countable ordered set 

(L, <), and for every 1 E L a member A[ E KH such rhat B - C =:CleL A*, where CleL 
denotes the ordered sum of linearly ordered sets. 

(e) If BEK, then either B=A+l+A* or B=A*+l+A, or B can be rep- 
resented in the form B1UB2 where B,nB,=fl, B1=A or Bl=8, and B2=A* or 
B,=& 

proof. The proofs of all parts are easy, as an example we prove (b). Let 

K 3 B E A. Let I, J be non-empty open intervals of B and A respectively, and let 
fL’: I --, J be a l-l onto function. By OCA, f’*‘= U Gf’ ( i E o}, where for every i, 
f$’ is monotonic. Since B E A and A is an increasing set, each f:’ is OP. Let 4 be 
a countable dense set of non-empty open intervals of B, i.e. for every non-empty 
open interval 1 of B there is I1 E .% such that I1 E I. Similarly let 2 be a countable 
dense set of non-empty open intervals of A, and let % = (fi”J I IE 9, JE ,$ and 
i E o}. Clearly B, A and G satisfy the conditions of 6.1(c) and hence B = A. Cl 

Question 6.3. Construct a model of ZFC in which for every A, B E K, A Q B, but 
in which BA does not hold. 

Let NA denote the following axiom: (VA, B E K)( (SC E K) (C< A A C< B). 
Clearly MA+ OCAj (NA e 1ISA). In Section 7 we shall see that h4A+ OCA+ 
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NA is consistent. We conclude this section by showing that MA + OCA + NA+ 
BA. 

Proposition 6.4. MA + OCA + NA+ BA. 

Proof. Let A, B E K and we show that A< B. Let B1 be a non-empty open 
interval of B. By NA there are C1, C, E B1 such that Cr E K and C2 = CT. Let 
f :A-+ Cl be a l-l function. Then f can be represented as a contable union of 
monotonic functions f = lJicw fi. Let g : Cl + C, be an OR onto function; for every 

iE0 let hn,,i =fi if fi is OP, and /~n,,~= gof, if fi is OR. Let {Bi 1 jE o} be a dense 
family of intervals of B. Then A, B, {h,,, ) j, i E o} satisfy the conditions of 6.1(b). 
Hence A < B. El 

7. Relationship with the weak continuum hypothesis 

Our purpose in this section is to present a forcing set which makes two &-dense 
sets of real numbers near, that is, given A, B E K we want to add C E K such that 
C(A and C<B. Let N(A,B)=((~CEK)(C<AAC<B), and let the nearness 
axiom be as follows. 

Axiom NA. (VA, B E K) N(A, B). 

Obviously BA+NA. One can ask whether these two axioms are equivalent. We 
will show in this section that BAJ 2”~ = 2”1 whereas CON(NA+ 2Ko<2W1) holds, 
so NA* BA. 

Let WCH denote the axiom that 2*0<2’1. A E K is ptime if for every B E 

K:A<B; it is universal if for every BEK:B$A. {A,I~EI}GK is a ptime 
family, if for every B E K there is i E I such that Ai <B. 

Theorem 7.1 (WCH). (a) K does not contain a prime element. Moreover there is 

no prime family of power <2K1. 
(b) For every A E K there is B G A such that B E K and A $ B. 

Proof. Let T = ‘1’2 be the tree of binary sequences of length 44,. Clearly 
(TI= 2’0. Let {a, 1 v E T} be a l-l function from T to R. For every n E “12 let 
A,, = {a* pa ) (Y CR,}, hence if n # c, then iA_, tl A,( G X0. Suppose by contradiction 
A < 2’1 and {Ai ( i < A} is a prime family. W.1.o.g. for every i <A, Ai contains the 
set of rational numbers. For every n E ‘12 let f,, and i,, be such that f,, : A, +A.,, is 
an OP function. Clearly for some q # 5, f, 1 Q = fc 1 Q, and i, = &. But then f,, 
differs from fr on at most countably many points. Since i, = is and IA,, fl A,[ G&,, 
we reach a contradiction. 

(b) Suppose by contradiction that A E K, and it is isomorphic to every 
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element of P(A) fl K. For every B E P(A) n K let fB be an isomorphism between 
A and B, we reach a contradiction in a way similar to what was done in (a). 

Questions 7.2. (a) Does WCH imply that for every A E K there is B E P(A) fl K 
such that A$ B? 

(b) Does WCH imply K does not contain a universal element? 

Next we want to show that NA is consistent with WCH. This brings up a new 
application of the club method, which we call the ‘nearing forcing’. Recall that Al 
is the axiom introduced in Section 6 to replace CH when we want to apply the 
club method. 

Lemma 7.3 (Al). Let A, B E K. Then there is a C.C.C. forcing set.P = PAeB of power 

K, such that lkpN(A, B). 

Proof. Let MA,s = M be a model with universe K1 which encodes (A, <) and 
(B, <>. Let N = MC and C be N-thin. We identify A U B with Kt, hence A E Kt 
and B c X1. Since there are two linear orderings on K1, we denote a 4 b to mean 
that a is less than b as real numbers, and a <b to mean that a is less than b, as 
ordinals. Let {Ei 1 i <HI} be an enumeration of the C-slices in an increasing order. 
Let P=C~EP,,(AXB) If is an OP function, DomCf) U Rngcf) is C-separated, for 
every a E DomCf) there is i <RI and 0 <NE w such that a E Ei and f(a) E Ei+,, 
and for every distinct a, b E DomCf) if a < b then f(a) < b}. f< g if fr g. For later 
use we denote P = PA,B,c 

We prove that P is C.C.C. Let cf, ) a <X,}c P. W.l.0.g. fcl = 

{(%O? %,l>, * . . 9 hY,2n--2, %zn-1 )} where i <j implies Q <Q, there is m s IZ 
such that for every (Y <B <X1, and for every i <2n: if i <2m, then a,,i = ap,ir and 
if 2m < i, then aa,i <as,,. In addition we can assume that there are pairwise 
disjoint closed intervals V,, . . . , V2n_-1 such that for every a! <Xi and i < 2n, 
aor,i E Vi. 

We regard each fa as an element in (A x B)“. Let F be the topological closure 
of (f, 1 a <Xl} in (A X B)“. Let p E IN\ be such that F is definable from p, and 
every rational interval is definable from p. Let y0 E C be such that C n [yO, X,) E 
C N,,. Let f, be such that yO- < c~,,~,,. We denote au,i by pi. 

We will next duplicate f,. The new element in the duplication argument is the 
use of the following fact. If a, # a2, b, # b, are real numbers, then either 

{(al, bi), (a,, b,)) or {(a,, I& (a2, bl)) is an OP function. This fact replaces the 
assumption that X does not contain uncountable O-colored sets in the proof of 
SOCA, and the need to preassign colors in the proof of OCA. 

We define by a downward induction formulas q2,,, (P~“_~, . . . , cp,, and we 
assume by induction that for every i : Mkcpi[u,, . . . , q-J, and that the only 
parameters of cpi is p. Let ‘pO = (x0, . . . , xzn_J E F. Suppose q~~+~ has been defined. 
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Since Mkqi+l[a,, . . , , ai], 

Mk Elxi,O, %,I) 
( 

xi,0 # xi,1 A i cPi+l(“O, . . . 7 ai-13 %,j> . 
j=o ) 

Hence there are disjoint rational intervals Ui,o, V,,i such that 

1 

Mk A (3&j E Ui,j> cPi+lC”O> . . . 1 q-1, xi,j)* 
j=O 

Let 

‘Pi ZE A @xi,j E U,j) cPi+l(xO, . * . 3 xi-19 X,,j). 
j=O 

Let m <i < n, and let us consider the intervals U2i,o, U2i,l, U2i+1,0, Uzi+l,l. Let 

ci ~(0, 1) be such that whenever (al, bl)~ Uzi,oX Uzi+l,Ei and (a,, I!+)E 

u2i,lx u*i+l,i-e.3 then {(a,, b,), (a,, b2)} is an OP function. Using (Pi,,,, . . . , q2n we 

can inductively choose sequences (ai,, . . . , u&_1>, j = 0, 1, such that 

(a09 . . ., a2m-1, ai,, . . . , a’,,_,) E F and for every m =Z i < n, 

uZi E U2i,O7 u$+l E u2i+l,e,, uLE u2i,l and a&+, E U2i+l,l-E; 

Since F is the closure of cf, 1 a <Xl}, there are p and y such that for every 

m<r<n, 

u @,2i E u2i,03 ap,2i+l E u2i+l.z., a.,2iE u2i.l and au.2i+l E U2i+l,l--E; 

It follows that f, Uf,, E P. We have thus proved that P is C.C.C. Cl 

CoroIlary 7.4. NA + OCA is consistent. 

Proof. Combine the methods of 3.2 and 7.3. •i 

Let cov(h, K) mean that K <A, and there is a family D E P,+(h) such that IDI = h 

and for every c E P,+(A) there is d ED such that c E d. 

Theorem 7.4. Let VkCH, and let h be a regular cardinal in V such that 
h < 2”~ = p and cov(h, 8,) holds. Then there is a forcing set P such that kp NA+ 

(2K, = h) + (2”1= /_k). 

Remark. Clearly cov(K,, K,) holds, hence one can start with the universe L, and 

construct V in which 2%o= X1 and 2”1= X,, and then by 7.3 get a universe 

satisfying NA+ (2xo = H,) + (2”1= K3). 

Proof. Let V, h, p be as in the theorem. Let P = P,-Jh), G s P be a generic filter 

and W= V[G]. Using the fact that P is &c.c. and does not collapse X1, it is easy 

to see that Wkcov(A,K,). 

Let W, = V[G rl P,(a)], and C, be the (a + 1)st club which is added to V be 
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P,(A). Let (7, ( a < A}c P,,(h X A) be such that for every o E PNz(h X A), 

{a- ( (+ E 7,) is unbouned in A. If R is a forcing set and R c_ A, then each T, can be 
regarded as an R-name of subset of A of power <Xi. 

We define by induction on (Y <A a finite support iteration ({%, ( cx <A}, 
{p, ) a! <A}), {h, ] CY <A} and {& 1 a <A} such that: (a) for every (Y, ]R,] <A and 
K is c.c.c.; (b) h, is a l-l function from R, into A, and if a! < 0, then h, G he; we 
denote by Q, the forcing set which is the image of %, under h, ; (c) for some 
?<A, &ar~ W, and It, “g is a l-l function from a subset of A onto R, and if 
(Y < p, then & E in”. 

If h is an isomorphism between forcing sets S1 and Sz, and r is an S-name, let 
h(7) denote the image of r under h, hence h(T) is an &-name. 

Let R, be a trivial forcing set. For a limit ordinal 6 let & = lJac6 %, and 

hzi = Uo.a h,. There is some y <A such that Q8 E WV, hence if 5.3, if H is a 
Q-generic filter, then R WIH1 = RWytH’. It thus follows that there is & E W, such 
that Ito “& is a l-l function from a subset of A onto R, and for every (Y <6, 
ga E g”. 

Suppose K, h,, & have been defined, and we define pa. Let & E WYO. Since 

IQ,I, hl <A and Pa@) is &c.c., there is yi<A such that Q,, T, E W,,. Let 

yd~ffya=youy,ucu. 
In WY, Il-, “&(r,) E P,JF@“, and hence there is a Q,-name T&E W, such that 

T, E ~b, and in W,, It, ~(7;) E K. By the same argument as in 5.4, if H is 
Q,-generic over W and A = nH(&(r;)), then C, is Mk,,-thin. (Recall that MA,* 
is a model with universe K1 which encodes (A, <).) Hence there is a Q,-name p& 
such that Jp&J =X1 and It, p:, = PTd,TL,q. (The notation PA,S,C was introduced in 
the beginning of the proof of 7.3). Let pu = h,l(p&), hence pa is an R,-name of a 
forcing set. Let &+1 = R, *pa and h,+l be a l-l function from a subset of A onto 

%+1, and h,+i 1 h,. &+i is defined as in limit case. 

Let H be an R,-generic filter, and H’= h,(H). Let U= W[H] and for every 
a <A, g, = u&&a). Clearly g, is a l-l function from a subset of A onto R” and 

g, = U&h &. Let Al, A,c KU, ui = gh’(Ai), i = 1,2, and ri be Q,-names such 
that ~~(~~(7~) = oi. ri can be regarded as an element of P,,(A X A) by identifying 7i 
with the set {(cy, p) ( a II-, fi E $} where fi is the canonical name for /3. Let (Y <A 
be such that: OUTACT,, T~,T’E W, and a,Uc~~~Dom(g). Let A=o&&(T&)). 
Hence 

Q,, &, rl, TIE WY_, hence Ai E WJH’ n Q]. Let MI be the expansion of MA,, in 
which A, and A2 are represented by some unary predicates. Clearly M,E 
WJH’n Q], hence CV_ is Ml-thin. It thus follows that for every CT_-slice E, 

E tl Ai is dense in Ai, i = 1,2; so for every Opknl, DBdgf cf~ uH(pol) 1 there is a > p 
such that a E DomCf) 17Ai and f(a) E AJ is dense in z)H(&). Let f. = 
lJ (~~(7) I T E pa and for some p E R,, (p, 7) E H}, hence fa is an OP function from 
A to A, and by the denseness of the D,‘s, f, n A1 X AZ is uncountable. 
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We have seen that Ui= (VA,, AZ E K) N(A1, AZ). It remains to show Ui=2’0 = 
A A 2”1= y. Since Vk 2’1= CL, II’,(A) *I?,( = CL, it does not collapse X1 and is 
K,-C.C.C. 2”1= CL holds in U too. Since cov(h, K,) holds in W, then Wkh”o = 

h .Kp=A; lRhl=h, hence Ut2X ash. It is easy to see that for every (Y < @, 
W[H n RP] - W[H n &] contains a real, hence U k 2”o = A. Cl 

Let A, B E K. We say that A and B are densely near to one another (DN(A, B)), 
if there is an OP function f~ A x B such that DomCf), Rngcf) E K, and Dam(f), 
Rng(f) are dense in A and B respectively. Let DNA = (VA, B E K) DN(A, B). 

Theorem 7.5. NAJDNA. 

We need some lemmas and terminology. Let a, b E “2, a 4 b if there is noE o 
such that for every n 3 no, a(n)S b(n), and {n ( u(n) < b(n)} is infinite. An 
element of “2 which is not eventually zero is indentified with the real number in 
the interval (0, l] which it represents. K, + KY denotes the linear ordering which is 
the sum of (X1, <) and (rC,, >). 

Hausdorff using ZFC only constructed a sequence {q ( i EX~+KT}E “2 such 
that: (a) if iCjEXI+Kt, then 4 C a, ; and (b) there is no a E “2 such that for 
every i E X, and j E HT, @ Q b Q q. We call such a set a Hausdorff set. 

Proposition 7.6. (a) Let A E Iw be a Hausdorff set, and let B CR be countable. 
Then there is a G,-set G such that G r, B and G n (A -B) = 8. 

Proof. Easy and well known. q 

Proposition 7.7 (NA). Let A c Iw be uncountable. Then for every countable B 5 Iw 

there is an open set U such that U 2 B and IA - UI aXI. 

Proof. Let A, B be as above, and let C be a Hausdorff set. Let f E CX A be an 
uncountable OP function, let F be the closure of f in [w xIW, and let D = 
U {F-‘(b) ) b E B}. Clearly for every bE R, jF’(b)l, IF(b)lS2, and hence D is 
countable. Let V be an open set in [w such that Vz D and IDom(f)- V[aN,. 
W.1.o.g. if b E B and F-‘(b) = {d,, d2), then V contains the closed interval deter- 
mined by d, and d,. (This can be assumed since the above interval does not 
intersect DomCf) - D. Let (Vi ) i E CO} be the partition of V into pairwise disjoint 
open intervals. We can further assume that the endpoints of each Vi belong to 
cl(Dom(f)). (This is so since every open interval I is contained in an open interval 
J with endpoints in cl(DomCf)) such that Incl(DomCf)) = J ncl(DomCf)).) Let 
Vi = (Ci, d,), let ai = min(F(ci)), bi = max(F(4)) and Vi = (q, bi). It is easy to check 
that U*fUi,,UiZB and IRngCf)-UIz=X,. Cl 

Proof of Theorem 7.5. Assume NA, and let A, B E K. W.1.o.g. A, B are dense in 
R!. Hence we have to construct an OP function f c A x B such that DomCf), 
Rng(f) are dense in 58 and belong to K. 
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We call an OP function f extendible, if DomCf) belongs to K and, the closure of 
f in RX R is an OP function. 

Let us first see that if A, B E K, then there is an extendible function f~ A X B. 

Let g s A X B be an uncountable OP function. Let G be the closure of g in RX R. 

Let C = {a ER’ ( there is a’ ER such that a’ # a and G(a) n G(a’) # @}, and D = 
{a ER ( there is a’~lR such that a’ # a and G-‘(a) n G-‘(a’) # @}. Obviously C 
and D are countable. Let V be an open set containing C such that Dam(g)- V is 
uncountable, and let g, = g r (Dam(g)- V). Let U be an open set containing D 
such that Rng(g,)- U is uncountable, and let f1 = g, 1 (Dom(g,)- g;‘(U)). It is 
easy to check that f1 is uncountable and its closure is an OP function. Let f be a 
restriction of f1 to an element of K, then f is as desired. This concludes the proof 
of the above claim. 

Let {Ii ) i E w} be a list of all rational intervals. We define by induction a 
sequence of extendible functions cfi 1 i E w} where fi E A X B. Let f0 E A X B be 
any extendible function. Suppose fi has been defined. If IDom(fi) n&122, let 
f! = fi. Suppose otherwise, then using the fact that fi is extendible it is easy to see 
that there are non-empty open intervals J1, J2 such that: J1 c Ii, J1 n Dom&) = $3, 
and for every a ~DornCf~): if u <Jr, then fi(a)<J2, and if J,<a, then Jz<fi(a). 
Let g E (A n J1) x (B n JJ be an extendible function such that the endpoints of J1 
and J2 do not belong to Dam(g) and Rng(g) respectively. Let f; = fi U g. It is easy 
to see that f; is extendible. 

We define fi+i from f[ analogously in order to assure that (Rngcf,+r) n Ii1 3 Ki. 
It is easy to see that fdsf lJ iao fi is an OP function such that fG A X B and 

DomCf), Rng(f) belong to K and are dense in R. q 

Question 7.8. Let NA-= (VA, B E K) (N(A, B) U N(A, B”)). Does NA- 
imply that (VA, B E K) (31, J) (I and J are intervals r\(DN(A n I, B nJ>v 
DN(A n I, (B n J)“)))? 

8. A weak form of Martin’s axiom, the consistency of the incompactness 
of the Magidor-Malitz quantifiers 

In this section we deal with two separate problems. The first is to construct a 
model of set theory in which the Magidor-Malitz quantifier is countably incom- 
pact. This question was raised by Malitz. It was first solved by Shelah (unpub- 
lished) using methods of Avraham. The first solution involved properties of Suslin 
trees which are expressible by sentences in the Magidor-Malitz language (MML). 
So it was possible to show that CH did not imply the countable compactness of 
MML. On the other hand, the solution that we present here shows that MA+ 
(K,+2Xo) does not imply the countable compactness of MML. 

The second question we are concerned with is whether the axioms like BA, 
NA, OCA etc. imply MAsl. The answer to this question is negative; in fact, 
forcing sets constructed with the aid of the club method do not destroy Suslin 
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trees. We will formulate some strong form of the chain condition which preserves 

Suslin trees but can still change the satisfaction of sentences in MML. 

We start with the incompactness of MML. 

In [l] the notion of a k-entangled set of real numbers was introduced, and it 

was proved (Theorem 6) that for every k > 0 MA,, + “There exists a k-entangled 

set” is consistent. 

We will use a similar construction in order to get a model of ZFC in which 

MML is not countably compact. (Using c.c.c.-indestructible S-spaces, K. Kunen 

showed that the incompactness of MML holds in every model of MA obtained 

from a ground model satisfying CH by a C.C.C. forcing.) 

Let us recall some definitions. A k-place configuration is a sequence E = 

(%, . . . , E~-~) of zeroes and ones. Let LL, b be sequences of real numbers of length 

k. (a, 6) has configuration E (k ~[a, b]) if for every i -C k: if ci = 0, then a, < bi, and 

if ei = 1, then b, < ai. 

Definition 8.1 (Shelah [ 11). Let A G R and ]A] = Xi. A is k-entangled, if for every 

sequence {ai ( i <K,} c A k of l-l pair-wise disjoint sequences, and for every 

k-place configuration E there are i, i <X1 such that k E[@, ai]. 

Note that if A is k-entangled, then it is l-entangled for every 1 s k. 
The following easy claim appears in [ 11. 

Proposition 8.2. MA,, implies that there is no A such that A is k-entangled for 
every k>O. 

The incompactness of MML follows from 8.2 and the following main theorem. 

Theorem 8.3. MAN, + (b’k > 0) (3A) (A is k-entangled) is consistent. 

Let V be a model of ZFC which satisfies the axiom mentioned in 8.3. We show 

that MML is countably incompact in V. 
Let L be a language containing unary predicates {Pi 1 i E o}, for every n > 0 on 

(n + 1)-place predicate R,, a unary predicate Q and a binary predicate <. Let T 

be the following theory in MML. 

(1) P, is uncountable; < is a linear ordering of PO, 

(2) Q G PO and is a countable dense subset relative to C. 

(3) For n > 0, R, is a l-l function from P,” onto P,, (i.e. P, represents the set of 

n-tuples from PO). 

(4) {PO, <) is k-entangled for every k >O. (The reader should check that (4) 

can be expressed by an MML-theory.) 

By 8.2, MAKl implies that T is not consistent but since for every k E o there is a 

k-entangled set, every finite subset of T is consistent. 

We now proceed to the proof of 8.3. 
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Definition 8.4. (a) Let k = (k,, . . . , k,_,) be a sequence of positive natural num- 

bers, k = Ci<n ki, and A = (A,, . . . , A,_,) be a sequence of uncountable subsets of 
[w. We say that A is k-entangled if for every sequence {@ E i <&}E 
A;ox... X A::‘, of pairwise disjoint l-l sequences, and every k-place configura- 
tion E, there are i, j <HI such that ~E[a, q]. 

(b) Let k = {ki 1 i E o} be a sequence of positive natural numbers and A = 

{Ai 1 i E W} be a sequence of uncountable subsets of R. A is k-entangled if for 
every n E w, A 1 n is k 1 n-entangled. 

The exact form of 8.3 that we prove is the following. 

Lemma 8.5. Suppose Vl=CH + (2’1= NJ, and suppose A is an w-sequence such 
that A is k-entangled. Then there is a C.C.C. forcing set P of power K2 such that 
Ikp “A is k-entangled, 2’0 =X, and MA holds”. 

Proof. The general framework is the usual one, and we will not repeat it. In each 
atomic step of the iteration we will apply the explcit contradiction method 
introduced in Section 2, that is, we are given a C.C.C. forcing set Q of power K,, if 
Ito “A is k-entangled”, then Q is the next stage in the iteration. If however there 
is some q E Q which forces that A is not k-entangled, then we devise a C.C.C. 
forcing set R of power X, such that Itn “Q is not C.C.C. and A is k-entangled”, 
and add R as the next stage in the iteration. Hence the central claim in the proof 
is the following. 

Claim 1 (CH). Let A be k-entangled, let Q be a C.C.C. forcing set, q E Q and 
q IF0 “A is not k-entangled”. Then there is a C.C.C. forcing set R of power K, such 
that to “Q is not C.C.C. and A is k-entangled”. 

Proof. The proof is very similar to the proof of Theorem 6 in [l]. However 
technically the present proof is somewhat more complicated. 

Let A, k, Q and q be as in the lemma. Let M be a model with universe K, 
which encodes A and enough set theory. Let < denote the linear ordering of 
ordinals in A4, and < denote the linear ordering of real numbers in M. By 
replacing q by a more informative condition we can w.1.o.g. assume that there is 
an n E w, and n-place configuration p = (PO, . . . , Q,_~) and a Q-name r such that 
q lb, “T is an uncountable set of pairwise disjoint l-l sequences from ni<” A$, 
and for every a, b E 7, Vp[a, b]“. 

Let k = xi<,, ki. It is easy to construct a sequence {(qol, a(a, 0), . . . , a(a, k)) ( a -C 

Xl} such that: (1) for every a, qol aq; (2) for every a and j, q_ Il-oa(a, j)E 7; (3) 
{a(a, j) ) a <K,, j s k} is a family of pairwise disjoint l-l sequences; and (4) for 
every a <K,, there are ordinals p(a, 0) < * * * <p(a, k) in CM such that: for every 
jsk, p(a, j)<a(a, j), for every j<k, a(a, j)<@(a, j+l), and for every a’<a, 
a((~‘, k) < @(a, 0). (a < /3 means that all the elements of (Y are less than p etc.) 
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Let u(a) = a(c~, 0)-o * . -~(a, k), and let a((~, j)=(a(a, j, O), . . . , ~(a, j, k- 1)). 
By further uniformization we can assume that there is a family of pair-wise disjoint 
open rational intervals { U(j, i) ) j s k, i < k} such that for every (Y, j, i, a((~, j, i) E 

LJ(i, 9. 
We say that qa and qP are explicitly contradictory if for some j c k, 

kp[a(a, j), a(& j)] or k[a@, j), a(a, j)]. Clearly if qu and qe are explicitly con- 
tradictory, then they are incompatible in Q. Let R = {a E PNo(X1) ( for every 
(Y # p E a, qm and qp are explicitly contradictory}. (+ < n if u c n. 

Clearly if G is R-generic and A = {qp 1 {(Y}E G}, then A is an antichain in Q. 

Once we show that R is c.c.c., there is a standard argument which shows that 
there is rOe R such that r, IIR “A is uncountable” where A is the standard name 

for {qcy 1 {a)~ @. H ence by replacing R by Rrdsf {r E R ) r 2 ro} we can conclude 
that It-u, “Q is not c.c.c.“. 

The proof that II-n “A is k-entangled” already includes the arguments appear- 
ing in the proof that R is c.c.c., so we omit the latter. 

Suppose by contradiction there is r E R such that r Il-R “A is not k-entangled”. 
W.1.o.g. r = 0, and m 2 n is such that Ikn “A I m is not (k I m)-entangled”. Let E 
be a configuration and q be an R-name such that IkR “n is an uncountable set of 
l-l pairwise disjoint sequences from ni<m A$, and there are no Q, b E q such that 
F E[Q, b]“. 

Let {(ra, b,) 1 a <K,} be such that r, ItR “b, E q, and (b, ) a <K,} is a family of 
pair-wise disjoint sequences”. 

We now have to uniformize the sequence {(r,, 6,) 1 a <K,} as much as possible. 
We do not repeat the details of this process which have already appeared so many 
times. 

Suppose r, = {~(a, 0), . . . , ~(a, l- 1)) where the y’s appear in an increasing 
order. Let us assume for simplicity that the r,‘s are pairwise disjoint. For every (Y 
we form the following sequence c, which belongs to a finite product of Ai’s. Let 
a, = u(r(cr, 0))-. * . -u(y(a, E-l)) and c, =a,-b,. Let F=cl({c, [a<K,}), and 
&,E CM be such that F is definable in A4 by some parameter ~3,. Let (Y be such 
that a0 i c,. 

We want to duplicate (r,, b,). Before stating the exact claim we need additional 
notations. Let d(i, j) = u(y(cq i), j), d(i) = d(i, 0)-e * a-d(i, k), and a, b, c denote 
respectively a,, b, and c,. 

Duplication claim. There are co, c1 E F such that 

ci = &co, o)-. . .-&co, k)-. . .--di(l- 1, o)-. . .--di(l- 1, k)-bi, 

i=l,2 

and (1) ke[bO, bl], (2) for every Xl, there is jsk such that t=p[d’(i, j), dl(i, j)]. 

The contradiction follows easily from the duplication claim by choosing a cB 
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near enough to c” and a c, near enough to cl, because for such p and 
y:r,Ur,~R but be[ba, b,]. 

Proof of the duplication claim. Let -$ denote the lexicographic order on 1 X (k + 1) 
let t = l(k + 1) and let so <r s1 <r . . * cl s,-~ be an enumeration of 1 x (k + 1). By 

the construction, there are p(si) = pi in CM such that &~d(s,) < & =Z - . * < 

&_1 s d(s,_,). Let E(si) = Ei = [pi, pi+J. W e next divide b and E into parts in the 
following way. b = (b,, . . . , bk--l, bk, . . . , b,) where b,-,, . . . , bk--l belong to some Ai 
where i<n and bk,..., b, belong to some Ai where n G i <m. Let e(si) = q be 
the restriction of b to those coordinates w for which b, E Ei n Ui<n Ai, and let fj 
be the restriction of b to those coordinates w such that b, E Ej n Un~i<m Ai. Let 
q be the restriction of E such that Dom(ei) =Dom(q), and similarly pj is a 
restriction of E such that Dom(pj) = DomCf;-). Let e = lJjct e,. 

By the entangledness of A we can construct co, c1 E F having the form 

ci = di(so)-. . . -di(st_l)n(UeiuUfi), i=l,2, 
j<t j-3 

such that for every j< t: if ej = A, then l=p[d”(sj), dl(sj)] and bpj[fy, ff]; and if 
ei#A, then t=ej[ep,et] and !=Pi[fy,ft]. 

This is proved by the usual duplication argument, that is, we first define by a 
downward induction some formulas 4*-r, . . . , cJI~, and then starting with qQo we 
construct by induction on j, d’(sj), ej and fj, i = 1,2. 

Since e contains only k elements whereas for every i we have k + 1 d(i, j)‘s it 
follows that for every i < 1, there is j such that e(i, j) = A. Hence for every i, there 
is j such that kP[d’(i, j), dl(i, j)]. Hence the duplication claim is proved. This 
concludes the proof of claim 1, and hence the proof of 8.5. q 

There is still a gap betwen 8.3 and 8.5. In order that 8.3 will follow we still 
need the following easy claim. 

Claim. There is a universe V satisfying CH and 2”1= X, such that there is a 
sequence A in V which is k-entangled, where k = (1,2,3,. . .). 

In fact (CH) implies that there is A E K such that A is k-entangled for every k, 
and hence if {Ai 1 i E w} is a partition of A into uncountable sets, then {Ai 1 i E o} 
is k-entangled for every k. 

However, instead, we can start with a universe V satisfying CH and 2’1= Xz, 
and then add to V a set of K, Cohen reals. It is shown in [I] that such an A is 
k-entangled for every k. 

We turn now to the proof that Suslin trees are preserved under forcing sets 
constructed by the club method. 

Definition 8.6. Let P be a forcing set. P has the strong countable chain condition 
(P is s.c.c.) if for every uncountable A c P, there is B s A and {B,j 1 i E o, j = 0, 1) 
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such that B is uncountable, for every i and j, Bi,i E B; and (1) for every i E o, 

bO E Bi,o and bl E Bi,l, bO and bl are compatible, (2) for every uncountable C G B, 

there is i such that Bi,o fl C = $3 and Bi,l n C# $3. 

Remarks. Clearly every S.C.C. forcing set is C.C.C. Kunen and Tall [lo] defined the 

following property of forcing sets. P has property S if every uncountable subset of 

P contains an uncountable subset of pairwise compatible conditions. Clearly 

S+s.c.c. Let MMLz be the portion of MML in which only the quantifier Q* 

which bounds two variables is used. If cp E MML2, Mkcp and P has property S, 

then kp (Mkcp). If P is S.C.C. this is not longer true, since e.g. N(A, B) can be 
expressed by an MML, sentence about the model M = (A U B ; <, A, B). Now 

suppse lN(A, B) holds in V, and let P the nearing forcing of A and B. Then P is 

s.c.c., and Ikp N(A, B). 

It seems that “P is S.C.C. and kp n is s.c.c.” does not imply that P*T is S.C.C. 

However, since we are dealing with the preservation of MML sentences we can 

avoid this problem by using the following lemma. 

Lemma 8.7. Let ME V be a model and cp E MML be a sentence of the form 

~Q”x~~~~~,,R(x~,..., x,,) where R is u relation symbol. Let ({Pi 1 i G(W), {pi 1 i < 
CY}) be a finite support iteration of C.C.C. forcing sets such that a is a limit ordinal, 

and for every p <(Y, II-, (Mkcp). Then It, (Mkcp). 

Proof. Suppose by contradiction that p kp_ (Mklcp). Then there is a Pa-name T 

such that p Il-, “7 is uncountable and every n-tuple from T satisfies R”. Let 

{(Pi,ai)Ii<X,}~P,xJMJ b e such that for every i, pi 2 p, if if j then & # a,, and 

pi It- Bi E 7, where iii is the canonical name of ai. For q E P, let sup(q) be the 

support of q, hence sup(q)E Px,(cz). If there is /3 such that sup(p) G p and for 

K1 pi’s, SUp(pi)G p, then IF, (Mklcp), which is a contradiction. Hence the 

cofinality of (Y must be Kr, and we can w.1.o.g. assume that sup(pi) constitutes a 

A -system of the following form: sup(p,) = (T U q where for every i # j, q C-I cj = 8, 
and for every p E CT and y E I, p < y. Let p be such that for cr G p, sup(p) G 0 and 

for every i and y E ai, p c y. Let T’= {(pi 1 0, i&ii> ) i <K,}. 7’ is a PO-name. Clearly 

for every iI,. . . , i,,<K,: thereisqEP,suchthatq3pi,,...,piniffthereisqEPg 

such that q 5 pi, 1 p, . . . , pi, 1 p. It thus follows that for some p’ E PO, p’ It, “7’ is 

uncountable and every n-tuple from 7’ satisfies R”. Hence IF, (Mklcp), a 
contradiction. •i 

Recall that our aim is to show that Suslin trees are preserved under forcing sets 

constructed by the club method. Let (I’, <) be a Suslin tree in V. In order that it 
will remain a Suslin tree after forcing with some forcing set P it has to satisfy in 
VP the following sentence 
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By the last lemma if P = P, where ({Pi 1 i <a}, {ri 1 i C(Y)) is a finite support 
iteration of c.c.c forcing sets, then it suffices to show that for every i <a, II-, “If 
(T, -C) is Suslin tree, then 11, (T, <) is a Suslin tree”. So we prove two claims. 

Lemma 8.8. If P is s.c.c., and TE V is a Suslin tree, then Ikp “T is a Suslin tree”. 

Observation 8.9. If P is constructed by the club method, then it is S.C.C. 

Observation 8.9 is not an exact mathematical statement since we have never 
defined what it means for a forcing set P to be constructed with the aid of the club 
method. However, the reader can easily check that in every case in which we 
applied the club method the resulting forcing set was indeed S.C.C. 

Proof of 8.8. Let P and T be as above and suppose by contradiction that there is 
POE P such that p” IFp “T is not a Suslin tree”. Then there is a P-name T such that 

PO Il-P “7 is an uncountable antichain in T”. Let {(pi, q) 1 i <HI} G P x T be such 
that for every i <K,, pi ape, pi kp 4 E 7, and if j# i, then q # a,. W.1.o.g. there are 
{B, ) i E o, j = 0, 1) such that Bi,i C{pi 1 i <K,}, for every qi E Bi,j, j = 0, 1, 40 and 91 
are compatible, and for every uncountable B 5 {pi I i <Xl} there is i E w such that 
B nBi,i#fl for j=O, 1. 

Let A = {q ( i <X1} and A, = {a, 1 p, E Bi,i}. Hence we have the following 
situation: (1) A is an uncountable subset of T; (2) if i E o a0 E Ai,o and a1 E Ai. 
then a0 and u1 are incomparable in T; and (3) if A1 is an uncountable subset of 
A, then for some iEq A’nAi,o, A’nAi,i#pl. 

We will now show that if T is a Suslin tree, then there are no A and 
{A, I iEw=j=O, 1) as above. 

Let T be a Suslin tree and h : T+ P(o) such that if a < b, then h(a) E h(b). We 
show that there is a E T such that for every b > a, h(b) = h(a). Suppose not. Let 
{(q, bi) ( i <K1}~ TX T be such that for every i, q < bi and h(R) s h(bi), and if 
if j, then q# q, bj. W.1.o.g. there is n E o such that for every i <K,, n E 
h(bi) - h(aJ, and if i <j, then the level of bi is less than the level of ui. Let i and j 
be such that bi < bi. Hence bi < ai, however n E h(bi) and n$ h(A,), contradicting 
the monotonicity of h. 

Returning to our original claim, suppose by contradiction T is a Suslin tree and 
A, {Ai,i I i E o, j = 0, 1) satisfy (l), (2) and (3) above. Since A is a Suslin tree, we 
can assume that T= A. Let h : T+P(o x o) be defined as follows: h(a) = 
{(i, j) I there is b <a such that b E Ai,j}. Hence, if b =G a, then h(b) c h(a). Let a be 
such that for every b >a, h(b) = h(u), and let A’={b I b > a}. Since A1 is 
uncountable there are i E o and bo, bl E A1 such that b, E Ai,o and b, E Ai,i. Hence 
(i, 0) E h(b,) and (i, 1) E h(b,). Since a < bo, bl, there follows (i, O), (i, 1) E h(u), but 
this means that there are a,, a r,< a such that C+ E Ai,i, j = 1,2. ~0, al are 
comparable, and this contradicts (2). Hence the lemmma is proved. 17 

Let MSA, be the axiom saying that for every s.c.c forcing set P and every 
family {Di ) i < K} of dense subsets of P, there is a filter of P intersecting every Q. 
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coroflary 8.10. (a) +H + MSh_ is consistent. 

(b) lSH+TCA is consistent. 

Proof. (a) follows from 8.7 and 8.9, and (b) follows from 8.7, 8.8, 8.9. In fact in 
(b) one can replace TCA by any consistent conjunction of axioms whose consis- 
tency was proved by the club method. Also in (b) one can add 2Ko~X,. 0 

9. The isomorphiziug forcing, and more on tbe possible structure of K 

The new tool to be presented in this section is the isomorphizing forcing. Given 
A, B E K we construct a forcing set PA,n which makes A and B isomorphic. 

Baumgartner [2] constructed a PA,B as above in order to prove the consistency 

of BA. However, since our construction is more canonical, it is easier to combine 
it with the other methods we have presented. 

In this section we use Pa,n in order to get (seemingly) a strengthening of BA. 
by combining the new technique with other methods we obtain a variety of 
consistency results on the structure of K. 

Let d be a partition of K, and u E K1 X K,. We define the graph Gz. The set of 
vertices of the graph Vz is {E E 6 I(%, b) ((a, b) E cr and (a E E or b E E))}. The 
set of edges is a, and El, E2 which belongs to V,” are connected by (a, b)~ u, if 
a E El and b E E2 or b E El and a E E2. When d is fixed and u varies, we denote 
Gz and V,” by G, and V, respectively. 

We say that a graph G is cycle free it it does not contain cycles, i.e. it does not 
contain a sequence of vertices a,, . . . , CL,, and a set of distinct edges ei, . . . , e,, 

such that ei connects ai and e+l and e,, connects a, and a,. Let C E Nl be a club, 
let gc denote the set of C-slices and let {EC ( i <K,} be an enumeration of 2p in 
an increasing order. We regard the set E = {(w ) a < min(C) as a C-slice, hence 
E=Ec. Ec and EF are near, if for some I~EW, i+n=j or j+n=i. Let VEX,. 
EC(a) denotes the member of gc to which a belongs. EC(a) is abbreviated by 
E(a) when C is fixed. 

Let 4 be a linear ordering of a subset of X,, C c X, be a club and A, B E 8,. We 
define P = P(C, +, A, B): 

P=&Ps,(AXB)jf is an OP function with respect to <, GF is cycle 
free, and if f(a) = b then EC(a) and EC(b) are near}. 

fsg if fEg. 

Theorem 9.1. Let A, B E K, and M be a model such that [MI 2 XI. There is a linear 

ordering x on X1 definable in M such that (K,, 4) is embeddable in (R, <), and 

(A U B, <> is embeddable in (RI, <), w.1.o.g. A, B SK,, and N, and the usual 

linear ordering < of X1 are definable in M. Let C be MC-thin, and suppose further 

that for every C-slice, E, (A tl E,< > and (B fl E,< ) are dense in (A,< ) and 

(B,< > respectively. Then (a) P = P(C, <, A, B) is c.c.c.; and (b) Itp A = B. 
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Remarks. (a) Baumgartner [2] proved a similar theorem but he used (CH). 

(b) Note that we did not have to assume that A and B are definable in M. 

Proof. (b) Let f~ P and a E A -Dam(f). We show that there is g ~=f such that 
a E Dam(g). V, is finite, hence there is a C-slice E such that E$ V, Ef E(a), and 
E and E(a) are near. Since B is dense in itself and B nE is dense in B, there is 

b E B n E such that g gf f U {(a, b)} is OP. By the choice of E, g E P, hence g is as 
required. Similarly if b E B - Rng(f), then there is g E P such that b E Rng(g). This 
proves (b). 

(a) If V and W are sets of pairs of real numbers we say that (V, W) is OP if for 
every (u,, UJE V and (wO, W~)E W, {(v,, vi), (wO, wi)} is OP. Analogously we 
define the notion (V, W) is order reversing (OR). Note that if Vi, i = 0, . . . . ,3, 

are pair-wise disjoint intervals, then (U, x U1, U2 X U,) is either OP or OR. 
Let cf, ) (Y <K,} = F,c_ P. As in the previous cases we uniformize F0 as much as 

possible. We thus assume that F, is a A-system, and it will suffice to deal with the 
case when the kernel of F0 is empty. Hence let us assume that 

fa = {(4~> co, 4% 111, . . . , Ma, 2n - 2),4a, 2n - 1))) 
where the a((~, 2i)‘s are distinct, and if a! <p, CE DomCf,) U Rng&) and d E 
Dom(f@) U RngCf,), then E(c) # E(d). This last condition assures that if fa U fp is 
OP, then f, U fp E P. 

Let a(a) = (a(a, 0), . . . , a((~, 2n - l)), Fi = {a(a) [ a! <X1} and F be the topolog- 
ical closure of F, in ((K,,K))~“. It will be convenient (however not necessary) to 
assume that all the a(a, i)‘s are distinct, hence w.1.o.g. we assume that A nB = (d. 
Let D E\M’I be such that F is definable from D in M’, and there is some 
countable open base of (K,,i ) consisting of intervals whose elements are defina- 
ble from D in MC. Let y0 E C be such that C fl [ya, K,) E {(Y 1 (XV -C MC) (D E \N( 

and (NI nx, = a)}. Let f, = f be such that for every i <2n, yO< ~(a, i). We denote 
a(a, i) by a(i), a(a) = a and W = DomCf,) U Rng(f,). Let E”, . . . , Ek-l be the set 
of C-slices which intersect W, arranged in an increasing order. Let x = 

(x(O), . . . > x(2n - 1)) be a sequence of variables. For every s < k, let R, = 

{i 1 u(i) E E”}, aS = a 1 R, and x, = x ! R,. Hence Usek a, = a and Us_& x, = x. 
We are now ready for the duplication argument. We define by a downward 

induction on s = k, . . . , 0 formulas ~,(r,, . . . , x,-~) such that the only parameter 
in ps is D, and M”kp,[a,, . . . , aspI]. Let (Pk = Us& .x, E E Suppose qstl has been 
defined and we define cps. Clearly by our assumptions 

M’k@xz, xi) 
( 

Rng(xz) fl Rng(xt) = 8~ i (ps+i(ao, . . . , %1,x:> * 
I=0 ) 

For every i E R, and 1= 0, 1, let Ui be an interval definable from D such that: (1) 
the Uf’s are pairwise disjoint; (2) if s’ > s, i’ E R,. and 1’ E (0, l}, then Ui fl U:: = 8; 
and 

(3) 
I 

u$ ,i (Ps+l(QO, . . .2 as-1, .a). 
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Let 

We prove that we can find for every s < k, E(s) E (0, 1) such that for every i < n: 

if 2i E R, and 2i + 1 E R,, then (U$’ X U w U~;““‘X 7-J&$‘) is OP. Recall that the , 

graph Gf has vertices E”, . . . , Eke’; the edges of Gf are (a(O), a(l)), . . . , (a(2n - 2), 

a(2n- 1)); E” is connected to E’ by (a(2i), u(2i+ 1)) if u(2i)EES and 

u(2i + 1) E E’ or u(2i) E E’ and u(2i + 1) E E”; and G, is cycle free. Let S E k be such 

that for every component T of Gf there is a unique s E S such that E” E 7’. Let 

Sj = {s E k 1 there is TV S and a l-l path in Gf of length j connecting E” with E’}. 
Since Gf is cycle free the Sj’s are pairwise disjoint and moreover for every t E S,+i 

there is a unique edge in Gf which connects E’ with some element of {Es ) s E Sj}. 

For every s E So define I(s) = 0. Suppose I(s) has been defined for every 

s E Um=Zj Sm. Let tE Sj+i; let (u(2i), u(2i + 1)) be the unique edge connecting EC to 

an element of {E” 1 s E S,}, and w.1.o.g. suppose that s E Sj, u(2i)E E” and 

u(2i + 1) E Et. Define l(t) in such a way that (U$‘X U$i,, Ui;‘(‘) X U&2:“) will be 

OP. We have defined l(s) for every s E k, and it is easy to check that {l(s) ( s E k} is 

as required. 

Using the cpi’s we will now construct two members of F. Since M’kcp,, there is 

bz such that M’L ~~~~~~~~ Uf”‘r\ cp,(bg). Suppose bg, . . . , b,O_, have been defined 

in such a way that M'kcp,[bE, . . . , b&,1; hence by the definition of cps there is bf 

such that M’b 6: E ni~R, Uf’“‘r\ ps+l(bg, . . . , bz). According to this definition we 

obtain bz, . . . , bjl-, such that Us<,‘ bz~ F (this is assured by (Pk) and for every 

s<k, b:EnieR, Uf’“‘. Similarly we can define b,l, s <k, such that lJsCk b,l E F and 

b,‘Eni,n, Ut-““‘. For 1= 0, 1, let 6’ = lJsck bf and b’ = (b’(O), . . . , b’(2n - 1)). By 

the construction, for every i <n, {(b0(2i), b0(2i + l)), (b1(2i), b’(2i + 1))) is OP. 

Since F = cl({a(p) ( /3 <NJ), there are /3, y such that for every s <k, 

a(@) r R, E n U;‘“’ and a(r) 1 R, E n iY!-I’“‘. 
i=R. ieR, 

Thus for every i <n, {(a(& 2i), a@, 2i + l)), (a(~, 2i), a(?, 2i + 1))) is OP. By the 

method F, was uniformized. If if j, then {(a(& 2i), a(@, 2i + 

l)), (a(~, 2j), a(?, 2j+ 1))) is OP. Hence fp Uf, is OP, and by the uniformization 

its graph is cycle free, so fp E f, E P. This concludes the proof of 9.1. q 

Let A = {Ai 1 i <tfl} E K be a family of pair-wise disjoint sets such that for every 

i CX,, Ai is dense in UjCK, Aj. Let M(A) be a model whose universe is 

A ‘2~~ i.Jj<K, Aj. M(A) has a binary relation which denotes the linear ordering 

which A inherits from [w, and it has unary predicates Pi which denote Ai. A model 

of the above form is called a K-shuffle. 

Axiom BAl. Every two K-shuffles are isomorphic. 

Theorem 9.2. MA+ BAl + 2”o 2 X, is consistent. 
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Proof. The proof follows from the methods developed so far. We start with a 
universe V,bGCH and construct first a universe V 2 V, in which Al holds and 
2’oaK,. Then step by step we isomorphize all pairs of K-shuffles. We thus have 
to show the following claim. 

Claim (Al). Let M(A) and M(B) be K-shufles, then there is a C.C.C. forcing set 
P A.B of power X, such that IF,,_ M(A)= M(B). 

Proof. Let M be a model whose universe is K1 and which encodes A and B. Let 
C be MC-thin. Let A = IJi<K(, Ai and B = Ui<K, Bi. Let P = (fc PK,(A X B) ( f is an 
OP function, for every i <HI, f(Ai) E & and f-‘(Bi) C_ Ai, GS is cycle free, and if 
f(a) = b, then EC(a) and EC(b) are near}. fS g if f~- g. It follows from the proof 
of 9.1 that PkB is as required. 0 

Question 9.3. Prove that BAj5BAl. 

One can ask whether BA can be strengthened to say that every two members of 
K are isomorphic by a differentiable OP function. This strengthening is inconsis- 
tent with ZFC. 

Proposition 9.4. There are A, B E K dense in R, such that for every uncountable 
l-l function f E A X B there is a E Dom(f) such that every neighborhood of a 
contains uncountably many elements of Dam(f) and 

LkUl!~~b+a 
f(b)-f(a) 

b-a 
does not exist. 

Proof. For r E Q we construct A, B, E R such that: (1) A,, B, are countable and 
contain r; (2) A,, B, have the order type of the rationals; and (3) for every M 
there is S > 0 such that for every r, s EQ and for every (aI, b,), (a,, b2) E A, X B, if 
al# a2 and b,# b2 and \a,-a& \bl-bZj<E, then 

bz- b, I I ->M or 
a2-al I I 

E >M. 
2 1 

The construction of such a system of sets is done unductively, and if we define 

A = Urect cl(A,) and B = lJrpQ cl(B,), then it is easy to see that A and B are as 
required. El 

Question 9.5. Is it consistent that there is A E K such that every two dense subsets of 
A which belong to K are isomorphic by a differentiable function? 

So far we have presented several techniques for constructing forcing sets. It 
seems that there is a large group of consistency results concerning the structure of 
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K that can be proved using the methods presented. However, we did not try to 
find an exact formulation to the scope of consistency results that can be proved 
using these methods. Instead we bring several examples how the various methods 
can be combined to yield universes in which K has quite a diverse range of 
properties. 

It seems to us that the techniques that have been presented so far, suffice in 
order to prove any consistency result about the structure of K which is consistent 
with MA and 2”o = X2. However, we did not make an attempt to formulate what 
are exactly those consistency results about K which can be proved by our models. 
In the sequel we prove some consistency results in which we apply the previous 
methods, and which hopefully exemplify the power of the above methods. 

Let A I B mean that there is no C E K such that C< A and C ( B, in this case 
we say that A and B are far; A ti B denotes that A _L B and A 1 B”, and this case 
we say that A and B are monotonically fur (M-far). 

Suppose that G II H, and that we want to isomorphize A and B without 
destroying the M-farness of G and H. In the following lemma we show how this 
can be done. 

Lemma 9.6 (Al). Let A <2’1; for every i < A let Giy I-& E K be such that Gi I Hi. 

Let A, B E K be such that for every i <A, A 1 Gi and B 1 Gi. Then there is a C.C.C. 

forcing set P of power K1 such that kp A z B, and for every i < h, kp Gi I Hi, if Gi is 
increasing, then It, “Gi is increasing”, and if Gi is 2-entangled then Itp “Gi is 
2-entangled”. 

Proof. We first construct a model which encodes all the information we need. Let 
h:AUB~K,bea1-1function,andforeveryi<h,leth,:AUBUG,UHi~K, 
be a l-l onto function containing h. Let A4 be the following model: IMI = X, U h ; 

M has a three-place relation R ef{(i, a, p) ( h;‘(a)< h;@)}, we denote cy <i p to 
mean that (i, (Y, p) E R ; M has unary predicates which represent h(A) and h(B); 
and finally M has the binary relations S, ={(i, (Y) 1 a E hi(Gi)} and S, = 

{(i, a) I a E hi(H 
Let (Y x0 p denote that h-‘(a) < h-l(P), hence 4’ is definable in M. Let C be 

MC-thin, and let P = P(C, do, A, B) be as defined in 2.1. By 9.1, P is c.c.c., and it 
isomorphizes A and B. We next show that for every i, kP Gi I Hi. Suppose by 
contradiction p IFp l(Gi I Hi). We denote G = Gi, H = Hi and < = <i. By abuse 
of notation we assume A U B U G U H = K,. Let T be a P-name such that p Itp “7 

uncountable OP function and T g G X H. W.1.o.g. p = 0. Let 

;;f,, Z, b,)) I a cX,} be such that for every (Y, f_ kP (a,, b,)E T, and (Y # pJ 
(a,, b,)# (a,, be>. We will reach a contradiction if we find (Y and p such that 
f. U fp E P, but {(a,, b,), (a,, b,)} is not OP. We uniformize {(f,, (a, b)) ) a <N,} as 
in 9.1, hence we denote f, ={(~(a, O), a(cu, l)), . . . , (a(a, 2n-2), a(a, 2n- l))}, 
and we denote a, = a(cy, 2n) and b, = ~(a, 2n + 1). W.1.o.g. all the ~(a, 1)‘s are 
distinct. Let a((~) = (a(a, 0), . . . , a(a, 2n + l)), F,={a(a) ( a CR,} and let F be 
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the closure of F, in ((K,, <))*“+*. We define D, yO, a(i), a, W etc. as in 9.1. In the 
duplication argument we distinguish between two cases. 

Case 1. Ec(a(2n))=Ec(a(2n+ 1)). Let u be such that E”(a(2n))= E”. We 
define cps inductively as in 9.1, except in the case when s = u. Suppose (~,,+i has 
been defined. 

Mcb (vo <Hi) (3x,) (Rng(x,) > a A (x2,, E G) A b2,,+1 E HI 
Acp,+1(GJ,. . . ,%1,&J. 

Since G_LH, 

MC != (3x:, xi) ( Rng(xz) n Rng(x:) = P, A ,hO (6 E G) A ,hO (x:,+i E H) 

1 
A ({<x&, x%,+i), (xi,, x:,+8 is OR) A A (~,,+~(a~, . . 

l=O 
.,a4t))~ 

For every i E R, and E = 0, 1, let Vi be an interval definable from D such that all 
the Ups so far defined are pairwise disjoint and 

M’k(gx:, X:) ( ,a X:E n UfA(+%, x%,+i)r (x:,, X:,+1)) 
icR, 

is OR)/1 L %+dao,. . . , K-1, xfi> . 
l=O ) 

Let (pu(xo, . . . , x_~) be the formula obtained from the above formula by 
substituting 9 by x, for every s <v. 

As in 9.1, we can find for every s <k, l(s) ~(0, 1) such that for every i -C n: if 
2i E R,, 2i + 1 E R,, then (Vi?’ x U$i,, U:;““’ X U&!_:i”) is OP. We continue as in 
9.1 and find 6, y such that for every s < k 

a(P) r Rs E iFR Uf’“’ and a(r) r Rsc n Uf-""'. 
s ieR, 

It follows that fp U f, E P and that {(a,, bp), (a,, b,)} is OR. A contradiction. 
Case 2. E’(a(2n)) # E”(u(2n + 1)). Let E’(u(2n)) = E” and E’(u(2n + 1)) = E”. 

Case 2.1: E” and E” are not in the same component of G,. In this case we 
define cps, s < k, exactly as in 9.1. Let So be a set such that o, w E So, and for every 
component L of G,, IS, n{s 1 E” E L}l = 1. We define Si as in 9.1. Next we define 
l(s) for every s E So. For every s E S,-{w}, let I(s) = 0. We define l(w) to be equal 
to 0 or 1 according to whether {(U:,X &+i), (U&,X U&,+,)} is OR or OP. We 
now define l(s) for s E Si by induction on i as in 9.1. Let p, y <K, be such that for 
every s < k, 

a(P) 1 R E ipR uil(‘) and a(r) 1 R, E n LJ-‘(‘). 
itR, 

It is easy to see that fp U f, E P and that {(a,, bp), (a,, b,)} is OR. A contradiction. 
Case 2.2: E” and E” are in the same component of Gp Let u = no, 

tJ1,. . ., v, = w be such that E”o, . . . , E”, is the unique path in Gf connecting E” 
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and E”. By the symmetry between the roles of A and B we can assume that E”o 

and E”1 are connected by (a(2j), a(2j+ 1)) where a(2j) E E”o and a(2j-t 1) E E”I. 

We define qo, for s <k inductively. (Pk is defined as in 9.1. If s# u, then cps is 

defined from (ps+i as in 9.1. Suppose (pv+i has been defined, and we define cpu. 

M”k Qx, ((~u+lh,,..., e-l,d~ x,~EAAx~,,EG). 

Since A II G, for Z=P and Z=R: 

MC k (3X0’=, xu ‘*“) (,i (Pv+l(uol.. . T a~-~, x’,“) A ({(xgz, x$f), (xi;.=, x::)} is OZ)) . 

Let Ut”, 1 = 0, 1, Z= P, R and i E R, be pairwise disjoint open intervals 

disjoint from the previously defined l’s definable from D such that: (1) 

(u;;= X u,“p, iY:jzX U:;z) is OZ; and 

(2) M”b A A 3xf;Z 
Zs{P,R) I =0 ( 

Xf;ZE JJ Uf.=Aqu+&lo,. . . ) l&l, xl==) . 
ieR, 1 

Let cpv be the formula obtained from the above formula by replacing each a,, 

s <q by x,. This concludes the definition of the (ps’s. 

Our next goal is to define l(s) for every s < k. In fact we have also to decide 

whether to duplicate the Ut”s or the U)“‘s. Let T = {s 1 E” and E” are connected 

in Gf}. We define l(s) for s E k - T as in 9.1. So it remains to define l(s) for s E 7’. 

Let So = {w}, and we define Si inductively as in 9.1. Note that u E S,. For t < r we 

define l(s) for s E S, as in 9.1. Let 2’ be defined as follows. If (U$YYiX 
u;$$,, u:,$q x u;,-:‘r’ ) is OP, then Z” = R, and if the above pair of sets is OR, 

then Z” = P. We denote each Ui f,zL’ by U! and proceed in the definition of l(s) as 

in 9.1. Let p and y be such that for every s <k, 

By the proof of 9.1, fp Uf, E P. We check that {(a,, ba), (a,, b,)} is OR. By the 

construction of l(s), (Uhy) X U$$, Us;’ X U&$J) is OP. (Vi?) X 
u;K& u;,y) X ,;p,> was chosen to be OR or OP according to whether (U$$: x 
u;r+J1, u;,:$Q x U;,-:‘;v’) was OP or OR. Since the composition of an OP and an 

OR function is OR it follows that (Ui$’ X U$w!l, U:;““’ X U&T?‘) is OR. Since 

(up, be) E Uit’ x Ui$‘21 and (a,, b,) E U:;““’ x U:,-:‘l”’ it follows that 
{(a,, be), (a,, b,)} is OR. Hence we reach a contradiction again. 

The proof that, if Gi is 2-entangled in V, then it remains 2-entangled after 

forcing with P, is very similar to the above proof. So is the proof that Gi remains 

an increasing set, if it was increasing in V. 0 

Lemma 9.7 (Al). Let A < 2”1; for every i <A let Gi, Hi E K be such that Gi 1 Hi. 

Suppose Q is u C.C.C. forcing set such that It-, l(G,I Ho). Then there is a C.C.C. 

forcing set R of power X1 such that ItR (Q is not c.c.c.) A (Vi < A)(G, I Hi). 
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Proof. This is an instance of the explicit contradiction method, and it is very 
similar to Claim 1 in 8.5. So we omit the details. 

Let M be a model encoding Gi, Hi as in 9.6, and let C be MC-thin. Let 7 be a 
Q-name such that It-o “7 is an uncountable OP function and 7 c_ Go x Ho”. Let 

kw a(% 0, (3, da, 0, I), da, 1, 01, da, Ll)) I a <u 

be a sequence with the following properties: denote 

a(c~, 1) = (~(a, 1, O), ~(a, 1,l)) and a(a) = a(a, 0) A ~(a, 1); 

then (1) qal!-/j\:+, ~(a, I)E 7, and (2) if (a, l)#(@, m), then 

{E”(a(a, 1, O)), E’(a(a, l,I)) n{Ec(a(P, m, ON, E’(a(& m, 1))) = (a. 

Let a, p <X1. We say that qa, qa are explicitly contradictory if there is I(cu, 0) = I E 
(0, l} such that {a(a, I)&?, 1)) is OR. Clearly if qa and qp are explicitly contradic- 
tory, then they are incompatible in Q. Let R = {a~ PK,(H1) 1 for every distinct 
(Y, p E a, qp and qp are explicitly contradictory}. u < q if (+ s T. The proof that R is 
as required is very similar to the proof of claim 1 in 8.5, hence we leave it to the 
reader. U 

In the next two lemmas we make the preparation for the use of the tail method 
under the assumption Al. Let A c_ B denote that IA - B( =%K,. 

Lemma 9.8 (Al). Let A ~2’1; for every i <A let Ci c HI be a club. Then there is a 

dub C SK, such that C s Ci for evey i <A. 

Proof. Let M = (A, <, R) where R = {(a, i) 1 (Y E Ci}. It is easy to see that if C is 
M-thin, then for every i <A, CC,C~. q 

Lemma 9.9 (Al). Let A < 2”l; for every i <A let Ai = {a(i, a) 1 a <xl}e K, where 

{a(i, a) ) a <Xl} is a l-l enumeration of Ai, and let A E K. Then there is B C_ A 
and for every i <A a club Ci SK, such that B E K and is dense in A, and if 

Bi = {a(i, a) 1 a E Ci}, then Bi is dense in Ai, B II Bi and B is 2-entangled. 

Proof. Let {a(A, cw) I a CK,}, be a l-l enumeration of A; let h : (A + 1) X X1-+X1 
be defined as follows: h(i, a) = a(i, (Y). Let R = {(i, a, 0) I a(i, a) < a(i, /3)}. Let 

M = (A + 1, <, h, R), and let C be MC-thin. Let {E, 1 a <K,} be an enumeration of 
gc in an increasing order. Let D c K1 be a club such that IX,- 01 = K1. For every 
i<A let Ci=U{E, ( a E D} and Bi = {a(i, a) I (Y E Ci}. Clearly Ci is a club, Bi E K 
and is dense in Ai. It is easy to find B E A with the following properties: 

(1) if a(A, a), a(A, p) c B and are distinct, then EC(a(A, cw)) # EC(a(A, 0)) and 

a&U{& I YEJ-X; and 
(2) B E K and is dense in A. 
Suppose by contradiction f G B x Bi is an uncountable monotonic function. Let 



The consistency of some partition theorems 185 

f’ = -h, P> 1 (W, a), hk PN 6 fl, F = cl(f) and F’ = lb, 0) 1 MA, a), W, PI> E Fl. 
There is d E Ikf’I such that F is definable from d. Let y,+K, be such that for 
every (Y 2 yO, if (Y E C, then there is N< MC such that d E INI and INI nK, = (Y. Let 

(a, P) E f’ and yes a, 6. W.1.o.g. (Y C p. By the definition of B and Ci, there is 
y E C such that (Y < y G p. Let NX MC be such that d E (NI and INI n K1 = y. Hence 
a! E )N( $ p. However, IF( ~2 hence 0 is definable from (Y and d, and thus 
p E INI, a contradiction. 

The 2-entangledness of B is proved similarly. q 

Let A E K. A is into rigid (I-rigid) if there is no monotonic f : A + A other than 
the identity. Let RHA be the following axiom: 

A&m RHA. For every A E K there are B, C E A such that B, C E K and are 

dense in A, B is I-rigid and C is homogeneous. 

Note that RHAjlCH. 

Theorem 9.10. Let Vl=CH, and A be a regular cardinal in V satisfying AK1 = A and 
E&CA 2@ = A. Then there is a forcing set PE V such that kp (2”~ = A) AMAA 

RHAANA. 

Remark. The assumption that Cfich 2’ = A is needed just for MA and not for 
RHA or NA. 

Proof. Let V, 2 V and V, k (2’1= A) A Al. The construction, of such V. is done in 
5.4. Let {I-~ ( i <A} be an enumeration of H(A) such that for every 7 E H(A), 
[{i 1 +T~ = T}[ = A. We regard each Ti as a task of one of the following types: if 7i is a 
name of an element of K, we shall find two subsets H and R of Ti belonging to K; 
we shall make H homogeneous, and will make some obligations which will assure 
that R will be I-rigid. If ri is a name of a pair of members of K, then we will 
define q to make these two sets near to one another. If 7i is a name of a C.C.C. 
forcing set, then either we make Ti the next step in the interation or by the explicit 
contradiction method we destroy the c.c.c.-ness of TV. 

We define a finite support iteration ({Pi ( i <A}, {pi ( i <A}). Along with the 
construction of the ~i’s we also define some obligations. An obligation which is 
added in the ith stage of the iteration is a Pi-name of an object of the following 
form (H, {d, ) a <HI}) w h ere H,{d, ) CX<X~}E K, {d, 1 a<N,} is a l-l enumera- 
tion and It-, (H II {d, I (Y <HI}). If s = <$I, {&, I (Y <HI}) is an obligation, then i(s) 
denotes the stage in which it was defined; A(s) denotes fi; &s) denotes the 
name of the set {& E (Y <K,} and d(s, (Y) denotes &. If s is an obligation, then 
for every jZ= i(s) we will have a club C(s, i) GX, such that 
IF, A(s) II {&s, cu) ( (Y E C(s, j)}. We denote {d(s, a) ( (Y E C(s, j)} by D(s, i). 

Suppose 6 <A is a limit ordinal and for every i <S, Pi has been defined. Ps is 
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defined automatically. Let s be an obligation with i(s) < 6. By Lemma 9.8 there is 
a club CsK, such that Cc_ C(s, j) for every i <j<& Let C(s, S) = C. 

Suppose Pi has been defined. In order to simplify the explanation we define the 
value of ri in a Pi-generic extension of V, instead of defining ni itself. Hence let 
G be Pi-generic and W = VJG]. Suppose first that Q sf ~~(7~) is a C.C.C. forcing 
set. If for every obligation s, IF, H(s) _U D(s, i), we define uo(mi) = Q; for every 
obligation s we define C(s, i + 1) = C(s, i); and we do not add new obligations. 
Otherwise, by 9.7 there is a C.C.C. forcing set R of power X, such that Ikn (Q is not 
c.c.c.)~Vs(H(s) II D(s, i)). Let uG(r) = R, for every s let C(s, i + 1) = C(s, i), and 
we do not add new obligations. 

Suppose that uG(ri)~ K and denote z)o(rj) = A. W.1.o.g. A is dense in [w. By 
Lemma 9.9 there is I3 c A and for every s a club C(s, i + 1) such that B E K is 
dense in A and is 2-entangled, and for every s, B lt D(s, i + 1). Let II, R G B be 
disjoint dense subsets of B such that I-I, R E K. 

By repeated application of Lemma 9.6 there is a C.C.C. forcing set P of power Ki 
such that 

It, (H is homogeneous) A (R is 2-entangled) AVS (H(s) IL D(s, i + 1)). 

Let uG(ri) = P. For every two disjoint rational intervals of R, I and J, we define a 
new obligation s(R, I, J): 

where {d, ( cx -CR,} is a l-l enumeration of R n J. For every new obligation s we 
define C(s, i + 1) to be tci. It is easy to check that the induction hypotheses hold. 

If uo(ri) = (A, B) where A, B E K, then as in the previous case we find A’ c A, 
B’ E B and for every obligation s, C(s, i + l), such that A’, B’ E K, and for every 
s, A’, B’ II D(s, i + 1). By 9.6 there is a C.C.C. forcing set P of power X1 such that 
II-,A’~B’r\Vs (H(s) u D(s, it 1)). Let P= uo(q). 

If z)o(ri) is none of the above, we define ho to be a trivial forcing set. This 
concludes the definition of Pi and T. 

Let P = PA, let G be P-generic and W = V,[ G]. Let A E KW. It is easy to see 
that A contains a homogeneous member of K which is dense in A. For some i, 

A=v GnP.(~i). Let R G A be as defined in the ith stage of the construction. We 
show that R is I-rigid in W. Suppose by contradiction f : R + R is monotonic and 
is not the identity. For some disjoint rational intervals I and J, f(J n R) s In R, 

andlets=~(R,I,J).Letj~ibesuchthatfEV,[GnP~].ButD(s,j)c_JnRand 
V,[ G n Pi] k D(s, j) u I n R. A contradiction, hence R is I-rigid. 

The proof that WLMA is well known. Cl 

Question 9.11. Is RHA+ (VB E K) (3C, D E K) (C, D E B A (C lt D) consistent? 

Question 9.12 (Baumgartner). Is it consistent with ZFC that 2Ko>& and every 

two &-dense sets of reals ae isomorphic? 
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10. The structure of K and KH when KH is finite 

In Section 6 we started the investigation of the possible structure of K and KH 

under the assumption of MARX. In this section we continue the investigation in 

this direction. Our main goal is to characterize the structure of KH under the 

assumption MA,, + (KH/= is finite). In this case we obtain a full description of the 

possible structure of KH, and we also obtain quite a good description of how K is 

built from KH. 
We did not pursue an analogous result for the general case, still we know to 

construct a large variety of different KH’s. There is still a shortcoming in our 

proof-we do not know how to enlarge 2’0 beyond 8,. 

We make an abuse of notation and denote KH/= by KH. By 6.1(d), ( induces a 

partial ordering on KHI=, hence we regard Q as a partial ordering of KH/=. Since 

(A = B) 3 (A * = B *) * too can be regarded as an operation on KH/=. Clearly * is 

an automorphism of order 2 of (KH/=, 0; we call such an automorphism an 

involution. The main theorem in this section is the following. 

Theorem 10.1. Let (L, =z, *) be a finite poset with an involution. Then 
CON(MAR1 + ((KH U {@}/G, <, *> = (L, G, *>)) iff (L, =S, *> is a distributive lattice 
with an involution. 

We start with the easy direction of Theorem 10.1. 

Definition 10.2. Let ge E KH; & generates KH if every element of KH is a shuffle 

of a countable subset of ~4 KH is countably generated if there is Se c KH such 

that (Sp ( <X0 and d generates KH. 

Lemma 10.3 (MANI). (a) KH is a o-complete upper-semilattice, that is, every 
countable subset of KH has a least upper bound. 

(b) If KH is countably generated, then KH U {@} is a distributive complete lattice. 
(c) If (KH, <) is well founded, then for A E K there is a nwd subset B of A such 

that A -B is the ordered sum of members of KH. 

Proof. (a) is just a reformulation of 6.1(f). 

(b) Suppose KH is countably generated, then by (a), KH is a complete 

upper-semilattice, but then KH U(g) is also a complete lattice. Let KH U{fd} be 

denoted by KHZ. In order to show that KHZ . 1s distributive it suffices to show one 
of the distributive laws. We show that (a1 v az) A b = (a, A b) v (a*~ b). In fact we 

can show somewhat more: (Ais q) A b = A\ico (a A b). We do not know however 

whether the dual identity holds. 

Let us denote the operations in KHZ by A and 0. Let A E KHZ and for every 

i E o, let Bi E KHZ and suppose that A ( Vi_, Bi. We prove the following claim: 

(*) There are Ai E KHZ such that Ai < Bi and A = vi_, Ai. 
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W.1.o.g. each Bi is dense in R, hence B ‘&f U. IsoBi=\;/iE_Bi. Let f:A+B be OP. 
Recall that C” denotes a mixing of C. If ICI SK,,, let C” = $3. For every i E CO, let 
Ci = f-‘(Bi) and Ai = Cy. Ci Q A, Bi hence by 6.1(g), Aig A, Bi. Hence 
\;/ieo Ai Q A. On the other hand by picking appropriate copies of CF as Ai, one 
can assume that A 5 lJico Ai, and since Ui_, Ai = Wiso Ai it follows that A < 
\;/iso Ai. Hence A = \;/iso Ai. We have thus proved (*). 

Let A E KHZ and for every i E O, Bi E KHZ. A A \l/is_ Bi < Y/is0 Bi, hence there 
are Ai ( Bi such that \;/icw Ai = Ah \;/iew Bi. Ai 6 A, Bi, hence Ai < A A Bi. Thus 

AA\;~~,, Bi =\;lifo Ai< \;/i,,(A~Bi). The inequality \;Ii,,(AABi)< A/I\\;I~_ Bi 

holds in every lattice. 
(c) Suppose (KH, <) is well founded, and let A E K. It suffices to show thz 

every non-empty open interval of A contains a homogeneous subinterval. If Al, 
A2 are intervals of A and A1 c A,, then AT< A?. Let A, be an interval of A, 
since KH is well founded A1 has a non-empty open subinterval A2 such that for 
every subinterval A3 of AZ, A? = A:. We show that A?< AZ. For every subin- 
terval 1 of A,, there is a family {gr,i ( i E o} of OP functions such that Rng(gr,,) = I 
and Uico Dom(gl,i) = A:. Let .% be a countable dense family of subintervals of 
Aa. Then A?, A, and {gr,, 1 i E .%, i E o} satisfy the conditions of 6.1(b), hence 
Ay<A,. A*+A!-J’, hence by 6.1(g), A,=Ay. Cl 

We next turn to the proof of the other direction of Theorem 10.1. Let 
(L, v, A, *) be a finite distributive lattice with an involution. a E L is indecompos- 
able if for no b, c <a, b v c = a. Let I(L) denote the set of indecomposable 
elements of L. Clearly I(L) is closed under *, and every element of L is a sum of 
elements in I(L). The following proposition shows that I(L) determines L 

uniquely, and will guide us in the construction of a universe in which Km = L. 

Proposition 10.4. (a) Let (A, s, *) be a finite partially ordered set with an involu- 

tion. Then there is a unique distributive lattice with an involution L such that 

(I(L), ==, *) = (A, S, *). 

(b) (MA) Let {Ai 1 i c n} c KH be such that: for no j < n, Ai is a shuffle of other 
members of {Ai 1 i <n}, and for every A E KH, A is a shuffle of some members of 

{Ai 1 i <n}. Then KHZ is finite, and I(K=) = {Ai 1 i <n}. 

Proof. Easy. IJ 

By the above proposition it is clear what has to be done in order to construct a 
universe in which KHZ = - L. We start with a universe V satisfying CH, and with a 
family {A, 1 a E I(L)} G KH such that no A, is a shuffle of other A,‘s and such 
that a H A, is an isomorphism between (I(L), S, *) and ({A, 1 a E I(L)}, Q, *>. 
We then construct W 2 V which satisfies MA, and in which every element of KH 

is a shuffle of some members of {A, 1 a E I(L)}, and no A, is a shuffle of other 
A,‘s. In such a universe KHZ =L. 
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For the rest of this section I_ is a fixed finite distributive lattice with an 

involution. W.l.0.g. I(L) = (0, . . . , n - l}, and we denote the partial ordering on 

I(L) by <. Recall that * is an involution of ((0, . . . , n - l}, 0. 

The method of proof of the following lemma is well known and is due to 

Sierpinski [8]. We take the liberty to present a proof here since the technical 

details are not completely obvious. 

Lemma 10.5 (CH). There are {Ai ( i < n} c KH such that: 

(1) If i Q j, then Ai E Aj. 

(2) If i = j”, then Ai = AT. 

(3) Let Bi = Ai - IJj<i Aj. Then, if i < j, then Bi I Aj. 

Question. Does the above lemma follow from Al? 

Proof. Let f s R x LQ. f is a maximal OP function if f is an OP function and there 

is no OP function g such that f$ g c R X R. Let cf, 1 a <K,} be an enumeration of 

all maximal OP functions. Let g denote the function such that for every z, 

g(z) = -z ; for every f let f* = gofog-‘; and if F is a set of functions, let 

F*=C~*I~EF}. 

We define by induction on (Y <X1 a family of pair-wise disjoint countable dense 

subsets of R, {B(i, (Y) ( i < n}, and families of OP functions {F(i, a) 1 i < n}. Let 

A(i, a) = Uj,i B(j, a). Our induction hypotheses are: (1) if i = j”, then B(i, a) = 

B(j, a)* and F(i, a) = F(j, a)“; and (2) for every i <n: if f~F(i, a), then f:[W-+R! 

and f(A(i, CX))= A(i, a), and for every X, y EA(~, (Y) there is f~F(i, a) such that 

f(x) = Y. 
It is easy to define {B(i, 0) 1 i < n} and {F(i, 0) ) i < n}. If S is a limit ordinal, let 

R(i, 6) = UP<8 B(i, a) and F(i, 6) = Uacs F(i, a). 

Suppose {B(i, a) ) i <n}, {F(i, a) ) i < n} have been defined, and we wish to 

define {B(i,a+l)] i<n}. Let B(i,cu)=B(i,a)UUCfp(B(i,a))( @<a}. Let UC 

(0, * . . 9 n-l}besuchthatforeveryi<n, ]LJn{i,i*}]=l.Forx~Randasetof 

functions F, let cl(x, F) denote the closure of x under FUCf-’ 1 fe F}. It is easy 

to construct a set {xi ( i E U} such that: (1) for every i E U, cl(x,, F(i, a)) 17 

Cl(-Xi, F(i*, a)) = @; and (2) for every i E U, Cl(Xi, F(i, a)) n Ui+, B(j, a) = a. 
Let i<n; if ieU and if i* let B(i,(~+l)=B(i,~~)Ucl(q,F(i,~)); if i=i* let 

B(i,a+l)=B(i, a)U~l(x,,F(i, cw))UCl(-xi,F(i, (Y)); and if xi&U let B(i, a+l)= 

B(i, (Y) UCl(-Xi*, F(i, ~)). 
Since for every i, F(i, a)* = F(i*, a), it follows that B(i, (Y + 1)” = B(i*, cx + 1). 

By the choice of the h’s, B(i, (Y + 1) tl B(j, a! + 1) = fl whenever if j. It is easy to 

define for every i < n, F(i, a + 1) 2 F(i, a> so that the induction hypotheses will 

hold. 

Let Ai = Ua<K, A(i, a). It is easy to see that each Ai belongs to KH, and (1) and 

(2) of 10.5 hold. Suppose by contradiction i < j but N(Bi, Aj). Hence for some 

k # i, N(Biy &). Let f be a maximal OP function such that ]f fl Bi x Bk I= K,. For 
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some OL, f = f,. By the construction, for every p > (Y, f,(B(i, p)) n (B(k, p) - 
U{B(k r> 1 r<PH=P), h ence If, (Bi) fl Bk ( c No, a contradiction. 0 

Let {Ai, 1 i < n} and {Bi ) i <n} be as assured by Lemma 10.5. For every i < n 

and every rational interval I let {b(a, i, I) 1 a <KS be a l-l enumeration of Bi n I. 
Let Fi be the following filter: Fi = {B 5 Bi 1 for every rational interval I, 
{(Y ( b(a, i, i) E B} contains a club}. For simplicity we assume that if i = j”, then for 
every I and (Y, b(a, i, I) = -b(a, j, I*); this ascertains that g is an isomorphism 
between Fi and 5. Note that if B E Fi, then B E K and B is dense in Bi. 

For subsets of R, Co, . . . , C-r, let nF:J Ci = 0 denote the following fact: there 
is no C E K such that C< Ci for every i < k. Note that for Ci E K, there is no 
meaning to A!:: Ci, since there are not meets in K. 

Let {xi 1 i <n}, {y, I 7 c n} be sets of variables. Let 

Let zE denote z if E = 0, and z* if E = 1. A farness formula (F-formula) is a 
formula of the form /JiGI zf(‘) = 0 where {zi I i E I} is any set of variables and 
I E (0, 1). Let x be an F-formula with variables belonging to {xi ( i < n}U 

{y, I 7 E n}. We say that cpO implies x (cpOj x) if for every distributive lattice with 
an involution L and for every assignment s such that for every T, s(y,) = 
v {s(q) I i e 71: if Lkcp(s), then Lkx[s]. More explicitly, 

if there is i,< n such that for every i E I, i, = i”“‘, and for every r E J, ioe 

{i”” ( i E 7). 

Let cpl = {x ( x is an F-formula and cpO j ,y}. Let C,, . . . , C,,_, E K and suppose 

Kkcp,[Co,. . . > C,,_,]. It is obvious that K!=q,[s] where s is the assignment which 
maps each q to Ci and each yT to IJiE7 Ci. Let s be an assignment such that 
Dam(s) G {xi 1 i < n}U {y, I T G n}. We say that cpr[s] holds (k cpJs]), if x[s] holds 
for every conjunct x of ‘pt whose variables belong to Dam(s). 

For every i < n, let 7i = (i ( j < i}; let s be the assignment which maps each i to 
Bi and each 7i to Ai ; by the above discussion K kcpl[s]. 

We now outline in more detail the proof of the second half of Theorem 10.1. 
We start with a universe V satisfying CH, and with {Ai I i <n}, {Bi I i < n}, 
(Fi I i <n} as described above. We define by induction on v CK, a finite support 
iteration of c.c.c. forcing sets ({P, I Y cK2}, (71; I Y <XJ, and a sequence 

I(&, O), * . . J&n-l))(lJ>rc3 such that for every u and i, k(v, i) is a I’,- 
name, and 

II-, (Vi <n) (B(v. i)eFi AB(v, i)* n 
=l?(v, i*) r\(Kkcp,[B(v, 0), . . . ,l?(v, n-l), AO,. . . , A,_,]) 

where each g(v, i) replaces xi, and each Ai is replacing y?. 



The consistency of some partition theorems 191 

We prepare in advance a list of tasks. There are two kinds of tasks: the first one 

is designed in order to take care that ll-,2 MA, and the second is to assure that 

Il-,z K”/r is finite. 

If v is a limit ordinal, then P, is defined automatically and {B(v, i) 1 i < n} is 

defined as in 4.1 or 9.10. 

Suppose P,,, {B(v, i) 1 i < n} h ave been defined, and we wish to define rrV and 

{&+1, i)) i-en}. 

Case 1: Suppose the Y’S task is a P,,-name r such that Ik, “7~ is c.c.c.“. If 

Itp~(It,Kkcpl[&(v, 0), . . . , ft(v, II-~), AO,. . . , A,_,]), then we define T,,+~ to 

be rr and B(v + 1, i) to be B(u, i). Otherwise we define v,,,, to be the P,,-name 

of the forcing set R which is constructed in the following lemma. 

Lemma 10.6 (CH). Let s be an assignment such that K kcpl[s]. Suppose Q is a 

C.C.C. forcing set such that Ilo (K!=lcp,[s]). Then there is a C.C.C. forcing set R of 

power X, such that IFR (Kkcp,[s])r\(Q is not c.c.c). 

Proof. R is constructed by the method of explicit contradiction. The details of the 

proof are similar to claim 1 in Lemma 8.5. Thus we give the definition of R but 

omit the proof that R satisfies the requirements of the lemma. 

Since It, lcpJs], there are C,, . . . , C,_, E K’“’ such that in V, K kAick Ci = 0, 
but Q forces that K k~(ll\~<~ Ci = 0). Let M be a model which encodes all 

the relevant information. Recall that a set of two k-tuples {(ao, . . . , ak-r), 

&, . . . , bk-J) is called OP, if for every i <j<k : @ C bi iff q < bp Let T be a 

Q-name such that It, (~2 nick Ci)~((r[ = X,)r\(every two element subset of T is 

OP). The number of variables in cpl is n + 2”, accordingly let m = 2(n +- 2”) + 1. Let 

{(qcl, a(cu, O), . . . , a(&, m - 1)) ) a <K,} be such that: (1) for every (Y cX, and i cm, 
qu Ito ~(a, i)E 7; (2) for every cy <X1 and i < j< m, there is y t C, such that 

~(a, i)< y ~a(a, j); and (3) for every cy <p <X1, there is y E C, such that 

a(a, m-l)<y<a(@, 0). 

We say that pa and pp are explicitly contradictory if for some i < rn, 
{a(cu, i), a(& i)} is not OP. Let R ={~EP,~(X,) ( for every distinct a, p E u, pa and 

pp are explicitly contradictory}. (J 1 G u2 if cl E u2. As in 8.5 it can be proved that 

R satisfies the requirements of the lemma. 0 

&se 2: Suppose V’S task is a P,-name of a member B of K. In this case we 

define ~~ and fi(v+ 1, i) according to the following lemma. 

Lemma 10.7 (CH). Let Ai, Bit Fi be as above, let B(v, i>E Fi be such that 

K kcpJB(v, 0), . . . , B(v, n - l), Ao, . . . , A,_J, and let BE K. Then there is an 
interval A of B, r s n, Bi E Fi, i < n, and a C.C.C. forcing set P of power X1 such that 
for every i < n, BI* = Bi* and 

Itp (Kk(p,[B&. . . , B;_,, A,,, . . .~A-III~(A~~JA). 



192 U. Abraham et al. 

The remainder of this section is devoted to the proof of the above lemma. But 
first we show how to define ir,+r and B(v+ 1, i), and how Theorem 10.1 follows 
from what has been described so far. Let T”+~ be the P,,-name of the forcing set P 
of Lemma 10.7 and &(v+ 1, i) be the P,-name of Bf of Lemma 10.7. 

Let P = PK,. Clearly Ikp MA, and Ikp (VA E KH) (37 E n) (A = \;/iE7 Ai). It re- 
mains to show that if i# j, then ll-pAi+ Aj. Suppose the contrary. Let G be 
P-generic and W = V[ G], and let f : Ai + Aj be an isomorphism between Ai and 
Ai belonging to W. For some v <X,, f E V[ G n Py]sf W’. W.1.o.g. i 6 j. Let 
B(v, i)=u,,,(fi(v, i)). Hence in W’, B(v, i)lA,, but f(B(v, i))sA,, a contradic- 
tion. 

The proof of Theorem 10.1 will be concluded if we prove Lemma 10.7. 
Let {xi ) i <n, l~(0, l}}, {yk 1 T G n, l~(0, l}} be sets of variables, ~0, xi are 

called copies of x+ and yv, yt are called copies of y,. A formula q’ is called a copy 
of cpc, if it is gotten from cpO by replacing every occurance of a variable in cpO by 
one of its copies. Note that two occurances of the same variable need not be 
replaced by the same copy of that variable. A copy of cpl is defined similarly. Let 
GLo be the conjunction of all copies of rp,, and tJ1 be the conjunction of all copies 
of cpr. We again make the convention that for an assignment s with 

Dom(s)E{xf~i<n,I~{O,1)}U(y~~7~n,fE{O,1}}, 

K’FI,!I[s] means that all conjuncts of $+ whose variables belong to Dam(s) are 
satisfied. 

Proof of 10.7. Let Ai, Bi, Fi, B(v, i) and B be as in 10.7. We denote B(v, i) = 
B(i), and let F(i) be the restriction of Fi to p(B(i)). Note that F(i) is defined from 
some enumerations of B(i) fl I in the same way that Fi was defined. Hence for the 
rest of the section we ignore Bi and Fi, and have to remember just the properties 
of B(i) and F(i). 

For further reference let us recall the properties of Ai, B(i) and F(i). (1) Ai, 
B(i) are dense in IX, B(i)eK; (2) {Ai 1 i<n}cKH; (3) BEAM-lJj,iAj; (4) 
g(B(i))=B(i*); (5) for every rational interval I there is a l-l enumeration 
{b(a, iI) 1 a <K,} of B(i) nI such that F(i) = {B’s B(i)} 1 for every rational 
interval I {a! ) b(a, i, I) E B’} contans a club}. b(cu, i*, I*) = -b(a, i, I); (5) 
for every i<n let ~~=G]j<i} and &,=A,; then K~cp,[B(O),...,B(n-l), 

A-T09 . . . > 4-J. 
For Do, . . . , Dk--l E K, let D Q /I\i<k Di mean that (Vi <k) (II < Di). Let D E K. 

We define 
~(D)={~~n](3D’EK)((D’<D~~i~zAi)A(Vi$~)(D’~?\=O)). 

Note that if D1 E D2, then ~(0~) c q(DJ. Hence there is an interval A of B such 
that for every interval A’ of A n(A’) = q(A). 

10.7 follows from the following three lemmas. 

Lemma 10.8 (CH). Let Ai, F(i), B(i) be as above, and let A E K be such that for 
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every interval A’ of A, v(A’) = q(A). Then there are (a # T E n, {B,(i) 1 i E T} and 

{B,(i) 1 i <n} such that: 

(1) If j<iEr, then jE7. 

(2) B,(~)EK, B,(i) isa densesubset ofA, andforevety i# j, B,(i)nB,(j)=@. 

(3) B,(i) E F(i). 

(4) Let ri =fi 1 j <i}, Az,=A, AZ = A, BP= B,(i) and Bf=Bl(i). Then Kk 

$,]B:, . . . , BE_,; Bt ( j E 7; Azl, . . . , Ayn_,; A:]. 

Lemma 10.9 (CH). For 1 = 0,l let q s n, B,(O), . . . , B((n, - 1) E K, r, c P(q) and 

{AL ] T E I’,} c K. Suppose the following’conditions hold: 

(1) B,(i) and Ai are dense in R. 

(2) If i E T ET,, then b,(i) c At; and if i < j < IZ~, then B,(i) tl B,(j) = 8. 

(3) If To, TIE & and 71 G TV, then Ai1 c A:,. 

(4) KkJI,[B,(i)) 1<2, i<q;AL( 1~2, TEAM]. 

Let t E (0, 1). Then there are pairwise disjoint {Bi ) i < q} such that 

(1) KsB;z B,(i). 

(2) For every T E r,, A:G IJiG Bi. 

(3) K!= JI,[BlI i < q; B,_,(i) ] i < nr_,; A:-’ ) T E r,_,]. 

Lemma 10.10 (CEO. Let nl 6 no< n, let {Bf] 1<2, i<n*}, {DfI 1<2, i<n,} be 

such that all the Bf’s and Df’s belong to K and are dense in R, for every I< 2 and 

i<j<nl, BfflBj=@? DfzBf and KkILo[Bg ,..., BE,_l,B&. . .,BA,_J Then 

there is a C.C.C. forcing set P of power XI such that 

Itp u D;= u 0; A(K~I,G~[B:,. . ., B& B;, . . . , B;,_,]). 
i<n, i <nl 

Remark. Lemma 10.8 and 10.10 can be proved assuming Al; we do not know 

how to prove 10.9 without assuming CH; this is the reason why in 10.1 we cannot 

enlarge 2’1 beyond K,. 

We first conclude the proof of 10.7 assuming 10.8-10.10. Let A be an interval 

of B such that for every interval A’ of A, q(A’) = q(A). From 10.8 we obtain 

r G n and B,(i)‘s. By renaming (0,. . . , n - 1) we can assume that r = 

(0, . * . 9 ItI - 1). Let us denote 7i = G ) j ( i}, AZ: = Ai, AZ = A, r. = {TV, . . _ , T,-~}, 

rl = {T}, no = n and t = 1. (n, has already been defined.) The conditions of 10.9 

are satisfied by the B,(i)‘s, Al’s etc., hence from 10.9 we obtain {Bi ) i E T}. By 

intersecting each Bf with At we can assume that UiE7 B! = A& the other 

properties of the Bt’s are not destroyed. Obviously 

KkJ/,[B,(i) 1 i < no; Bt ( i <n; AZ.1 T’E r,; AZ]. 

We can now apply Lemma 10.9 with t = 0 to the Bo(i)‘s, Bf’s, AZ.5 and AZ. We 

thus obtain from 10.9 the Bo’s. From 10.9 we know that Kk 

Go]B:, . . . , BO,_,, B;, . . . , Bil_,]. For i E 7 let D’= B: and Dp= B?fl Uj_Aj. 
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The conditions of Lemma 10.10 hold, hence let P be the forcing set obtained in 
10.10. Let j E r; then UiE7, By 2 A, = Aj. Since i -C j E 73 i E 7, UjErTj = T, hence 
U j_ 07 = UjET Aj. Recall that IJjtT Di = A, hence Itp A E lJjE,, Ai. 

11, (Kk%[B&. * . , B0,_,]); for u c n let A&= UjEc By, hence for every i, A:, 1 
A,. Clearly IkP (K k cpi[ BP 1 i < n; A:, 1 i <ml). Recall that for every i, BP 2 B,(i), 
hence It, (Kkcp,[B,(i) 1 i <a; 4, 1 i <n]). But according to 10.8, B,(i) E F(i) s Fi. 
For every i <n, let B[ = B,(i)n$Q,(i*)), hence BfcFi, Bi* = Bf,, IFpA z 

UjeTAj, and 11~ (KkqdBb,. . . , B;_,, A,,, . . . , A,_,]. This concludes the proof of 
10.7. q 

Proof of 10.8. W.1.o.g. A is dense in [w. Let T = (i j(3a E q(A)) (j E ni,,7i)}. 

Using the fact that K k cpi[ A,,, . . . , A,_], it is easy to see that for every (+ E q(A), 
n,,, ri # fl (we denote niED 7i = n). Since obviously q(A) # fl it follows that rf g. 
It is obvious that if j < i E 7, then j E r. For every c E q(A), let D, E K be a dense 
subset of R exemplifying that fact that u E q(A). For every j E 7, let 0; = 

U{&l(+~rl andjEnico TV}. By an argument similar to Lemma 9.9, it is easy to 
find {B,(i) 1 i <n} and B,(i) ( i E 7) such that for every i E T, B,(i) E K and B,(i) is a 
dense subset of 0:; if i# j, then B,(i) Cl B,(j) = @, B,(i) c B(i), B,(i) E F(i) and for 
every i# j 

B,(i) A @II(i)* U B,(j) Cl B,(j)* U B,(j) U B,(j)*) = 0. 

(Here we assume that B,(j) = f,4 if j&r.) Clearly (l)-(3) of 10.8 hold. Recall that Ai 
is denoted by A:, and that A: = A. Let s be the assignment such that s(xi) = B,(i) 

and s(yb) = AL. Recall that an F-formula is a formula of the form AiEI zi = 0. Let 
x be an F-formula, let x* be the formula obtained from x be replacing every 
variable z of x by z*. Let X+ be the formula obtained from x by replacing every 
occurance of (xy)* or (yz)* in x by xy* and yz* respectively where u* = {i* ( i E (+}. 

Clearly x is a conjunct of I,!Q iff X* is, and the same holds for x+. Also Kkx[s] iff 
K I= x*[s] iff K b x’[s]. Let x be an F-formula and suppose K klx[s]. We show 
that x is not a conjunct of +i. By the definition of the B,(i)‘s it is clear that there 
is at most one occurance of a variable of the form xi in x. Replacing, if necessary, 

x by x+, x* or x*+ it can be assumed that 

x=/1\ Y~,wwIt~n=O, 
it0 

where T is a subset of {xp I j < n} U {xf I j E T} U {(xf)* 1 j E ?}U (yt, (yt>*}, and T 
intersects the union of the first three sets in at most one element. The case 
T={xp} follows trivially from the fact that B,(j) 5 B(j) and from property (6) in 
10.7. Suppose T= {xi’}, hence AiEaAt,~ B,(j) # 0. By the definition of B,(j) there 
is o’ E q(A) such that j E l-k,,, q, and Aita Ay,a D,, # 0. It follows from the 
definition of the D,‘s that cr E (T’, and hence j E ni,, ri. This means that x is not a 
conjunct of 4i. 

We next check that if (Bi)* A Aica A:, # 0, then j” E ni_ q. If the above holds, 
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then for some a’ E q(A), j E niea, ri and (D,,)” A /l\iecr A:, # 0. (AZ)” = AZ,, hence 

D,,a Ais,, A:,, # 0. Let CT* = {i* 1 i E CT}, hence D,,A /l\ica* A:, # 0. By the defini- 

tion of D,,, cr* S. (T’; hence j E niece 7ir and hence 

j*E nTi*= ( ) n TT= n Tie= n Ti. 

ita* ieu* isa* ieo 

We next check that if (Bf)* A At # 0, then j* E 7. Suppose the above happens, 

andletaErl(A)besuchthatjEni~,Tiand(D,)*aA~#O.LetK3DgD~aA~. 

Since D, A Ai = 0 for every iq! a, and since D*< D,, D*a Ai.= 0 for every i$ a, 

and hence D A Ai = 0 for every i$ CT*. Obviously D* < Ai_,* Ai. Hence (+* E 

q(A). Since j” E niea* ri, j* E r. 

Suppose T = {(xi)*}. Then (Bj)” A Ai_ A!.!, # 0, hence j* E n,,,, r,, and this 

implies that x is not a conjunct of $r. 

Suppose T = {yb}. Then &_ AI A A # 0. So, there is D’E q(A) such that (+ c (+‘. 

lI\ita, A:,# 0, and since Kkcp,[A_, . . . , Anml] it follows that ni_, T~# 8. Let 

j E ni,,, TV, hence j E r and j E n,,, TV. This implies that x is not a conjunct of I,/J~. 

The case T = {(y:)*} can be reduced to the previous case by replacing x by x*+. 

Suppose T = {(xf)“, yf}. Then /JiGa Ay,a (Bi)* A Ai # 0. This implies that j* E 

T n nitc Ti, hence x is not a conjunct of &. 

The last case that we check is T = {yf, (y:)*}. Hence Aita Ai AA A A* # 0, so 

there is D E K such that D Q &_ A, A A and D” < A. Let cr’ G n and D’ be such 

that K SD’G D, D’< /jiGof Ai and for every i&u’, Dr~Ai = 0. Hence crc (T’E 

n(A), and since (D’)*< A, (cT’)*E q(A). Clearly, since Kb(p,[A$ . . . , Ayn_,] it 

follows that there is j E ni,,, 7,; and since (+ s (T’, j E nita Ti_ Moreover j*E 

f&r)* Ti. Hence j, j* E T. These facts imply that x is not a conjunct of $r. 

We leave the (easy) remaining cases to the reader. •l 

Proof of Lemma 10.9. Let M be a model with universe K1 encoding all the 

information mentioned in the lemma. Suppose w.1.o.g. t = 0. For every &-slice E 

we decide how to divide the elements of E among the various By’s This is done 

independently of how the elements of other &-slices are divided. Let {a, 1 m E 

OJ} = E. Let F be the set of all real monotonic functions definable from ordinals 

a! <min(E). Note that F is countable and is closed under composition. We decide 

by induction on m to which By, a, will belong. Hence at stage m we have sets 

{By(m) 1 i =C no}. We denote B,(i) by B:(m). We assume by induction: 

is a conjunct of $r, then there is no a EE, u,!) lc{O, l}, jE UJG F and 

ui 1 1 E (0, l}, T E ~~1) c F such that: fi and fi are OP or OR according to whether 

&(I, j) and ~(1, T) are 0 or 1, f,!(a)~Bi(m) and fi(a)EAL. 
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Let By(O) = B,,(i). The induction hypotheses holds since 

K b M&G) I i < no; B,(i) 1 i < nl; AZ ] r E To; At ( r E r,], 

and since M encodes the above sets. 
Suppose B:(m), . . . , B~o_l(m> have been defined. Let 

~1=n~da,4~~ 
7:=n{T1(3fEF)CfisOPandf(~)EA3}, I=O,l, 

7: = n {T I(3f~ F) cf is OR and f(u,,,) E A:)}, 1 = 0, 1, 

7fi = {i I (3f~ F) cf is OP and f(k) E B:(m))}, 1 = 0, 1, 

7: = {i I (3f~ F) cf is OR and f(&)~ B:(m))}, 1 = 0,l. 

By the induction hypothesis each of the sets r:U r:, r:Ur: contains at most one 
element and if ii E T; U r;, j = 4,5, and i, = (is)*. By the induction hypothesis 

rdsf 71 l-l li 7;u h (7:)* # 0, 
I=0 I=0 

and if iE$Ur:, then iE7, and if iEr:Ur:, then i*ET. Let ioE$Ur: if 
7: U 7: # 0, i. E (7: U 7:)* if 72 U 7: # g, and otherwise let i, be any member of 7. 
Let Bi(m + 1) = BP(m) for every i# i. and I3t(m + 1) = ByO(m) U(k). It is easy to 
check that the induction hypothesis holds, and that the construction yields Bo’s as 
required. •i 

Proof of 10.10. The construction of P resembles the forcing set constructed to 
prove Theorem 9.2. The proof that It, (KF[B& . . . , Bi,_l, B& . . . , Bi,_,]) re- 
sembles the proof of 9.6. We thus leave the details of the proof to the reader. Cl 

This concludes the proof of 10.1. 

On the possible infinite KH’s 

We did not pursue a characterization of all possible KH’s, and not even all 
countably generated KH’s. However the construction of 10.1 can be applied to 
yield some new infinite KH’s. Also, some additional information about the 
structure of K and KH can be derived from lv&+. 

In the remainder of this section we first present some additional facts about the 
case of an infinite KH, we then discuss some open problems, and finally we prove 
the theorems stated before, 

Definition 10.11. (a) A E K is quasi-homogeneous (QH), if there is a family 
{Ai ( i E w} c KH such that for every i E o, Ai E A and (A - UiEo Ai( s No. 

(b) Let I. be a a-complete upper-semi-lattice, a E I_. is countably indecomposa- 
ble (CID), if a # 0, and whenever a s Vipo 4 there is i E o such that Q d q. Let 
Lc denote the set of CID elements of L. 
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(c) Let (M, S, 0) be a poset with a smallest element 0. A EM is dense in M, if 

for every b E M -{0} there is a E A -{0} such that a s b. 
(d) A poset M is scattered if {Q, <) is not embeddable in M. 

Theorem 10.12 (MA,,). (a) Let A 4 B mean that A Q B and A $ B. If SQ gener- 
ates KH, ~4 is countable and (4~) is well-founded, then KHC generates KH. 

(b) If KHC is dense in KHZ, then KHC is dense in KU {fl}. 

(c) Suppose KHC is countable and scattered, and KHC generates KHZ, then every 
member of K is QH. 

Lemma 10.13. Let (M, G) be a countable poset. Then up to isomorphism there is a 
unique complete lattice L with the following properties: M = Lc and M generates L. 
In this unique lattice L the distibutive law b A Vi_ @ = Vi_ (b A e) holds. 

Theorem 10.14. (a) Let (M, 6, *) be a countable poset with an involution with the 
following property: (*) “For every A G M: if for every r E P,(A) there is b E M such 
that for every a E T b c a, rhen there is b E M such that for every a E A b s a”. Then 

CON(MA,, + ((KHC, Q , *) = (M, =s, *)) + (KHC generates KH) 

+ (every member of K is QH)). 

(b) Let V k CH and A S K be cardinals in V. Then there is an extension W of V 
which has the same cardinals as V such that Wkh4AN1 + “There is a family 
{Ai ( i <A} E K such that for every i # j, Ai v Ai and for every A E K, there is i < h 

such that Ai ( A”+ 2”0> K. 

(c) It is consistent that MAN1 holds and (KHz, >)~(PK,(K1) U{X,}, G). It is 
consistent that MA%, holds and (KHZ, <) = (K, + 1, <>. 

Let us now explain what seem to be the main open questions. 

Question 10.15. It is easy to construct a universe satisfying 

MA+ (VA E K) (3B E K) (B s A and B is 2-entangled). 

In such a universe every A E KH contains B E KH such that every member of KH 
contained in B is decomposable. 

Construct a universe W satisfying MAN1 in which KH is countably generated 

but KHC does not generate KH. Moreover, can W be constructed so that 
KHC= 7 0. 

Question 10.16. Does the first or the second part of 2.14(c) remain true when X1 

is replaced by some A > K 1? 

Question 10.17. Is MA,,+ (KHc is countable) + (KHc generates KH)+ 
(3A E K) (A is not QH) consistent? 
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Question 10.18. Is the consistency result of Theorem 10.14(a) true when (M, <) 

is any countable poset? 

Proof of Theorem 10.12. (a) The proof is easy. 

(b) The following claim follows easily from 6.1(b). 

Claim 1. If A E K, B E KH and for every interval I of A, B < I”, then B < A. 

Let us next prove the following claim. 

Claim 2. I~AEK, BeKHC and B<A”, then B<A. 

Proof. Let A1 = U {I 1 I is an interval of A and B4 I”}. By the countable 

indecomposability of B, B< Al;. Let AZ = A -Al, hence A, # 8. Moreover, since 

B < A”, for every interval J of AZ B Q J”. By claim 1, B ( A,& A. 0 

(b) follows easily from claim 2. 

(c) Claim 3. Suppose KHC is countable and it generates KH. Let A E K, B E KHC 

and B < A”‘. Then there is A, E A such that A - A1 z B and for every interval I of 

A1 if B ( I, then there is B < C E KHC such that C < I. 

Proof. Let A, = IJ {I 1 I is an interval of A and Bg I}, A, = A - A2 and A4 = 

U {I 1 I is an interval of A3 and for no C E KHC, B 4 C< I}. Clearly there is 

B’ = B such that B’ is a dense subset of A,. If IA,\ SK,, let A, = A -B’; it is easy 

to see that A1 is as required. Otherwise, it is easy to see that for some 

{Bi 1 i < acw}~ KHC, AT=Vi<_Bi, B,=B and for every O<i<a, BkBi. 

Hence there is a countable family of OP functions $9 such that for every g E 59 

there is i(g) <a such that g c_ Bicpj x A,, and U {Rng(g) 1 g E 3) = Ad. Let B” = 

B’UU {Rng(g) 1 gE % and i(g) =‘O} and A1 =A -B”. Since B’ is dense in B”, 

B”= B. Let I be an interval of A, and suppose that B < I. Clearly B < I- AZ, that 

is, B < A3 fl I. Suppose by contradiction there is no C E KHC such that B < C < I. 

Let I’ be the convex hull of A, fl I in A,. Since I’ - I < B and I-A, < B there is 

no CEK~~ such that B -c C < I’. Hence I’ c A+ We will reach a contradiction if 

we show that B$ I’ - B”. Since I’ - B” E U {Rng(g) 1 g E 59 and (Dom(g))“‘$ B} it 

follows that Bg I’- B”. Hence the claim is proved. 0 

Claim 4. Suppose that A E K, B E KHC, B < A and for no C E KHC B < C< A, 

then there is B’z B such that B$ A-B’. 

Proof. This is a special case of claim 3. q 

Definition. Let (M, G) be a poset and let {I@ 1 i E w} be a family of subsets of ikf. 
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M is an w-sum of {Mi 1 i E o} if M = UiEo Mi, and for every i <j E w, u E A$ and 

b E Mj, b$ a. We define o*-sums analogously. 

Let &, be the class of all posets with exactly zero or one element. For a limit 

ordinal 6 let As = Ua<s~a. Let &a+l be the class of all posets that can be 

represented as m-sums or w*-sums of members of Ju,. Let JU = .&,. 

Claim 5. Let M be a countable poset. Then M is scattered ifl ME 4. 

Proof. It is easy to show by induction on (Y that every member of M, is scattered. 

Let (M, S) be a scattered poset. By a theorem of Bonnet and Pouzet [5], there 

is a scattered linear ordering <’ on M extending s. Suppose M is countable, 

hence by a theoerem of Hausdorff there is cy < tf , such that (M, S’) E .&. It is easy 

to see that (M, G) also belongs to JU,. q 

For AEK let AHC= {B E KHC ( B E A}. We assume that KHC generates KH. 

(c) follows from the following chain which is proved by induction on (Y <X1. 

Claim 6. Let A E K and AHC is a sum of K, and K,, that is, AHC G K, UK, and 

for every B, E K1 and B, E K, B2d B1. Then, if K2 E J&, then there is a QH set 

A2 G A such that (A - AJHC c K,. 

Proof. The case (Y = 0 is just a reformulation of claim 4. There is nothing to prove 

for a limit ordinal (Y. Suppose the claim is true for (Y and we prove it for (Y + 1. Let 

A Hc be the sum of K1 and K,, and K2~JU,+l. Let us first deal with the case that 

K2 is the o*-sum of {Mi 1 i E o} where each Mi EJ&. Using the induction 

hypothesis we can define inductively {Ci 1 i E OJ} such that for every i, Ci is QH, 

CicA-U Cj and 
j<i 

(Am2i G)HcrK,uUW. 

Let A, = lJicw Ci; it is easy to sse that A, is as required. 

Let us assume that K, is an w-sum of {Mi ) i E u}. A” = U {rA + q 1 r, q E Q}. Let 

f:U{B JBEK~uKJ+A~ b e an isomorphism. (We assume that each B E K, U 
K2 is dense in [w. For every r, q E Q let g,,,(x) = (l/r)(x -9). For every B E K, U K2 

let fB,r,cr = g,,, o(f 1 B). Clearly, for every B E K1 U K2, fS,_S B X A, and 

lJ {Rng(fs,,,J ) B EK~UK~ and r, q EQ}=A. For every i E o, let C, = 

U {Rng(fB,J ( B E KlUj<i Mj, r, q E a}. Hence UiGo Ci = A, and for every i E o, 
(Ci)HcC K1 U Ujsi M. Since lJiGi Mj can be regarded as an w*-sum (where some 

of the summands are empty), by the previous case there is a QH set Di G Ci such 

that (Ci - Di)Hc 5 K1. 
Let AZ= lJiEo Di. It is easy to see that A, is as required. 0 

Proof of Lemma 10.13. Existence. Let - be the following equivalence relation 

on p(M) : Ml - M2 if for every ml E Ml there is mZE M2 such that m, s m2 and for 
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every rn2E M2 there is m, E M1 such that m2S m,. Let L = P(M)/-. M,/-- <M/- 
if for every m,E M1 there is rn2E M, such that ml< m2. Clearly the definition of 
< does not depend on the choice of representatives. It is easy to check that (L, <) 
is as required. 

Uniqueness. For a lattice L1 such that LF= M and LF generates L, let cp: L1-+ 
L be defined as follows: $(a) = {m E M 1 m == a}/-. It is easy to check that cp is an 
isomorphism between LI and L. q 

Proof of Theorem 10.14(a). The proof of 10.14(a) resembles the proof of 10.1. 
However, some modifications have to be made. We skip those parts of the proof 
which are straight-forward generalizations of claims proved in 10.1. In order to 
simplify the technical details we deal with the special case in which the involution 
* is the identity function. However, the proof is easily extended to the general 
case. 

Lemma 10.19 (CH). Let (M, <) be a countable poset. Then there is a family 
{A(m)jmE&}c_KH such that (1) if m < n, then A(m)G A(n); (2) A(m) = 
A(m)*; and (3) let B, = A(m)- U,G, A(n); then, if my4 n, then B, II A(n). 

Proof. As in 10.5. 0 

For the rest of the proof (M, S) denotes a fixed countable poset with the 
property: (*) “If A c M and every finite subset of A has a lower bound, then A 
has a lower bound”. We also fix some family {A(m) ( m E M} as constructed in 
10.19; B, = A(m) - lJ,_, A(n). 

Proposition 10.20. If M is countable and has the property (*), then M satisfies (*> 
in every generic extension. 

Proof. Easy. 0 

We define F,,, cpO and ‘pl as in 10.1. The induction hypotheses of the iteration 
are as in 10.1. So as in 10.7 at stage v of the iteration we have sets {A(m) ( m E 
M}, {B(m) 1 m E M} and filters {F(m) 1 m E M}, and we assume (l)-(6) of 10.7 
hold. 

Lemma 10.6 remains unchanged. 

Definition 10.21. Let d 5 KH and D E K, D is .@i-QH if there is 9 c .& such that 

lilt%, and for every B E ‘33 there is C(B)=B such that C(B) c_ D and 
\D-U{C(B)jB&3}(+,. 
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Proposition 10.22 (MA,,). If d E KH and every D E K is &-QH, then Se generates 
KH. 

Proof. Trivial. Cl 

For every m E M, let T,,, = {n 1 n < m} and A(T,,,) = A(m). The following lemma 

is the counterpart of 10.7. 

Lemma 10.23 (CH). Let A(m), B(m) and F(m), m EM, satisfy (l)-(6), and let 
A E K. Then there are B’(m) E F(m) and a c.c.c forcing set P of power K, such that 

lb (K b &B’(m) 1 mEM;A(7,,,)/mEM])A(A is {A(m)(mEM}-QH). 

It is obvious that 10.14(a) follows from 10.19, the analogue of 10.6, 10.20 and 

10.21. We now formulate the analogues of 10.8-10.10. Let I& and I,$ be as in 

10.1. 

Lemma 10.24 (CH). Let A(m), B(m), F(m), me M, satisfy (l)-(6), and let 
A E K. Then there is T c M, {Bl(m) ) m E T} and {Be(m) ) m EM} such that: 

(1) If n <rnEr, then nE7. 

(2) For every m E T, K 3 B,(m) E A. 
(3) For every m EM, B,(m)EF(m). 
(4) Let 7, = {n 1 n =5 m}, A,(7,,,)*fA(m) and A1(~)%fA; then Kk 

JIJB,(m) 1 m EM; h(m) 1 m E 7; AAT,,) 1 m EM; AI(r)]. 
(5) For every nE7 and BE K, if B,(n)EBsA and Kk 

+JB,(m) ) m EM; B; A0(7,,,) 1 m EM; Al(~)], then Bl(n) is dense in B. 
(6) If n <rn E 7, then B,(n) is dense in B,(n) U Bl(m). 

Lemma 10.25 (CH). For I = 0,l let Ml c M, r, E P(M,), {B,(m) ( m E Ml} c K and 
{A,(T) ( 7 E I’,} E K. Suppose the following conditions hold: 

(1) If m, n E Ml are distinct, then Bl(m)nBl(n) = fl, and if m ETE~~, then 
B,(i) G AL. 

(2) If TV, TV E I', and TV E TV, then Al(7J 5 Al. 

(3) If r c rl and n r = 8, then for some finite r’ E I’, n r’ = 0. 

(4) Kk&[B,(m) 1 leK4 11, m EM,; A[(T) 1 E (0, l}, T E r, 1. 

Let t E (0, 1). Then there are pairwise disjoint {B’(m) ) m E M,} such that 
(1) K 3 B’(m) 2 B,(m). 

(2) For every T E I',, At(~) 2 U,,, B*(m). 

(3) Kk$JB’(m) 1 m EM,; B,_,(m) 1 m E Ml_,; Al_,(~) ( T E r,_,]. 

Lemma 10.26 (CH). Let M,,M,sM, LcM,cM,, {B’(m)(1<2,mEMl}EK 
and {D’(m) ( 1<2, m EL}z K be such that: 

(1) m# n implies B’(m) fl B’(n) = 9. 
(2) D’(m) E B’(m). 
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(3) For every m EL, D’(m) is dense in U {D’(n) 1 n E L}. 
(4) Kk&[B’(m) ( 1<2, m EMI]. 

Then there is a C.C.C. forcing set P of power K, such that 

~~,(~~~D”(~)-~~~D1(m))~(K~~o[B’(~)~~~2,~~M,1). 

The argument why 10.23 follows from 10.24-10.26, resembles the analogous 
argument in 10.1. Also 10.26 is the same as 10.10. We also omit the proof of 
10.25, since it involves no new difficulties. 

Proof of 10.24. Let A(m), B(m), F(m) and A be as in 10.24. Let S(m)= 
{B cB(m) ( (vB’~F(rn)) (B flB’# 8)). Let KS CcA and m EM. We say C is 
appropriate for m if: either m is a minimal element of M, for every n E M such 
that n+ m, C II A(n), and for every nf m and BE S(n), B< C; or if for some 
B E S(m), C = B. Note that if C is appropriate for m, then there is B,(m) E F(m) 
such that K k +Js] where s is the assignment in which for every n# m, s(x9 = 
B(n), s(x”,> = B,(m), s(xk) = C and for every m EM, s(y&> = A(m). 

Let ~={rn~M1(3C~A)(Elrn’ ?=m) (C is appropriate for m’)}. W.1.o.g. A is 
dense in Iw. For every interval I of A with rational endpoints, let 71 = 
{m E MI (3C G I) (C is appropriate for m)} and for every m E or, let C(I, m) s I be 
appropriate for m. For every n E T, let C(n) = U {C(I, rn) 1 WI E 7I and n < m}. It is 
already standard to construct {Be(m) ) m EM}, {Bl(m) I m E 7)s K such that: (1) 
B,(m) E F(m); (2) Bl(m) is a dense subset of C(m); and (3) for every mf n, 
B,(m) ll (Bl(n) U B,(n)). (Here we assume that B,(n) = fl if n$7.) 

We check that 7, {B,(m) ) m EM} and {B,(m) 1 nt EM} satisfy the requirements 
of the lemma. Requirements (l)-(3) are automatically satisfied, (5) and (6) are 
easily checked. We deal with (4). As in the proof of 10.8, we have to prove the 
following claim. Let x = A,,,,, yt%~ A {tc T} where 

and T intersects the union of the first three sets in at most one element; and let s 
be the assignment such that s(xL) = B’(m), s(yym) = A(m) and s(ya) = A. Then if 
Ki=lx[s], then x is not a conjunct of el. 

In fact, the above claim has to be proved just for x’s in which u is finite. This 
follows easily from the fact: (*) “For every L GM, if every finite L,c L has a 
lower bound, then L has a lower bound”. 

Of the many cases in 10.8 we check only that case which calls for a new 
argument. Let x = Q,,,,,, ysm) A y: and suppose that K klx[s]. We have to prove 
that x is not a conjunct of @I, that is, we have to prove that there is n E 7 such 
that for every m E u, n =z m. K klx[s] m?ans that A A A\,,, A(m) # 0, hence let 
CEK be such that C<A, and C<A(m) for every rn~~. If for some neM and 
some B ES(~), B< C, then nE7 and n < m for every m E u, hence we are 
through. Suppose the above does not happen. We prove the following claim. 
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Claim. There is K 3 D < C such that every finite subset of L = {m ( l(A(m) II D)} 

has a lower bound. 

Proof. Suppose the above claim is not true. We define a tree (T, <:,) E -‘q and 

for every v E T we define m(v) E M and C,, E K such that: (1) every member of T 

has at least two successors; (2) for every v E T, C,, g C; (3) if v<:5, then 

m(t)<m(v); and (4) if veT and I.&,, , . . , er_-l} is the set of successors of I, in T, 

then {m&J, . . . , m(&J} does not have a lower bound in M. The construction is 

done easily by induction. 

We show that there is a branch {vi [ i E o} of T such that {m(vi) ( i E w} does not 

have a lower bound. Let {mi ) i E o} be an enumeration of M. Let v,, = A. Suppose 

vi has been defined. By (4) there is a successor 6 of vi such that mix m(t). Let 

v,+i = 5. Hence {m(q) ( i E o} does not have a lower bound, however every finite 

subset of {m(u,) ( i E co} has a lower bound. This contradicts property (*) of M. 

This concludes the proof of the claim. 0 

Let D be as assured in the claim, and let L be as defined in the claim, and let n 

be a lower bound for L. We check that D is appropriate for n. By our assumption 

for every m EM and B E S(m), B=& D, and it follows from the properties of L and 

D that if -~(A(rn) Y D), then n$m. Hence n E T. For every m ~a, D%A(m), 

hence m EL and so n 6 m. We have thus found n EM such that n E r and for 

every m Eu, n< m. This concludes the proof of 10.24 and the proof of 

10.14(a). 0 

We leave the proofs of 10.14(b) and (c) to the reader, since they do not involve 

any new difficulties. 

11. MA + OCA implies 2’0 = X, 

In this short section we show that MA+ OCAj 2’0 = X,. This fact follows from 

the following theorem. 

Theorem 11.1 (ZFC). There is a C.C.C. forcing set P of power H, and a family 

{D,, 1 v <K2} of dense subsets of P such that if G E V is a filter of P which intersects 
every D,, v <X2, then V contains a set X s 53 and an open coloring % = {U,, l_J,} of 

X such that (X( = X1 and X cannot be partitioned into countably many %- 
homogeneous sets. 

Clearly, Theorem 11.1 implies that MA + OCA j 2’0 = X,, for if V k Ma + 2’0 > 

Kz, then V contains a filter G E P which intersects the D,‘s, the thus V contains a 

coloring refuting OCA. 

Moreover, Theorem 11.1 shows that it is consistent that Vl=Al, but still if 
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W 2 V and WkMA+ OCA, then 8:“) or X$“’ are collapsed. This is true for the 
universe V which is obtained in the following way. Let V,kCH, and let V = 
V,[P,(X,)][P] where P is the forcing set of 11.1. 

The proof of 11.1 is divided into three claims. 

Lemma 11.2. There is a symmetric function FE V, F :X,x K,+K, such that for 
every universe W 1 V and A E W: if KY = KY’, Kr = X,“, A E K2 and IAl = Xz, then 
F(A X A) is unbounded in K1. 

Proof. For every K1<vV(XZ, let {a(v, a~) ) a <Xl} be a l-l enumeration of v, and 
for 5 <v <K,, let F([, v) = 0 if 5 = or or if Y <K,, and let F(& IJ) = (Y if 5 = a(v, a). 
It is easy to check that F is as required. •i 

We reserve the symbol F to denote a function as in 11.2. Recall that for a set 
A, D(A)=AxA-{(a,a)( aEA}. 

Lemma 11.3. Let A ={a, 1 (Y <X,}G”~, bu ={U,, U,} be a partition of D(A) into 
symmetric open sets, and let {H!, 1 1= 0, 1, v < &} be such that: for every v < K2 and 
1 E (0, l}, D(HL) E U,, and for every v, LJ <X2 there is cx(v, 5) <K, such that 
Hz n Hg = {a,C,,Cj} and a(v, 5) >F(v, 6). Then A cannot be partitioned into counta- 
bly many Q-homogeneous subsets. 

Proof. Suppose by contradiction {A, 1 i E o} is a partition of A into %- 
homogeneous sets, and let e(i) be such that D(A,)z UEci). 

For every v <X, let 

P(v) = Sup({a I (31 E 9x 1)) (3 i E o) (e(i) = 1 A a, E Ai nH:-l)}). 

p(v) is a supremum of a countable set, hence p(v) <K1. Let r c_ Kz and PO <K1 be 
such that Irl= tc2 and for every v E r, p(v) = PO. By the property of F there are 

v, [E r such that F(v, [)> &,. Hence arodgf cx (v, 5) > 00. Suppose (Y (v, C;) E Ai. If 
e(i) = 0, then the fact that a,E Ai n Hi implies that p(E) 2 cuO> PO; and if 
I = 1, then the fact that a,E Ai fl Hz implies that p(v) > aO> PO. In both cases 
we obtain that for some t; E r, p(c) > PO contradicting the choice of IY Cl 

Lemma 11.4 (ZFC). There is a C.C.C. forcing set P of power KZ and a family 
{D,, 1 v <KJ of dense subsets of P such that if V contains a jilter of P which 
intersects every D,,, v <K,, then V contains a system A = {a, E (Y <NJ, ‘11 = 
{U,, U,} and {H!,( l=O, 1, v<$} as in 11.3. 

Proof. Let F be as assured by Lemma 11.2. We first define P. Each element p of 
P is a triple (Q(p), g(p), f(p)) where: 

(1) %, = (U(p, 0), U(p, 1)) is a pair of disjoint symmetric clopen subsets of “2 
such that U(p, O), U(p, 1) G D(“2). %, is an approximation of the coloring % we 
wish to construct. 
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(2) g(p) is a function such that Dom(g(p)) = a(p, 0) x a(p, 1) where the c+(p, 1)‘s 

are finite subsets of X,, Rng(g(p)) c_ X1, and for every (0, E) E Dom(g(p)), F(v, 5) < 

g(p)(v, 5‘) <F(v, e)+o. We denote g(p)(v, 8) by g(p, v, 5). g(p) is a finite approxi- 

mation of the function (Y(v, 5) of 11.3, that is, g(p, v, <) = (Y will mean that 

{a,} = HO, n H;. 

(3) f(p) is a function such that cr(p)“sf Dom(f(p)) is a finite subet of Rng(g(p)) X 

o, and Rngcf(p)) s (0, 1). f(p) is a finite information about the reals aor where 

CY ~Rng(g(p)), that is f(p)(a, n) = 0 will mean that for the real a, of 11.3, 

a,(n) = 0. We denote f(p)(a, n) = f(p, (Y, n). 

A triple p = (Q(p), g(p), f(p)) as above belongs to P if: 

(1) For every distinct (Y, /3 E Rng(g(p)), f(p) already determines the %! (p)-color 

of (Us, a,), that is, if for every y <Xi we denote by f(p, 7) the function such that 

for every n E w, f(p, r)(n) = f(p, y, n), then there is 2 E (0, 1) such that 

u(~, a, p) ‘Zf {(a, b)~ “2 ( a 2 f(p, a), b 2 fh 0))~ UP, 0. 

(2) If cr_r, (Y~E Rng(g(p)), are distinct and for some V, el, &, (Yi = g(p, v, &), then 

the coloring of (a,, a,,) is determined to be 0, that is U(p, (pi, CQ) s U(p, 0), and if 

(Y~ = g(p, &, v), then the coloring of (a,,, a,,) is determined to be 1, that is 

UP, al> 4 5 U(P, 1). 
p 6 q if U(p, 1) c U(q, l), I = 0, 1, g(p) G g(q) and f(p) E f(q). This concludes the 

definition of P. 
We leave it to the reader to check that by means of a family (0, 1 Y <X2} of 

dense subsets of P one can assure the existence of a system A, %, {H!, 1 I E 

(0, 11, v <X,> as required. We now turn to the proof that P is C.C.C. 

Let {pz ) a”<X,} c P. We uniformize {pa ) a <Xl} as much as possible. Hence 

we can assume that for some % = (Vi, U,) for every CY <Xi, %(p,) = %, and that 

(C!(P,) I a <Xl> are A -systems for I = 0, 1. Let ol (PA = 

{da, 1, O), . . ., ~(a, 1, nl - l)}, and m, <n, be such that for every i < ml and 0, y < 

X1, ~(0, 2, i) = v(y, 1, i). We assume that for every i,< n, and il < n, either all the 

g(p,, V(CX, 0, i,), ~(a, 1, il))‘s are pairwise distinct, or they are all equal. Finally we 

assume that letting ~(a, i, j) denote g(p,, ~(a, 0, i), ~(a, 1, j)), for every (Y, /3 CX,, 

iO< 110 and 4 < nl: fh, ~(a, io, iI)> = fb, Y(CG io, iI>). 
We prove that for every CY and @, pa and pp are compatible. Let q’= 

(% g(pJ u g(p& f(PJ Uf(P@)). 4 ’ is not a condition, but we prove that q’ can be 

extended to a condition q. First we check that q’ does not contain contradictions. 

Since f(p,, ~(a, io, iI)> = f(pp, ~(a, iO, iJ) for every i. and i,, and since U1 and U, 
do not intersect the diagonal of “2 x-2, % determines the color of 

(a y(a.i,.i,)~ Uv(e,jo,il)) iff (io, ii) # jo, jJ, and if (io, il) # (jO, jl), then the color of the 

above pair is equal to the color of (Q~(~,~~,~~), a~v(u,io,jl~). This implies that q’ makes 

no mistakes in determining colors. 

Let g’ = g(pJ U g(p& and OI= ol(p,) U ol(gp), I= 0,~ Dodd) # aox cl, 
hence we have to define g 2 g’ such that Dam(g) = a0 x crl. Since for every 
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Y, .$’ <K, there are X0 options of how to define g(u, 4) and since Rng(g’) is 
finite for every ( v, 5) E aoul - Dom( g’) we can find g(v, 5) E 
[F(v, C;), F(v, [)+ w) -Rng(g’) so that g - g’ is l-l. We leave it to the reader to 
check that 9_.l and f(p,) lJf(p@) can be extended so that the color of every pair in 
{a, ( y E Rng(g)} will be determined, and every such pair will have the right color. 
We thus constructed a condition extending pa and pp, hence pa and ps are 
compatible. El 

Discussion. Let A denote the axiom MA+2*o>X,. We found that A is not 
consistent with OCA, on the other hand it is consistent with BA, SOCA, NWD2, 
RHA and many other axioms whose consistency can be proved with the aid of the 
club method. There are two cases in which we do not know the answer to such a 
question. 

Question 11.5. (a) Is A consistent with SOCAl? 
(b) For which (finite) lattices with involution L is A+ (KH = L) consistent? 

Question 11.5(a) is related to the following questions: 

Question 11.6. (a) Is 1CH consistent with the following axiom: “If B is an 
uncountable set of reals and {Ai ( i E I} is a family of nwd subsets of B, which 
contains all finite subsets of B, and such that B is not contained in a union of 
countably many Ai’s, then there is an uncountable B’ c B such that B’ intersects 
each Ai in at most X0 points”? 

(b) Is there a universe V such that Vi=2*1> X, and such that for every C.C.C. 
forcing set P of power <2Kl, VP has the following property: “If {Ai 1 i E I} is a 
family of ~2’1 subsets of K1 such that X, is not the union of any countably many 
Ai’S, then there is an uncountable A zX1 which intersects each Ai in at most K0 
points”? 

Question 11.7. Is OCA consistent with 2Ko>K,? 
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