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We present some techniques in c.c.c. forcing, and apply them to prove consistency results
concerning the isomorphism and embeddability relations on the family of X,-dense sets of real
numbers. In this direction we continue the work of Baumgartner (2] who proved the axiom BA
stating that every two X,-dense subsets of R are isomorphic, is consistent. We e.g. prove
Con(BA +(2%>R,)). Let (K™, <) be the set of order types of X,-dense homogeneous subsets
of u« with the relation of embeddability. We prove that for every finite model (L, <): Con{MA +
(KH, <)=(1, <)) iff L is a distributive lattice. We prove that it is consistent that the
Magidor-Malitz language is not countably compact. We deal with the consistency of certain
topological partition theorems. E.g. We prove that MA is consistent with the axiom OCA which
says: “If X is a second countable space of power X,, and {U,,..., U,_,} is a cover of
D(X)d=efX x X—{(x, x)| x € X} consisting of symmetric open sets, then X can be partitioned
into {X, | i € @} such that for every i € » there is | <n such that D(X;) < U,”. We also prove that

MA+OCA > 2%=R

Introduction

The purpose of this paper is to prove consistency results about partitions of
second countable spaces of power X,, and about the relations of embeddability
and isomorphism between sets of real numbers of power K.

Our intention is not only to prove new results, but also to present the
techniques used. Because of this reason, in the first sections, we tried as much as
possible to present applications in which the proofs were technically simple, and
in which only one technique was being used at a time. Thus we sometimes had to

repeat ourselves, and in one case we chose to reprove a theorem from [1], though

0168-0072/85/$3.30 © 1985, Elsevier Science Publishers B.V. (North-Holland)



124 U. Abraham et al.

in a different way. On the other hand we sometimes omit the proof of some
details which resemble previous arguments.
The starting point of this paper is the theorem of Baumgartner [2] that the

axiom BA, which says that every two N;-dense sets of real numbers are order-

zsomorphlc, is consistent. Baumgartner in fact proved that MA + BA is consistent.
The isomorphization of two N;-dense sets of real numbers was done by means of a
c.c.c. forcing set. This suggested that maybe MA,, already implies BA.

The negative answer to the above question was found by Shelah. He invented
two techniques: the club method and the explicit contradiction method. Using
these methods Shelah [1] proved that MA,, was consistent with the existence of
an entangled set (see Section 7), thus showing that MA, 3 BA.

Avraham [1] then found another way to refute BA. By means of the club
method he constructured a universe V satisfying MA and a set of real numbers of
power X;, AeV, such that every 1-1 uncountable g< A X A contained an
uncountable order preserving function. Such an A is not isomorphic to A*E
{~al aeA} thus VE—BA.

Answering a question of Avraham, Shelah {1} proved that it is consistent that
every 1-1 g<RXR of power X, can be represented as the union of countably
many monotonic functions. The proof involved a new trick: The preassignment of
colors (see Section 3).

4
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The club me
The club method plays the most central role in this paper. We explain in what
context one can try to use this method. Let |[A]=X;, and let R be a binary

relation on A. Suppose R =|J;c, B;iXC, (in this case we say that R has a

countable semibase) Rv the club method one can trv to construct a c.c.c. fo c;[\.g
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set which adds to V an uncountable subset of A" which has various homogeneity
properties with respect to R. E.g. one might want to add an uncountable
g < A X A such that for every (aq, by), {a,, by) € g,{a,, a,)€ R iff {(by, b,)€ R. (This
is the case of adding an order preserving function.) Note that if X is a second
countable space and R < X X X is open, then R has a countable semibase, hence
<g and > have countable semibases.

The club method makes the problem of isomorphizing two X;-dense subsets of
R just one Speciai option in a wide spectrum of possibiiities.

In the beginning, we knew to apply the club method only when the ground
model satisfied CH. After understanding the exact role of CH it was possible to
replace it by an axiom denoted by A1l which may holds also in the absence of CH.
A1 has the property that if VEAT1 and P is a c.c.c. forcing set of power <2™, then

P 1 | 5| arry i -t 1 h
anot
V" also satisfies Al. Hence one can carry cut a finite support iteration of length

2™ consisting of general c.c.c. forcing sets and ‘club method’ forcing sets. In this
way we obtain the consistency of BA+ (2% >N,) which could not have been
obtained by the method of [2].
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The other techniques described in this paper are easily combined with the club
method in many different ways, thus yielding a rich variety of consistency results.

Summary of results

1. The club method and the semiopen coloring axiom

In this section we present the club method by means of an application. Let X
denote a second countable space of power Ny, let U be a symmetric open subset
of XxX, and for a set A let D(A)=A XA ~{(a,a)|ac A}. The semi open

coloring axiom (SOCA) says: “For every X and U as above there is an
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uncountable A < X such that either D(A)< U or D(A)N U =§". In Section 1 we
prove that MA + SOCA is consistent. This is probably the simplest application of
the club method.

In addition we prove in Section 1 the consistency of a certain strengthening of
SOCA, we prove some corollaries of SOCA, and bring some counter-examples.

2. The explicit contradiction method and the increasing set axiom

A set SR of cardinality X, is called an increasing set if for every n€e w and a
set {{a(a,0),...,a(a, n—1))| a <R;}< A" of pairwise disjoint n-tuples there are
a, B <N, such that for every i <n, a(a, i)<a(B, i).

Suppose A € V is increasing, and we want to construct a universe W = V which

tisfies MA and in which A retains its increasingness. The problem is that when
we iterate c.c.c. forcing sets in order to take care of MA it may happen (and
indeed it does happen if VFCH) that some of the iterands P, force that A is not
increasing. The way in which this difficulty is overcome, is that we construct a
c.c.c. forcing set Q such that I, (P; is not c.c.c) A (A is increasing). Hence forcing
through Q retains the increasingness of A and frees us from forcing through P,
The particular method in which this is done is called the explicit contradiction
method.

Section 2 is devoted to the proof that MAy, is consistent with the existence of
an increasing set. Indeed MA, = A is increasing iff every uncountable 1-1
gS AXA contains an uncountable order preserving function. Thus what we
prove in Section 2 coincides with Theorem 2 of [1]. However, since this is the
simplest application of the exp11c1t contradiction method, and since the proof we
present can be used to re i

I

reprove Theorem 2 of [1

-»

3. The open coloring axiom, and how to preassign colors

Let X denote a second countable space of power X;. An open cover J =
{Uy, . .., U._1} of D(X) consisting of symmetric sets is called an open coloring of
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X. AcX is U-homogeneous if for some i<n, D(A)< U, Let OCA be the
axiom: “For every X and % as above X can be partitioned into countably many
U -homogeneous subsets”. Let ISA be the axiom: “There exists an increasing

cot?’
SCU .

Trying to strengthen SOCA, and Theorem 6 of [1], we prove that MA+
SOCA +OCA +ISA is consistent. The new element in the proof is a use of the
so-called preassignment of colors. Let X, U be as above, and let A <R be an
increasing set. We want to partition X into countably many % -homogeneous
subsets without destroying the increasingness of A. There is a method to assign to
each a € X a color i(a)<n such that there is a c.c.c forcing set P which partitions
X into countably many U -homogeneous sets, in this partition every a € X belongs
to a set with color i(a), and P does not destroy increasingness of A. The
preassignment of colors resembles Theorem 6 of [1], but here we have one
additional trick devised in order to retain the increasingness of A.

OCA can be generalized to colorings of n-tuples rather than colorings of pairs.
For v, £€°72 let v A £ denote the maximal common initial segment of v and &

—y

For A=“2 let
T[Al={vré|v,éc A and are distinct}.

For v, £€°72 and 1=0,1, let v<;¢& denote the fact that v—(I) is an initial

segment of £ Let o, T be finite subsets of “”2. ¢~ 1 means that {o, <,, <;)=
(7, <o <1)-

Let TCAm be the axiom saying: “If (C,,...,Cc_y) is a partition of the
unordered m-tuples of “”2, and A =2 is of power X, then there is a partition of
A {A,|ic o} such that for every i€ w and two subsets o;, o, of A; of power
m+1: if T[o,]~ T{o,], then there is j <k such that T[o,], Tlo,]< G™.

In Section 3 we prove that Ma+ A,,..,, TCAm is consistent. TCA1 is implied by
OCA, and MA+TCA1 > OCA.

TCAm has also a topological equivalent but its formulation is not very
transparent. The more direct and stronger generalization of OCA remains open.

We conclude Section 3 with another axiom concerning partitions. Let X, Y be a
second countable spaces such that |X|=R;, and Y does not contain isolated
points; let f be a symmetric continuous function from D(X) to Y. Let NWDA be
the axiom which says: “If X, Y, f are as above, then there is a partition {A, | i € w}

ot ~en v o szt s it YRT o
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prove that MA+NWDA is consistent.

We did not investigate the relationship of NWDA with other axioms and its
possible generalizations.

4. The semi open coloring axiom does not imply the open coloring axiom; the tail
method

In Section 4 we prove that SOCA + MA + (2% =R,) 3> OCA. Indeed, in Section
5 we prove that MA +SOCA is consistent with 2% >X,, and in Section 11 we
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prove that MA +2%>RX, > 10CA, hence the result of Section 4 becomes less
interesting. But the proof serves well in demonstrating an additional trick called
the tail method. This trick is used also in Sections 9 and 10, but there, the
technical details are somewhat more complicated.

5. Enlarging the continuum beyond R,

In Baumgartner’s proof of the consistency of BA, the construction of a c.c.c.
forcing set which isomorphizes X,-dense sets of real numbers, is done under the
assumption of CH. So in the universe satisfying BA the continuum had to be X,.
The substitute for CH in the application of the club method was found by Shelah.
This immediately implied that BA is consistent with 2%>¥,. In this section we
demonstrate this method by proving that MA + SOCA + (2% >R,) is consistent.

6. MA, OCA and the embeddability relation on R,-dense real order types

Ilet K={A<R|A#@® A has no endpoints and every interval of A has
cardinality R,}. For A, Be K let A< B and A = B respectively mean that (A, <)
is embeddable or isomorphic to (B, <). Let A € K. A is homogeneous if for every
a,be A there is an automorphism f of (A, <) such that f(a)=b. Let K=
{AeK|A is homogeneous}. Let N(A, B) mean that there is Ce K such that
C<Aand CXB; A L B=-NA,B)and ALB=A1BAA L B* Let NA be
the axiom: (VA, Be K) N(A, B).

A great part of this work was motivated by questions about the possible
siructure of K and K¥. Since SOCA easily implies (VA, BeK) (N(A, B)U
N(A, B¥) it was natural to ask whether it also implied NA. Since “A is
increasing” implies IN(A, A*), this question was answered in Section 3. There
was still another reason why MA + OCA +ISA was interesting. Shelah proved the
consistency of the following axiom: ‘“There are A, Be€ K™ such that: A=A%*
B=B* AL1B AUBecKHY and for every CeKH C=B
C=AUB".

It was of interest to us to find whether in this axiom one can make the
modification that A L A* and A*=B. In Section 6 we indeed show that this
modified axiom follows from MA + OCA +ISA.

In fact MA + OCA almost determines the structure of K™ an
is conjuncted with ISA, then K* is as above, if MA OCA is
—ISA, then BA holds.

o
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7. Relationship with the weak continuum hypothesis

The weak continuum hypothesis WCH is the statement that 2% <<2%: In Section
7 we first show that BA = —“WCH. The question that naturally arises is what
happens if BA is weakened and is replaced by NA. We prove that unlike BA, NA
is consistent with WCH.
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This automatically implies that NA = BA. The fact that MA+NA > BA
follows from the results of Section 9.

In the proof of NA+WCH we introduce a forcing which makes two members
of K near. This is a simple version of a forcing set which isomorphizes two
members of K.

One can consider the following strengthening of NA. Let DNA be the following
axiom: “If A, BeK, then there is an uncountable order preserving function
g < A X B such that Dom(g), Rng(g) € K and are dense in A and B respectively.
Section 7 is concluded with a proof that NA= DNA,

8. A weak form of Martin’s axiom, the consistency of the incompactness of the
Magidor-Malitz quantifiers.

Let MML denote the Magidor-Malitz language. In [7] Magidor and Malitz
proved that Oy =>“MML is countably compact”. This suggested the following
question: “Construct a universe in which MML is not countably compact™. A first
solution to this problem was found by Shelah (unpublished) using methods of
Avraham. Shelah’s solution involves properties of Suslin trees which are expressi-
ble by MML sentences. The result of Shelah is that the countable incompactness
of MML is consistent with CH.

In Section 8 we bring a simpler solution to this question, here we obtain a
universe in which MA + (R, <2%)+ (MML is not countably compact) holds.

et AeK and kew, A is k-entangled if for every sequence
{a(a,0),...,a(a, k—1))|a <R} < A* of pairwise disjoint 1-1 sequences, and
for every (€(0),..., e(k—1))e{0, 1}* there are a,, a,<R®; such that for every
i<k, a(a.gy, i) <a(a;_.q),i). The k-entangleness of A can be expressed by an
MML sentence and MAy, > W(3AeK) (Vkew) (A is k-entangled). Let Wk
MA,, +(Vk e w) (3A €K) (A is k-entangled). Hence in W MML is not countably
compact.

The notion of entangledness was defined by Shelah in [1]. There, it is proved
that for every kew, MAy, +(3A<€K) (A is k-entangled) is consistent. It is
somewhat more complicated to prove that MA, +(Vkew) (A cK) (A is k-
entangled) is consistent. We prove this fact in Section 8.

The other question considered in Section 8 is whether iterating forcing sets
obtained by means of the club method can yield a universe satisfying MAy,. To
prove that this is not so we define a property, denoted by s.c.c., and stronger than
the countable chain condition, such that every forcing set gotten from the club
method has this property. On the other hand we prove that a finite support
iteration of s.c.c. forcing sets does not destroy Suslin trees. We hence obtain that
OCA, SOCA, NA, etc. are consistent with the existence of a Suslin tree.

9. The isomorphizing forcing, and more on the possible structure of K

In this section we first construct for A, Be K a c.c.c. forcing set P such that
Ik A =B. This construction is a basic tool for results concerning the possible
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structure of K. This construction can be carried out under assumptions weaker
than CH, hence we can prove that BA is consistent with 2% >X,. The other
important property of this construction is that it enables to isomorphize two sets
leaving some other sets far. E.g., we prove that if A, B, C 1L D, then there is a
c.c.c. P which isomorphizes A and B and keeps C 1 D.

A eK is rigid if (A, <) has no automorphisms other than the identity. Let

RHA=(VAe€K) (@B, CecK) (B, Cc A)A(B isrigid) A (C is homogeneous)).

Note that RHA = —CH.

Combining the construction of isomorphizing forcing sets with the explicit
contradiction method and the tail method we prove the consistency of MA +
RHA.

10. The structure of K and K* when K™ is finite

In Section 6 we prove that MA,, = K"/= is partially ordered by <. Clearly * is
an automorphism of (K¥/=, ). Let KM% = (K™/=) U{#}, (K"4, <, *) is a partially
ordered set with an involution. In Section 10 we prove the following theorem: Let
{(L,<,*) be a finite partially ordered set with an involution: Then MA+
(K™% =1) is consistent iff L is a finite distributive lattice with an involution.

This theorem was preceded by the following result by Shelah: It is consistent
that K2 ={0, a, b, ¢} where anb=0, a*=a, b*=b and ¢ = av b. Avraham and
Rubin then showed (Section 3, 6) that K™ may by {0, a, b, ¢} where anb=0,
a=b*and c=avhbh.

Some results in the same direction were proved by Rubin for the class
K" (A cKH | A is of the second category}.

We also prove in Section 10 some results about the possible infinite K**’s.

11. MA + OCA implies 2% =R,.

Until the writing of this paper had been almost finished, we believed that the
method to enlarge 2% beyond R, worked for all applications of the club method.
We realized that CH was used not only in the application of the club method, but
also in order to e.g., get from A,Be K A’, B'e K such that A’c A, B'c B and
A'll B'. However this could be done too without assuming CH. Finally we
noticed that, indeed, we did not know to preassign colors (Section 3) without CH,
and we did not know how to prove the consistency of SOCA1 (Section 1) and the
results of Section 10 without assuming CH in the intermediate models.

Shelah then found that at least in the case of OCA, the failure to prove the
consistency of OCA +MA + (2% >R,) followed from the fact that this axiom was
false. He found a c.c.c. forcing set P of power X,, and X, dense subsets of P, such
that if V contains a filter of P which intersects all these dense sets, then V
contains an open coloring of a set A €“2 of power X; for which there is no
partition of A into countably many homogeneous sets. Section 11 contains this
result.
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Whether the results of Section 10 and SOCA1 are consistent with MA +
(2% >R,) remains open. '

Main open problems

In the paper we mention many open problems, they appear in the relevant
context. Let us mention here those problems which, we believe, require new
techniques.

(1) (Baumgartner) Is it consistent that every two R,-dense sets are isomorphic?
More generally, are the axioms appearing in this paper consistent when we
replace Xy by X,?

(2) The axioms mentioned in this paper are all consistent with MA. We do not
know how to prove the consistency of similar axioms which contradict MA. E.g.,
is the following axiom consistent: " BA+ (VA, B e K) (A< B)? Is the following
axiom consistent: OCA + 2% >R,?

(3) Let OCA(m, k) be the following axiom: “For every second countable space
X of power R; and every finite open cover U of X™, there is a partition {X; | i € w}
of X such that for every i € w, X" intersects at most k members of %.”” Does there
exist a k for which OCA(m, k) is consistent? In fact we do not know the answer
even for m = 3, and even if the axiom is weakened to require only the existence of
one uncountable subset A of X such that A™ intersects at most k members of .

(4) Are some of the axioms mentioned consistent with the existence of a
second category subset of R of power X,? E.g. are NA+(ZA €K) (A is of the
second category) and SOCA+(JA € K) (A is of the second category) consistent?

Historical remarks

The club method, explicit contradiction method, the method to enlarge 2%
beyond X, are due to Shelah. The tail method is due to Rubin. The method of
preassigning colors is due to Shelah, but an additional trick was added by
Avraham and Rubin. Section 1 dealing with SOCA is mainly the work of
Avraham and Rubin. Section 2 is another proof of a theorem by Avraham and
Shelah in [1]. The axiom OCA appearing in Section 3 and its corollaries
concerning the structure of K appearing in Section 6 are due to Avraham and
Rubin. The axiom TCAm which generalizes OCA is due to Shelah and the axiom
NWDA is due to Rubin. The proof that SOCA = OCA appearing in Section 4 is
due to Rubin. Section 5 dealing with how to enlarge 2% beyond X, is due to
Shelah. Section 7 dealing with the relationship with WCH is due to Shelah. The
weak Martin’s axiom appearing in Section 8 and the proof that it is consistent
with the existence of Suslin trees is due to Avraham and Rubin. The proof that
MML may be countably incompact is due to Rubin. This theorem was first proved
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by Shelah using other methods. The proof was a slight improvement of a theorem
of Shelah in [1].

The isomorphizing forcing in Section 9 is due to Shelah. BA1 as well as RHA
are due to Rubin. RHA uses the tail method as well as an important lemma
essentially due to Shelah. This lemma states that if A, B 1L C, D then it is possible
to isomorphize A and B keeping C 1L D. Section 10 which deals with the structure
of K and K¥ when K* is finite is due to Rubin. The theorem stating that
MA +OCA= 2" =R, appearing in Section 11 is due to Shelah.

Index
For the reader’s convenience we include here an index of axioms and some
notations used in this work
Al, 160 OP (order preserving), 162
BA (Baumgartner’s Axiom), [24 OR (order reversing), 162
BA1, 179 K, 162
DNA, 169 KH, 162
DN(A, B), 169 RHA, 185
entangled set, 171 semibase, 134
homogeneous, 162 shuffle, 162
increasing set, 139 SOC (semiopen coloring), 132
ISA (increasing set axiom), 139 SOCA (semiopen coloring axiom), 132
mixing, 162 SOC pair, 154
monotonic, 162 TCAm (the tree m-coloring axiom), 148
NA (nearness axiom), 165 TCA, 148
N(A, B), 165 WCH (weak continuum hypothesis), 165
NWDAZ2 (nowhere denseness axiom), 153 A¥=[-alacA}, 124
open coloring, 141 AXB, 162
OCA (open coloring axiom), 141 AlB, 162
OCAm, 152 = 162
OCA(m, k), 147 A LB, 181
OC pair, 154

1. The club method and the semiopen coloring axiom

In this section we present the club method which is the main technique in this
paper. We prove a theorem in which the club method is used. This theorem is

perhaps the simplest application of this method.
p p p ppit

For a set A let D{(A)=AXA~-{a, a)]ac A}. A function f from the set of
unordered pairs of a set A to {0, 1} is called a coloring of A in two colors. We
regard f as a symmetric function from D(A) to {0, 1}. A subset B< A is called
f-homogeneous, or in short homogeneous, if f } D(B) is a constant function; we
say that B is of color [, or in short B is [-colored if the value of f | D(B) is L

From now on X denotes a second countable topological Hausdorff space of
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cardinality X,. Let f be a coloring of X in two colors, f is called a semiopen
coloring (SOC), if f7'(1) is open in X X X.
Let the semiopen coloring axiom be the following axiom.

Axiom SOCA. For every X and a SOC f of X, X contains an uncountable
f-homogeneous subset.

Theorem 1.1. SOCA is consistent with ZFC.

Proof. We prove the following claim. Let VFCH, and let f be a SOC of X such
that X has no uncountable homogeneous subset of color 0; then there is a c.c.c.
forcing set of power R;, P= Py, such that in V¥, X contains an uncountable
homogeneous set of color 1.

By the method of Solovey and Tenenbaum [9], this claim suffices in order to
prove the theorem. More specifically we start with a universe satisfying CH+
(2% =X,) and carry out an iteration with direct limits {P, | @ <X}, in which each
(a+1)st iterand is the P,-name of some forcing set of the form Py

We thus turn to the construction of Px; assuming that CH holds, and X and f
are given. We first need a model of the form (X,,<,...,) that includes the
information about X and f, and that encompasses enough set theory. In order not
to repeat the same definition over and over, we shall at this point fix a model that
will serve us also in the future. Let H(X,) be the set of hereditarily countable sets.
By CH, |H(R,)|=R;. We choose a 1-1 correspondence h between H(R,) and R,.
Let M°=(®,, <, h, €,) where a €, B iff h(a)c h(B). In order not to have two
belonging relation symbols we shall denote €; by € and will refrain from using
“a € B’ to mean the usual belonging relation between countable ordinals; instead
we shall write “a <. We reserve M to mean the above model throughout this
paper.

W.lo.g. X<R,. Let M=(M? X, f, T); by this we mean that we expand M? by
adding to it a unary predicate to represent X, a binary function symbol to
represent f, and some binary relation symbol to represent some fixed countable
base for X. T can be defined in the following way: let {U, | ico}®q be a
countable base for X; T={(i, a)|icw and a € U}.

For a<X,, let M, denote the submodel of M whose universe is a. Let
Crn={a | M,< M}. Cy is a closed unbounded set (club).

A subset AcX, is called Cys-separated or in short separated, if for every
a, B € A such that a < there are vy, y,€ Cy, such that y;<a<+vy,<f.

Let A be a cardinal and A be a set; we denote P,(A)={B< A ||B|<A}. Let
Py;={0 € Py (X)| o is homogeneous of color 1 and o is separated}. The partial
ordering on Py is set inclusion.

We show that Py is c.c.c. Suppose by contradiction that it is not; then it is easy
to see that there is I'y ={o' | i <R,} < P, such that:

(1) for every i<j<R,, o' Ug’ is not homogeneous of color 1;

(2) for every i <j<R,:|o'|=|0’], and o' Ua’ is Cy,-separated.
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Let {a},..., a'} be an enumeration of ¢’ in an increasing order. Since o' is
homogeneous of color 1 and since f is a SOC, there are U}, ..., Ui, € ¥ such that
for every k# I, ot e U and f(Uix U} = {1}. Let I be an uncountable subset of I';
such that for every i, jeI” and for every 1sk<n, U,=Uj, = &t U.. By reindexing
we can assume that I'={o' | i <X,;}. We thus conclude

(*) For every i,j<R; and 1<sk#[l<n, f(aj, a})=1.

The next step which we call ‘the duplication argument’ is one of the central
arguments in this paper. For a subset A of a topological space X, let cl(A) be the
topological closure of A in X.

I'c X" and X" is second countable, hence for some countable ['y< I, cl(I'y) =
cl(T'). Let y € Cy; be such that I';e |M,|. (More precisely we mean that h(I'y)<¥,
but we shall always make this abuse of notation.) Note also that % = M, for every
a@ € Cpyy. There is a formula in the language of M, and with the parameter I,

¢(x1,. .., x,), which says that {(x,, ..., x,yecl(I'y). Let i <R, be such that y <ali.
We want to define by a downward induction a sequence of certain formulas
o(xy,...,x), 1=0,...,n where ¢,=¢ and where MF@/[a},..., a}]. For the
sake of clarity we first show how to get ¢,_;. Let € Cy, and al,_,; <8 <al,. For
every a €M), MEy[al, ..., alq, al where G(Xy, ... Xy, X)=
(3x, >x) cp(xl, ...,x,); for one can take x, to be ai. Since Mz<M, M;F
Ylal,...,al_(, «] Hence MyFVx §lal, ... ,ain 1, x], hence M satisfies the same
formula. ThlS means that L % {B|{a},...,al_y, BYecl(Iy)} is unbounded and

thus uncountable. We assumed that X did not contain uncountable homogeneous
sets of color 0, thus there are 8, 8, L such that f(8,, B,)=1. Let U, U3 U be
disjoint sets such that 8, € U, and f(U7x U3)={1}. Let
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Clearly MFeo, [}, ..., a,_;]. Suppose ¢, has been defined and MF
omlat, ..., al]. Repeating the same argument as before, there are disjoint

mUSeqU and B,cU", 1=1,2, such that f(UTXU3)={1}, and MF
onlal,...,ab 1, B Let

2
oy =3 3 (A (U on(rss 305D,

Now we start with ¢, and inductively pick 8}, [=1,2,j=1,..., n. Since MEg,
there are Ble U}, 1=1,2, such that MEg,[B/]. Suppose B{,...,B" [=1,2,
were defined so that Bie UJ and Mk, [BL,...,87], 1=1,2. Hence B'"“ can be
chosen to satisfy the same induction hypotheses. The fact that MkE @, [B], ..., BT]
means that (8], ..., BMecl(l,). Since U™ is a neighborhood of B}°, there are
a,cToNU}X- - -x UM By (%) and the choice of the U}’s, &; U a, is homogene-
ous of color 1, a contradiction. We have thus proved that Py is c.c.c.

The union of all elements of a generic subset of Px; is a homogeneous subset of
X of color 1. It remains to show that this union is indeed uncountable.
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It suffices to show that for every o€ Py, {a|oU{ate Py} is unbounded.
Suppose by contradiction o ={ay, ..., a,} is a counterexample to this claim. Let
Qx ¢(x) mean: ‘“there are unboundedly many x’s satisfying ¢”. Using the fact
that there is 8€ Gy such that «, ;<8<a,, it is easy to see that MF
Oxelay, ..., a,_1, x] where ¢(xq,...,x)=({xy,...,x,} is homogenesous of
color 1)A({y|{x,, ..., X, y} is homogeneous of color 1} is bounded). For every 8
satisfying ¢(ay, . .., a,_1, X) let v; be a bound as assured by ¢. Let {B; [ i <R} be
a separated set such that for every i <j<R;, MEe¢lay,...,a, 4, B;] and B;> v,

ant I3 oW 1 ig ~rtmtalal

Tha PN - A antichain i D o
L 8¢t 11(11, v e ey u.n 1s pl! | Ui 1f W au uuuuuutau;c altliail 11 ot X’f, a

contradiction. O

The use of topological terminology and especially the use of the Hausdorff
condition in Theorem 1.1 was redundant; we did not lose however any generality.

We now oive an eauivalent formmulation of the thearem that does not involve
wE now give an Cyu vaient iermuiation 6i ¢ neorem inatl GOoes not 1nvoive
topology. Let |A| =R, and f be a coloring of A in two colors. A semibase for f is

a family {(C, D;)| i <a} such that (1) = ;.o C, X D,.

Theorem. It is consistent with ZFC, that fo

which has a countable semi base R. contain
t N1 contain.

el ¥ LOoun C S
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Theorem 1.2 (Consequences of SOCA). Assume SOCA, then:

(a) If feRXR is a 1-1 uncountable function, then there is a monotonic uncount-
able g = f. (A model satisfying this property was built in [1}.)

(b) If fSRXR is a 1-1 uncountable function, then there is an uncountable g < f
such that g or g is a Lipschiz function.

(¢) If A < P(w) is uncountable, then either A contains an uncountable chain, or
A contains an uncountable set of pairwise incomparable elements. If B is an
uncountable Boolean algebra, then B contains an uncountable set of pairwise
incomparable elements. (A model satisfying this axiom was built by Baumgartner
in [3])

(d) Let R< D(X) be open, then there is an uncountable A < X such that either
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Proof. (a) Since fSRXR, f is equipped with a second countable topology. Let ¢
be the following coloring of f:c(a, a,)=0 if {a,, a,} is an order preserving
function, and otherwise c(a;, @,)=1. Since f is 1-1 both ¢ '(0) and ¢ *(1) are

onan. hence the claim of (a\ follows.
open, hence the ciamm of 100V

(b) We regard f as a topological subspace of RXR. For (a, b,), {a, byyef let
c({ay, by), {az, by)) =1 if {(by—by)/(a,— ay)| <1, otherwise c({a,, by),{d,, by))=0.
Clearly ¢ is a SOC, hence (b) follows.

(c) The relation of incomparability on P(w) has a countable semibase since
7, o € P(w) are incomparable iff for some distinct n, mew, nerd m and n¢ o> m.
Hence the first part of (c) follows.
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Let B be an uncountable Boolean algebra. If B does not contain a countable
dense subset, then by a theorem of Baumgartner [3], B contains an uncountable
set of pairwise incomparable elements. Hence w.l.o.g. B contains a countable
dense subset, so B is embeddable in p(w). By the first part of (c), B contains a
chain or an anti-chain. If the latter happens, then our claim is true; otherwise let
C be an uncountable chain in B. A subset of P(w) which is a chain must be
embeddable in (R, <), since the lexicographic ordering between the characteristic

functions of the elements of C is identical with the containment relation on C, and

on the other hand ( ») together with its lexicoeranhic order is isomorphic to a

on the other hand p(«) together with its lexicographic order is isomorphi
Cantor set.

Let de C be such that C'®{ceC|ccd} and C*¥{ceC|dcc} are un-
countable. Let f:C'— C? be a 1-1 function. By (a) there is an uncountable
monotonic g < f. If g is order reversing let D ={c U(g(c)—d) | c e Dom(g)}, then
D is an uncountable set of pairwise incomparable elements. If g is order
preserving let D ={(d—c)U(g(c)—d) | c e Dom(g)}; again, D is as required.

(d) Let R'(x, y)=R(y, x), hence R’ is open in X X X. Let f(x, y)=1if R(x,y)
or R'(x,y) holds; and otherwise f(x,y)=0. Hence f is a SOC. Let A be an
uncountable f-homogeneous subset of X. If A has color 0, then D(A)NR =,
and thus A is as required. Otherwise, for every distinct a, be A, R(a, b) or
R’(a, b) holds. Let g: D(A)—{0, 1} be defined as follows: g(a, b)=1 if R(a, b)
and R'(a, b) hold; and otherwise g(a, b)=0. g is a SOC, hence let B be an
uncountable g-homogeneous subset of A. If the color of B is 1, then D(B)S R,
hence B is as required; otherwise R[B is an antisymmetric connected relation on
B. Let < be a linear ordering of B such that (B, <) is embeddable in (R, <). Let
¢:D(B)— {0, 1} be defined as follows: c(a, b)=1iff a<b & R(a, b). Obviously ¢
has a countable open semibase, and R is a linear ordering on any c-homogeneous

cat M
L. | -

Strengthenings of SOCA
Proposition 1.3. SOCA +MA is consistent with ZFC.

Proof. In the proof of the consistency of SOCA we iterated c.c.c. forcing sets. We
had the freedom to include in the iteration any c.c.c iterands, and SOCA would
have still held. So we interlace in the iteration all Px,’s and all c.c.c. forcing sets
of power X,. If P is the forcing set gotten as the limit of such an iteration, then
VFPESOCA+MA. O
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X does not contain uncountable 0-colored sets, then X is a countable union of
1-colored sets.

Proof. Let P be the following forcing set.
P={f | Dom(f) € Px,(X), Rng(f) < o, and for every i€ w,
(i) is a homogeneous set of color 1}.
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It suffices to show that P is c.c.c. Let {f, | @ <X;}< P. W.Lo.g. for every a# 8,
Dom(f,) NDom(fs) =P, and (a,(0,0), ..., a,(0, my),...,a,(n,0), ..., a,(n, m,)
is a 1-1 enumeration of Dom(f,) such that for every i=0,...,n and j=
0,...,my fla,(i,[))=1. We can further assume that for every i=0,...,n,
O0sj<k=m; and a, B<R,, fla,(i ), ag(i, k))=1. Recalling that X does not
contain uncountable 0-colored sets, we apply successively SOCA to the subsets
{a.(i, )| @ <R;} of X. Hence we obtain an uncountable subset A =X, such that
for every distinct a, B A and for every i and j, f(a,(i, 1), ag(i, j))= 1. Hence
£ 1F |
L |

o~
uc11

,_,_,

Remark. Note that we needed a rather weak form of MA since P has the
property that every uncountable subset of P contains an uncountable set of
finitely compatible elements.

‘We do not know whether the analogue of Proposition 1.4 for the color 0 is true.

Question. Is conjunction of the following axioms consistent? MA+SOCA+
“There is a pair (X, f) such that f is a SOC of X, X does not contain uncountable
1-colored sets but X is not a countable union of 0-colored sets”.

We can still say something about the analogue of 1.4. Let SOCA1 be the axiom
which says that for every pair (X, f) such that f is a SOC of X: X contains an
uncountable homogeneous set, and if for some [<{0, 1}, X does not contain
uncountable [-colored sets, then X is a countable union of (1—[)-colored sets.

Theorem 1.5. MA +SOCA1 is consistent.

s NPy o amaim '.. mer dlan e AL MM mmaemian 1 A A md tbond alis Lcdk Alalimn Sam
rrooi. lC Prou 1 D 4y LIcC proul Ul 1 NEOICim l 1 CALSPL tlial UIC 1I1IdU Clallll 11t
Theore 1.1 has e strengthened as follows.

Claim (CH). Let f be a SOC of X, and X is not a countable union of 0-colored sets.

Then there is a c.c.c forcing set Px¢= P of power X, such that {p “X contains a
1_ralarad
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Proof. Assume X is not a countable union of O-colored sets. Let {F,; | i <X,} be an
enumeration of all 0-colored closed subsets of X. Choose by induction a sequence
{x; | i <¥;}= X such that for every i, x;¢ ;< F; U{x; | j <i}; this choice is possible
since X is not a countable union of 0-colored sets. Let Y ={x; [ i <X}: clearly Y
is a second countable Hausdorff space of power R, and flY is a SOC of Y. We
show that Y does not contain a 0-colored uncountable subset. Suppoe it did, and
iet A be suen an example LI\A) 15 also nomogeneous of (.0101' v, hence 101' SOIme
i <Ry, cl(A)=F;. Since A is uncountable, for some j>i, A 3x;. This contradicts
the definition of {x; | j <R}
Let Px ;= Py 1y, clearly Py, is as desired. [
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To prove Theorem 1.5, we start with a universe V satisfying CH+ (2% =R,).
We make a list of tasks which includes all possible names of pairs (X, f) and all
possible names of c.c.c forcing sets of power X;. Let this list be {R, | @ <R,}. We
define {P, |a<N,} as follows: P, is a trivial forcing set, and for limit & Ps =
Ux<s Pa- Suppose P, has been defined. If R, is a P,-name of a c.c.c. forcing set
we define P,,,=P,*R,. If R, is a name of a pair (X, f) such that X is not a
countable union of 0-colored sets, then P, ;= P, * Px . In all other cases P,,, =
P,.. This concludes the proof of 1.5. [

Some easy counter-examples

One can try to strengthen SOCA in various ways.

(1) Increase the number of colors, namely consider f’s from X to @ in which
for every i€ w, f (i) is open.

(2) Consider colorings of unordered n-tuples rather than coloring of pairs.

(3) Consider colorings f in which for every i, f'(i) is a Borel set.

(4) Try to decompose X into countably many homogeneous sets.

Appropriate versions of (2) and (4) are consistent, this will be proved in Section
3. (1) and (3) are inconsistent. We give counter-examples to (1)-(4).

Example 1.6. There is an open coloring f of the unordered pairs of “2 in X,
colors, such that “2 does not contain an uncountable homogeneous subset.
For distinct n, v € “2 let f(n, v) be the maximal common segment of n and ».

Example 1.7 (Blass [4]). There is an open coloring f of the unordered triples from
“2 in 2 colors such that “2 does not contain an uncountable homogeneous subset.

Let 1, v, £ €2 be distinct and n <wv <¢ lexicographically ordered. f(n, v, £)=0
if the maximal common initial segment of £ and 7 is a proper initial segment of
the maximal common initial segment of » and n. Otherwise f(n, v, §)=1.

Example 1.8. There is X =R XR of power X, and a SOC f of X such that X is not
the countable union of homogeneous subsets.

Let AR be a power X;, X=AXA and f((xy,yy), (xz y2))=1 iff
{{x1, y1), {x3, y2)} is a strictly order preserving function, and otherwise the value of
fis 0.

Clearly f is a SOC of X. For B < X let Dg ={a € A | there are distinct b,, b, A
such that (a, by), (a, b,)e B}. If B is a 1-colored homogeneous set, then D, = §. If
B is 0-colored, then it is easily seen that |Dg|<R,. Let {B; | i€ w} be a family of
homogeneous subsets of X, and let a € A —J;.,, Dg, hence {b |(a, b)e J;c, B;} is
at most countable. Thus |J;., B;# X.

Questions about Borel partitions of subsets of R of power X,, are equivalent to
questions about general partitions of X;. Galvin and Shelah deal with such
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questions in [6]. This fact is expressed in the following observation, which is
due independently to K. Kunen, B.V. Rao, and J. Silver.

Observation 1.9. Let R be an n-place relation on R,. Then there is a G; relation S
on the Cantor set C and a subset A of C such that {A,S | A)={,, R).

Proof. For the sake of simplicity we take an R which is binary symmetric and
irreflexive. We represent C as “5. Let {a* | @ <R} be a family of almost disjoint
infinite subsets of w. For every a <R, let {a%|B=<a} be a family of pairwise
disjoint subsets of w such that for every g =< «a the symmetric difference of ag and
a® is finite. Let {b* | « <R} be a family of infinite subsets of w such that for every
a<B<X,, b>—b? is finite and b® —b* is infinite. For every a <X, we define
N €°S5. 1, 2i+1)}=1if ieb® and otherwise n,(2i+1)=0. 1,(2i)=2 if i€ al,
M.(2i)=3 if for some B<ea, icaj and (B, a)e R. Otherwise 71,(2i)=4. Let
Si={n, v)|m,ve«s, {i|v(@)=1 and n(i)=0} is infinite and {i|v(i)=3 and
n(i) =2} is infinite}, and let S=8;UST". Let A ={n, |a<R}; clearly S is a G;
set and (A, S } A)=®,,R). O

Question 1.10. Using oracle forcing it is easy to construct a model of set theory in
which R contains a second category set of power X4, and in which for every second
countable space Y of the second category and every SOC of Y, Y contains an
uncountable f-homogeneous subset. We do not know whether

SOCA+(IX <R) (IX|=R; and X is of the second category)

is consistent.

Question 1.11. If in SOCA one replaces everywhere X, by X, is the resulting
axiom still consistent?

Question 1.12. If in observation 1.9 one replaces X, by X, is the resulting
statement consistent with ZFC?

2. The explicit contradiction method, and the increasing set axiom

Suppose that we want to construct a model of MA + R, <2% or of MA,, and
at the same time we want to preserve a certain property @ of a certain set A.
There is a problem when we encounter a c.c.c. forcing set P which ruins property
@, that is, in VF, A does not satisfy ¢ anymore. In such a case we shall find a
c.c.c. forcing set Q such thatin V@, Pis not c.c.c., and A still has property @. We
call the particular method in which we do this ‘the explicit contradiction method’.
We take the liberty to explain this method by an application which yields a
known result. We do so in order not to start with applications that involve more
than one tehcnique.



The consistency of some partition theorems 139

Definition. Let A =R be of power X,; A is called an increasing set, if in every
uncountable set of pairwise disjoint finite sequences from A there are two
sequences {ay,...,a,), {by,...,b,) having the same length such that a,<
bi,...,a,<b,.

Axiom ISA. These exists an increasing set.

The following theorem is due to Avraha and S elah [1]. It follows from

Theorem 2 there. together with the discu
1HCOICHL £ UICIC, LOECLIICT witll i€ JdisScC
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Theorem 2.1. MA, +ISA is consistent.

Remark. The proof in [1] is slightly different from ours and does not use the

avnlicit canteadistinn mathad Tngataad tha madal VP io anne tad crioh tha
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VP E“Every uncountable 1-1 function from A to A contains an uncountable OP
subfunction”. This implies that there is no c.c.c. Qe V¥ such that in V7, Fo A is
not increasing.

This slight difference between the proo becomes essentlal if one wants at the

same time to carry out some task that
E.g., Theorem. MA is consistent with the existence of a rigid increasing set. (‘Rigid’
means there are no order automorphisms except for the identity.)

Proof. Let V be any universe. Let us add to V a set A of X, Cohen reals. It is
easy to see that in this Cohen extension of V the set A is increasing. (This fact
and more appears in [1, §5 Remark 21].) Hence we can w.l.0.g. assume that this is
our universe V and there is an increasing set A.

As usual we will define a finite support iteration {P,|i<2"1} in which all
possible c.c.c. forcing sets of power X, are considered. For each single step in the
iteration we need the following lemma in which the explicit contradiction method
is used.

Lemma 2.2. Let A be an increasing set in V, P be a c.c.c. forcing set p< P, and
p IFp “A is not increasing”. Then there is a c.c.c. forcing set Q = Qp, 5 of power X,
such that k¢ “A is increasing and P is not c.c.c.”’.

Deunnf T ot R ha a D_.name nf a cat nf nairwica dicinint 1_1 cannancac nf lanaoth »
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such that p Ik, “B is a counterexample to the increasingness of A”. Since P is

c.c.c. it is easy to pick a sequence {(p;, b*) | i <X,} such that: (1) for i:p;=p and
p;lk,b'eB and (2) let b'=(bi,...,b), then for every i#j, {bi,...,b}N
{bi,...,bi}=¢.

Let a={(a,,..., ,a,), b={(b, ..., , b,)eR" be distinct, we say that {a, b} is order
preserving (OP), 1f for every 1<k sl =n a, <b & a <b. We say that p,, p; are
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explicitly contradictory if {b*, b’} is OP. The main point is that if p; and p; are
explicitly contradictory, we indeed know that they are incompatible in P; for if
r=p,, p;, then r=p, hence r i, “Bisa counterexample to the increasingness of A,
and b, b’ € B”. This is of course a contradiction. Recall that we are looking for a
Q that will add an uncountable anti-chain to P. Hence our choice for Q is
obvious. Let o€ Py (R;) and q, % {p, |ico}. Let Q' ={q, | o€ pyx,(Ry) and for
every i¥je o, p; and p; are explicity contradictory}. q,<gq, if r<o.

Obviously a Q’-generic set adds an antichain D to P. Once we show that Q' is
c.c.c., there is a standard way to find some g, Q’ such that qylko “D is
uncountable”. Hence we shall take Q to be {ge Q' | g,=<gq}.

We thus show that Q' is c.c.c. Let {q,, | i <R;} be an uncountable subset of Q.
W.Lo.g. {o;|i<N,} is a A-system and for every i, o; ={a’,..., a a*!, ..., a*'}
where a'<---<a*<a*'<---<a® Let ¢=b*""---"b" ¥ (c,...,cn), and
ch=b>"" mhME L L ¢l For every B let U%,. .., U® be rational neigh-
borhoods of c%,...,c? respectively such that for every 1<i, j<r for every
d;€ UP and d; e UP:cf<cP& d, <d,. By choosing a subsequence, we can assume
that for every i, U? is independent of B.

Let B, v be such that {c®, ¢} is OP. Hence for every 1 <i =<k, {b>*, b**'} is OP.
If i#j, then since {b>*, b**’} is OP, and since we uniformized the UP’s, also
{b=*', b>'} is OP. Hence {q,, Ug, }€Q’". So Q' is c.c.c.

Our next goal is to show that |-, ““A is increasing”. The proof is very similar to
the proof that Q' is c.c.c. Suppose by contradiction B is a Q'-name, go€ Q' and
qolFo “B is a name of a counterexample to the increasingness of A”. Let
{{4s., 8*) | @ <R;} be a sequence such that for every a, go<4q,,, o, Fa* e B, and
for every a# B8, a* and a® are disjoint. As in the previous argument we assume
that the ¢,’s form a A-system, and we choose U = U; with the same properties.
Define the ¢®’s as in the previous argument, and find B8, y such that {c?~ d*
¢~ d"} is OP; then q,, Ugq, €Q’, {d®, d*} is OP, a contradiction. [

Continuation of the proof of Theorem 2.1. It follows from Lemma 2.2 that if P is a
c.c.c. forcing set such that lkp “A is increasing”, and if Q is a P-name of a c.c.c.
forcing set, then there is a P-name R = R such that I+, (R is a c.c.c. forcing set
and I3 “A is increasing”), and for every pe P: if p Ibp (-5 A is increasing), then
pkpR=Q; and if ptp(Aqec Q) (q koA is not increasing), then pltp(lFzQ is
not c.c.c.).

Let {N;|i<2"} be an enumeration of Py (2%). We define by induction an
increasing sequence of forcing sets. P, is the trivial forcing set, and if & is a limit
ordinal, then Py =|J, s P.. Suppose P; has been defined; if |Fp “A is increasing”
or if Fp, “N; is a c.c.c. forcing set”, then let P, = P;; otherwise let P, = P; *RNi.

We first show that for every i, I-p “A is increasing”. By our definition if this
happens for P, then it happens for P, ;.

Let cf(8)>X,, and suppose for every i <§, I-p, “A is increasing”. Suppose by
contradiction that G is a Ps-generic set and B € V[G] is a counterexample to the
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increasingness of A. Let G; = G NP, There is i <& such that the closure of B in
A", B, belongs to V[G;]. It is easy to see that there is B'€ V[G,] such that B’ is
an uncountable subset of B consisting of pairwise disjoint sequences. Hence there
cannot be two sequences in B’ which form an OP pair. Hence A is not increasing
in V[G;], a contradiction.

Let cf(8) =Ry, suppose our claim is true for every i <8. Let G be a Ps-generic
set and let B< A" and B € V[G]. Then there are {B; | i € } such that | J;., B;=B
and for every i there is y; <8 such that B;e V[G, ]. Hence one of the B;’s is
uncountable, hence if B is a counterexample to the increasingness of A, there is
such an example belonging to a previous V[G;], and by the induction hypothesis
this is impossible.

Let P= Py, the argument showing that MA, holds in V* is standard. (O

A

Remark. Note that if MA,, holds, then A is increasing iff for every 1-1 un-
countable f= A X A there is an uncountable OP function g< f.

3. The open coloring axiom, and how to preassign colors

In [1] it was shown (Theorem 6) that it is consistent with ZFC that every 1-1
FeMYM af nower 8. i tha unian of r\r\ilﬂfol\ltl manv manataonie funcotiang Thic
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fact is a special case of the open coloring axiom (OCA) to be defined below. (S.
Todorcevi¢ proved that, under MA, OCA is a consequence of this fact.)

Let X be a second countable Hausdorff space of power RX;. An open coloring of
X is finite cover U ={U,,...,U,,} of D(X) such that for every I U,=
{y, x)i(v e}, AcX is U-homogeneous if for some color |, D(A)c U, A
Uu-homogeneous partition of X is a countable partition {X; | i € w} of X consisting
of 4 -homogeneous sets.

The open coloring axiom is as follows.

Axiom OCA.

homogeneous partition.

or every X and every open

It turns out that in a universe V satisfying MA + OCA +1ISA, the set of real
order types of power X; has nice properties, e.g. there are exactly three

homogseneous cnt‘]—\ aorder tyneg: ¢ our firet anal ic to nrave the nnnc-cfonnn of the
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conjunction of these three axioms. As seen in the following theorem we do a little
more, and add to the above axioms also SOCA.

Theorem 3.1. MA + OCA +SOCA +1ISA is consistent.

Later in the section we shall prove a generalization of OCA.
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Proof of Theorem 3.1. We start with a universe V satisfying CH+ (2%:=X,) and
with an increasing set A € V. We construct a finite support iteration {P,; [ i <N,},
according to a list of tasks of length X, which is prepared in advance. In each
atomic step of the iteration we deal with one of the following tasks.

(1) For a given c.c.c. forcing set Q of power X,, we have to find a c.c.c. forcing
set P = P4 of power X, such that I, “A is increasing”, and either Q is not c.c.c.
or there is a Q-generic filter over V.

(2) For a given X and a SOC f of X o fin

|
u

Af e 2 land |l €A o e cre soiaag’? o
UL POUOWCL Ny bu\-ll lllal p A d 1HUICAadlIE , alll

f-homogeneous subset.

(3) For a given X and an open coloring U of X we have to find a c.c.c. forcing
set P= Pxq of power N, such that ks “A is increasing”, and X has a U-
homogeneous partition.

We expect the reader to known how to define t

of
iteration and why V[P, ] satisfies all the four axioms. We shall concentrate
on the atomic steps of the iteration.

The existence of P = P, satisfying the requirements of (1) was proved in the
previous section (Lemma 2.2).

We start with task (3) where the additional trick of preassigning colors is used.
This method appears also in [1, Theorem 6]. There, a special case of OCA is
proved. In the present application there is an additional complication, since at the
same time we want to preserve the increasingness of A.

Q

nly

Lemma 3.2. Suppose VE“CH, A € V is increasing” and U ={U,, ..., U,_1} is an
open coloring of X. Then there is a c.c.c. forcing set P of power X, such that \Fp “A
is increasing”, and X has a 9U-homogeneous partition.

Proof. W.lo.g. A, X<RX,. As in Theorem 1.1 we form a model M with universe
R; that includes enough set theory, and includes also A, X and % as predicates.
Let M, be the submodei of M whose universe is a, and et C=Cy=
{a | MNa< M}.

We know that each element of X should be put into one of a countable set of
homogeneous subsets of X, and our first aim is to decide in advance what will be

the color of the homogeneous set to which each element a of X should belong.
Iet In’t iR 1 be an mnmnm]‘ncm between (N ,<) and (C, <), let E =

} .~ ANV PSS VOLWLOC:E [-1818 1 aLL

{Bla,=B <ai+1}, and let € ={E; | i<R;}; we call € the set of C-slices. For every
i <R, let {a}|l e ®} be an enumeration of X N E; such that af,=min(X N E;). Let
¢(x)=¢(xy,...,x) be a formula in the language of M and possibly with
parameters from |M], Qx¢(x) abbreviates the following formula Va (Ix,>
a) - Ax;>a) e(x). Let 8=(8,,...,8_€'n be a sequence, and ¢(x,y)=
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o(Xgs ... Xi—1s Vis - -+ 5 V) be a formula with parameter from |M|; we denote

i—-1

bos=elx, y) Ao, y’)/\(/_\n X, xieX)/\ (/_\1 Yo y:eA>

-1
A (/\0 (X, xD€E U&>A({y, y'} is OP)
=
where x’, y' are disjoint sequences of distinct variables disjoint from x and y.

Claim 1. Let i <X,. Then for every |l € w there is 8 € 'n such that for every m € w and

every ¢(X, y)=¢(Xo, - - +» Xi—1, Y15 - - - » Ym) With parameters from |M,|: if there are
bi,...,b,e AN(M|-IM_]) such that MEolai,. ..., ai_y, by, ..., b, ], then MF

Qx,yQx',y' ¢,

Proof. Suppose by contradiction the claim is not true, so for every &'n let
¢s(x, y®) be a formula showing that § is not as required in the claim. We assume
that the y®’s are pairwise disjoint sequences of variables, and that their concate-
nation is y ={yq, ..., Ym,. Let

\

¢(x,y)= A ¢5 and X(x,y)E(P(x,y)/\(t&Y:GA)-

sen

By the choice of the @4’s there are by, ..., b, AN(M|~|M,|) such that
MEo[al,...,al_, by,...,b,], hence

(1) MEQx, y x(x, y).

On the other hand it is clear that for every &

(2) MEDOx, yQx',y' ¥,

Hence there is %<, such that for every a € [M|' and be|M|™ if B°<a, b then
there is 8 = B(a, b) such that for every 8 'n and @', b'> 8, ME,4a, b, a’, b’'].

We define by induction on j<R,, @’ € X' and b’ € A™, our induction hypothesis
is that for every j<X,, a’, b'> B,. Suppose a*, b* have been defined for every
k<j. Let B;>B°Uli<; B(a", b*). Let a’e X', b'e A™ be such that a’, b’ > g,
and MFela', ¥} This choice is possible by {(1).

By the increasingness of A there are k<j such that {b*, b’} is OP. Let
a' ={(a", ..., a" Y and a*=(a"*" ..., a"" "), and let § be such that (a*, a*')e
Us. Let 8 =(8,, . .., 8_1). MEx[a*, b*], and MEx[a’, b']; however since a’, b’ >
B, ME—, ga*, b*, a, b']. This is a contradiction, and the claim is proved. O

Let i <R;; for every [ew let & be the least element in 'n according to the
lexicographic order of 'n, which satisfies the requirements of Claim 1. Recalling
that for every le w, ap=<a', it is easy to sec that if k<<l then &. is an initial
segment of &}. Let (8, 8%, ...)= U, 8. If ae X and a = a,, then for some i and
I, a = ai; we denote 8(a) = 8! and call 5(a) the color of a. We have thus assigned a

1£1
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deft
color to every a in X —a,'= X', and when we construct P we shall put each ae X’

in a homogeneous set of color 8(a).

We are ready to define the forcing set P which satisfies the requirements of the
lemma.

Let {n; | i € @} be an enumeration of the set of colors n such that for every [ <n,
{i| n; =1} is infinite. Let P be the set of finite approximations of a homogeneous
partition {X; | i € } of X’ which respects the preassigned colors, and in which X,
has the color n. More precisely, P={f|Dom(f) € Py (X"), Rng(f)< w, and for
every a, b e Dom(f) if f(a)=f(b)=1, then {a, b)e U,, and 8(a)=6(b) = n;}.

Clearly IFp “X has a U-homogeneous partition”. We have to show that P is
c.c.c., and that I, ““A is increasing”. The proofs of these two facts are similar, we
thus skip the first, and assuming that we already know that P is c.c.c., we prove
that I “A is increasing”.

Suppose by contradiction there is p®c P and m € » such that p°I-p “Th
family {b> | @ <R,}< A™ of pairwise disjoint sequences such that for no a# 8,
{b>, b®} is OP”. Let B be a name for this family. Let {(p,, b>)| & <R;} be such
that (1) p,=p% (2) p.Feb*eB; and (3) if a# B, then b™ and b® are pairwise
disjoint.

W.lo.g. the n ’s form a A-svstem

JLo.g. the p.’s form a A-gystem, and they rave th ne structure. Mo
precisely, we need the following uniform behavior of the {p,, b*)’s.

(1) {Dom(p,) | @ <R,} is a A-system.

(2) Let Dom(p,) =1{dn0; - - -» As1} Where a,o<---<A,; and the first r ele-
ments form the kernel of {Dom(p,)|a <R} and b*=(b,, ..., by.m). Then for
every a, B<RX, for every ij<l and 1<k, t=m:8(a,;)=8(ag;), p.(a,;)=
Pa(ag;), by = aq; iff bg =ag; and b, <b,, iff bgy <bg,.

We can assume that for every a <R;, b, <--:<b,,,

Since X is second countable, we can further uniformize the (p,, b*)’s in the
following way.

(3) There are open sets Vi, ..., V; < X such that for every a <X, and distinct
i,je{0,...,}:a,, €V, if p,(a.:) = Pe(@q;) then VXV, Us(q_ .

Let dy =€a005 - - -5 Qo> Doty - - - » Doum ), and let D be the topological closure of
{d. | a<®} in X'""*xX A™ Since X is second countable D is the closure of a
countable set, hence it is definable by a parameter d in M. Let y € Cy, be such
that d,a.q,...,0a,,-1€|M,|, (recall that {a,q,...,as,-;} is the kernel of
{Dom(pg) | B <R,}.) We choose a such that a,,, ..., dop bats - - -, bet# |M,]|. We
intend to apply the duplication argument to d,,.

Yot d ={(a a b b\ a={a a ={} b Y Tet
LAV Qo= \QAQy+-.5Up 015:-..,Up/, @ \ &gy - .-, Gg \NO15 ¢« » s Uy /. 1AR
S

h
EY, ..., E* be those Cy,-slices E for which there is a;,, r<i=/, such that a;€ E, or
there is b, 1<j<m, such that b;eE. Let a=a°"---"a* where a°=
(@, - . ., a,_,) is the sequence of those elements of a which belongs to (M, |, and
for i>0, a' is the sequence of those elements of a which belong to E'. Let
b=Db'"---~b* where b' is the sequgnce of those elements of b which belong to
E'. Let B; be the minimal element of E*.

\ and
/ aliu
r
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We define by a downward induction formulas ¢,..., ¢, The induction
hypotheses are: (1) the parameters of ¢; belong to |M,|, and (2) ME
<p,[a ,.o..,a b, ..,b') Let o¢y=(ag...,a,_) - -"x*"y'"-..7ykeD,

uppose that ¢, (x", ..., x"", ¥y, ..., y""") has been defined. Let s be the length
of bi*', let a'*'=(al,...,a)), and let §=28(a)), j=1,...,t The formula
¢iq(at,...,a,x"", b, ..., b, y'*!) has parameters from IMBML hence by the

definition of & there are ¢'=(c},...,c) and d', I=1,2, such that: (1) ME

eialal, ..., d,c b, ..., b,d'], 1=1,2; (2) for every j=1,...,1 {c], e Us;
and (3) {d", 4% is OP.
For [=1,2,j=1,...,t let Vi*"! be basic open sets in X such that (¢}, ¢))e

Vit Ixviti2 o Uy ; and let V‘*“ VitbIx. .. x V' For [=1,2 let Wit be
basic open sets in A® such that d'e W' =1, 2, and for every d,€ W'**! and
d,e W2 {d,, d,} is OP. Let u' =(u!, ..., u), v'=(v},..., vl) be sequences of
variables. Let

i 1

cpi(xl7""xay "-"yi)
\

/2
=Ju',u’ v’ v kl/\ Gialxl, .. xhulyh oy, v’))
=1

{ 2 i Vi+i,i\ { 2 i Wi+1,i\
/\kl/=\lu € )/\\l/=\lv € )

Clearly ¢; satisfies the induction hypotheses. We have thus defined o,.

As it was done in Theorem 1.1 starting with ¢, we can choose two sequences
Rl Liey T PRRES A o N ) suchthatao’\ 1 a’"e?e D, forevery
i=1,...,k a*'"aeV"'xV*? and b b* e WX W Dy=1{d, € a <X}
was dense in D, hence there are d, € D,, | =1, 2, such that

=1 /"71,1\, I'Ikl sl vxrk,1
aaa)ch \ 4 Fa R 4 X W Lo 4 S

It is easy to see that p.)U puy€ P

N
Q..
O
o
R
~
=
o
[}
8
-1
[
w
o)
-
=
-
o]
Qo
(=}
=
(o]
-
7]
-
=
[¢]

s
ceeiiramtinn that =m0l «D a protintar avasmemla ta thhn T amanciacmace ~F A
adxduliipuun uiat p o irp D lb a LUl -Caallipic U UIC 1IIVITAdIIEIIUdS UL A .

Hence Lemma 3.2 is proved. [

We turn now to the last kind of tasks that we have got to carry out.

Lemma 3.3 (CH). Let A €V be an increasing set, and let f be a SOC of X, then
there is a c.c.c. forcing set P of power Ry such that |p “A is increasing, and X
contains an f-homogeneous uncountable subset”.

Proof. Let us first assume that (*): there is no n =0 and an uncountable 1-1 h
such that Dom{h) < X, Rng(h)< A", every two distinct elements in Rng(h) are
disjoint and whenever x, y e Dom(h) and f(x, y) =1, {h(x), h(y)} is not OP. (Note
that for n = 0 this means that there are no uncountable 0-colored homogeneous
sets.)
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Let M be a model including enough set theory and including X, f, A. Let

P ={o € Py (X) e o is homogeneous of color 1 and is C,-separated}.

Clearly by the proof of 1.1, iFp “X contains an uncountabie homogeneous
subset’’. Suppose by contradiction there is pe P such that plp “A is not
increasing”. Let B be a name of a subset of A" such that p forces that Bisa
counter-example to the increasingness of A. Let {(p., b*) | @ <X} be such that for
every a, p,=p, p.'tb* e B, and for every a# B, b, b? are pairwise disjoint. Let
p*=1as, ..., am -1y where ag<---<ap, _;, let a*={a§,...,ay__y) and b>=
(b%,...,b%). Wlo.g. (1) for every o, m, =m; (2) {p. | @ <R} is a A-system with
kernel {ay, . .., a,_1} where for every a <R, and isr—1, af = q; and for every a
and B, p, U pg is Cy-separated; for every 0<i<j<m and a <B <R, f(af, af)=
1; and (4) for every @, b$<-:-<b2 Let Dy={a*"b>|a<N,}. Hence Dy<

X™x A“ let D be the tonolo nr- al closure of no Tet ~ (X‘ he euch that N ic

WL AP ivar LiUsuic j v ~3%] UL Sulal LQul s 15

definable in M by a parameter belonging to |M, |, nd let @ be such that

P N .Myl _{aO: e ar~1} and Rng(b(x) nlM'yl -
We shall now duplicate a*~b* Let a°‘ =a={ag,...,0an-1), b*=b=

(by,...,b,). Let E',..., E™ be the set of all those C,,-slices which intersect
{aT,.,,, "_.‘}U{bh,.,‘b }. We represent a as a;™- - - ~a, and b as by~ - - b,
where ag=(ay, ..., a,_1), and for i >0, a,, b, are respectively the subsequences of

a and b consisting of those elements which belong to E'. Note that since p, is
C,r-separated, then for every i >0, a; is either empty or consists of one element.

We define by a downward induction formulas ¢,, i =k, ..., 0, with parameters
in |M,| such that MFe¢[a,,...,a, by, ..., b1

=8y TX T X Ty T Ty e D

Suppose ¢; ., has been defined, and we want to define ¢;. There are two cases: (1)
x; consists of one variable and (2) x; is an empty sequence. Since ME
o, la,, ..., a.. b, ..., b. .,], it follows that

14
.;vu. > il Mls coe 0 BN

MEQX; 1, Yirr Cival@y, .- o, @ X0, by, oo, By, Y]

n s 74N

By (%) in case (1), and by the increasingness of A in case (2), there are ¢!, d',
1=1,2, such that Mk, \[a,,...,a,c, by, ...,b,d"], {d',d® is OP, and if
c'=(c", 1=1,2, then f(c!, ¢c?)=1. Let V!,; be basic open sets in X such that
(cte Vi, and 1=1,2, and f(V} X VZ,)={1}, and let W', [ =1, 2, be a product
of basic open sets in A such that d'e W', 1=1,2, and for every e*c W', e2c W2,
{e!, 2%} is OP. Let

2
(PIEaxil+1r xi2+1a yi1+1’ yi2+1 ('/_\ (pi+1(x1’ vy xn 1+1’ Y1’ ey Yiy ys’,+1)
Ayias yiab is OP)Af(xia, x340) = 1)~

The last conjunct is added only in case 1.
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Starting now from ¢, and using successively ¢q,..., ¢, we can construct
c'=(c,...,c\._)), and d', =1, 2, such that: {a,, ..., a,_)rc'Ad' €D, {d*, d*%
is OP, and for every i =0,...,m—1, f(c], c?)=1. Since D, is dense in D, there
are B!, B2<R, such that a®'Ab®' is close enough to (a,,...,a,_)rc' Ad!, =
1,2; but then pg:Upg.€ P and {b®’, b#7} is OP. A contradiction and hence P is as
desired.

So far we have dealt with the case when (*) holds. Consider now the case when
—(*) holds. So, there is a sequence {(a,, b>) | @ <R} such that the a,’s are distinct
and belong to X, the b* belong to A" and they are pairwise disjoint, and
whenever f(a,, ag) = 1, {b*, b®} is not OP. If n =0, then {a, | @ <X} is already an
uncountable homogeneous set, so P can be chosen to be the trivial forcing.
Suppose n>0. We color distinct b% b® in two colors according to whether
{b*, b®} is OP or not. This is an open coloring hence by Lemma 3.2 there is a
c.c.c. forcing set P of power X; which does not destroy the increasingness of A
and decomposes {b* | « <X,} into countably many homogeneous sets. We show
that P adds an uncountable homogeneous set to X. Let {b*|ael'}=B be an
uncountable homogeneous set added by P. Since P did not destroy the increasing-
ness of A, for every a,Bel, {b° b®} is OP, hence f(a,, ag)=0, and hence
{a, | @€'} is f-homogeneous of color 0. We have thus proved Lemma 3.3, and
since we skip the details of the iteration this concludes the proof of Theorem
3.1. O

Question 3.4. Can SOCA be replaced by SOCA1 in Theorem 3.1?

In the remainder of this section we try to generalize OCA to colorings of
n-tuples rather than just colorings of pairs. Example 1.7 shows that the most
direct generalization of OCA is inconsistent. However, the following axiom
generalizing OCA might still be consistent with ZFC.

Axiom OCA(m, k). If X is a second countable Hausdorff space of power X;, and
A is a finite open cover of X™, then X can be partitioned into {X; | i€ w} such
that for every i e w, (X;)™ intersects at most k elements of .

Question 3.5. Is it true that for every m there exists a k such that OCA(m, k) is
consistent?

In fact we do not even know the answer to the following weakened version of
the above question. Is there k such that the following axiom is consistent: “If X is
a Hausdorff second countable space and ¥ is a finite open cover of X>, then there
is an uncountable A < X such that A? intersects at most k elements of % ”.

At this point it is worthwhile to mention the following theorem of A. Blass [4].
If U is a symmetric partition of the n-tuples of “2 into finitely many open sets,
then “2 contains a perfect subset in which at most (n — 1)! colors appear.
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We will prove a weaker generalization of OCA; however rather than formulat-
ing this new axiom in topological terms, we translate it into an equivalent
statement on colorings of the binary tree.

We first introduce some terminology. Let T =(“~2, <) be the tree of binary
sequences of length <w; let T=“"2 and L =%2. L is regarded as the set of
branches of T. For v,ne T, v<7 denotes that v is a proper initial segment of
7, v A M denotes the maximal common initial segment of » and n, A denotes the
empty sequence, if v=<im, then [v, ], (v, n) denote respectively the closed and

PR PRy S | PO PR - Aim mbn e ok

Upcu intcrvais Wllll ClluUpUllllb [4 allu ", dllu lVJ lV} UCLIULT lcbpcbl Ve ly [1‘1, i/]
and [A,v). If AcL let T[A]={vAn|v,ne A and v# n}; note that T[A] is
closed under A. For B T let B '={c<B||o|=m and o is closed under A}.
Let v<<; m denote that v ~{0)<n and v<\g7m mean that v "()=im. If o, 7€ TI™!
then o~r means that (o,<[,<g)=(T, <., <g). A function f: T"!—>n is

H . H [m]
called an m-coloring of T; B< T is f-homogeneous if for every o, 7€ B'™ such

that o ~7:f(oc)=f(7); AcL is f—homogeneous if T[A]is.
Let the tree m-coloring axiom be as follows.

Axiom TCAm. For every A < L of power X; and for every m-coloring f of T, A
can be partitioned into countably many f-homogeneous subsets.

Let TCA= Ao TCAM,

We chall later nrecent a taonlao
YV L SLidil 1divl PICOUIIL a4 WpIUEgT

being the reader can check the following proposition.

Proposition 3.6. (a) OCA TCAI.
(b) MA,+TCA1> OCA.

Our next goal is the following theorem.

Theorem 3.7. TCA+MA is consistent.

Lemma 3.8 (CH). Let A < L be of power Ry, and let 7 ={D;|icw} be a partition
of the levels of T into finite intervals, that is, D, can be writien as Lm, 1) where
no=0 and n, <n,,,. Then there is a c.c.c. forcing set P = P 4 o of power R, such that
after forcing with P, A can be partitioned into countably many sets {A; | j € o} such
that for every j, T[A;] intersects each D; in at most one point.

which encodes T, A and 9, and let
C Cy P will consist of all ﬁmte approxxmatlons of the desired partition
{A, | j € ®} in which each A; intersects each C-slice in at most one point. To be
more precise let {o; |i<X;} be an order preserving enumeration of C, let
E;=[a;, a;41), and let €={E;|i<R®;}. € is called the set of C-slices. P=
{f| Dom(f) € Py (A), Rng(f)c @ and for every jew: for every D, |TIf'()]1N
Di|=1 and for every E, |f ()N E;|=<1}.
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[¢]

cth 1€ Ca

clearly IFp “A can be partitioned into {A;|j<€ e} such that f
|T(A;IND|=1”. O

Ry the standard duplication method on

easily show that P is c.c.c., and
or every j and i,

Let 0 € Umeo T!™ and ve T, o <v denotes that max({v A& | £€ o})e 0. Note
that (1) if ¢ <w, then o U{r}eU,.c, T™ and (2) o can be written as {&,, . .., &.}
where for each i<m, {¢,,...,&}e T and {&,,...,&}<&,,. Let o T and
v,neT; v~_n if there is an isomorphism between (o U{v}, <;, <g) and (¢ U
1), <., <o) which is the identity on ¢. For v e T let Ith(») be the length of ». Let

{n}, <<p, <<g) which is the identity on o. For ¢ let 1th(v) be the length of v. Let
n ={n; | i € w} be a strictly increasing sequence of natural numbers, let o < T and
ve T; we say that o, v are n-separated if for some i: for every n € o, Ith(n)<m;
and Ith(v) =n,.

Lemma 3.9 (CH). Let f: T"™*Y—>n be an m+ 1-coloring of T and A<L be
uncountable. Then there is a c.c.c. forcing set P = Pl ¢ of power R, such that after
forcing with P we have the following situation: there is a strictly increasing sequence
n with no=0 and an uncouniable B < A such that for every UET[B}”"] and
v,neT[B]: if o<v, n; v~,m and o, v are n-separated, then f(oc U{v}) =
fle U{n}). (We call such B a prehomogeneous set.)

Moreover, (*) there is a countable A’'= A such that for every ac A~ A’ there is

p € P such that p Fpa € B.

Before proving Lemma 3.9, let us see how Theorem 3.7 follows from Lemmas
3.8 and 3.9.

Proof of Theorem 3.7. As usual we deal just with the atomic step in the iteration.
So, given a subset A = L of power R; and an m-coloring f of T we have to find a
c.c.c. forcing set of power X, such that after forcing with it A can be partitioned
into countably many f-homogeneous subsets. We prove this by induction on m.

The case m =1 follows from the proof of the consistency of OCA.

Suppose by induction for every m-coloring f of T and every A < L of power R,
there is a c.c.c. forcing set P=P,; of power X; such that |Fp “A can be
partitioned into countably many f-homogeneous subsets’’.

Let V be a universe satisfying CH, A< L be of power X; and f be an
m + 1-coloring of T. Let {Q; | i € w}, {P. | i € w} be a finite support iteration, Q, is
trivial P, is a Q;-name for the forcing set P ; from Lemma 3.9 in the universe

', and Q.= Q *P,. Let P4 ;= ., Q. We denote P% by Q. In V° we have

I | Af mrabhamagananing aitheote of A and carreanandi o an

a fauu}_y {B; | i€ w} of prehomogeneous subsets of A, and corresponding to each
B; we have a sequence n'. By (*) of 3.9 it is easy to check that |A — ;. B;|<R,.
Let Di={ve T|ni<lth(v)<ni,,} and 9 ={D!|je w}. Let R be the Q-name of
the following forcing set. R is gotten by a finite support iteration of P, g: of
Lemma 3.8. After forcing with R each B; is partitioned into countably many sets
which we denote by {B; | j € w}. It is easy to see that for every By: if o € T[B; 1™},
v,neT[B;], o <v,m and v ~, n, then f(a U{p})=f(oc U{n}).
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We can now define an m-coloring on each T[B;]. The color f;(c) where
o e T[B; 1™ is the sequence of colors of the form f(o U {v}) where the »’s belong
to T[B;;] and they represent all equivalence classes of ~, in which o <v. More
precisely for every o€ T[B;I™ let v{,..., v{ >0 be such that for every v>o
there is a unique i such that » ~_ v7. Moreover we pick the »{s in such a way
that if 7~ », then for every i there is an isomorphism between (t U{v}, <;, <g)
and (o U{r7}, <, <g) which maps 7 onto o= We define f;(o)=
(flo U3, ..., flo U D).

By the induction hypothesis there is a c.c.c. forcing set S of power X, such that
I-s “Each Bj; can be partitioned into countably many f;-homogeneous sets”. It is
easy to see that if B < B;; is f;-homogeneous, then B is f-homogeneous. Hence
after forcing with Q*R=*S, A can be partitioned into countably many f-
homogeneous subsets. This completes the proof of Theorem 3.7. O

Proof of Lemma 3.9. For BT and a€T, let B"™% ={occB"|there is veo
such that v<<a}. Let f:T'"*Y—y and A be as in 3.9, let M be a model with
universe X, which has T, f and A as predicates. Let {o; |i <X} be an order
preserving enumeration of Gy, M, =M, E, =[a;, a;+1) and A”=A N[a,, Ry).
For every ac A" we define a coloring f, : T"*—n. Suppose a € E,, for every
finite subset C< T there is a function ge: C'™*—n such that for every formula
¢@(x) in the language of M, and with parameters from M;: if MF¢e[a], then for
every a <X, there are b, ce A such that b,c>a, MFo[b]A¢[c] and for every
ageC™*l g <bac and f(od U{bAc})=gc(o). The existence of such g is proved,
as in the analogous argument in the proof of the consistency of OCA. By Konig’s
lemma we can choose the gc's to be pairwise compatible. Let f,=
U{ge| CePo(M).

We are ready to define the forcing set P = P}  of Lemma 3.9. An element p of
P is an object of the form (n, C) where n=(n,, ..., n_4) is a strictly increasing
finite sequence of natural numbers with n,=0, C is a finite Cy,-separated subset
of A" and the following conditions hold: (1) for every distinct a, b € C, Ith(a Ab) <
n.-1, denote by n,, the maximal n; such that n,<lth(aab); (2) let f, [ k
abbreviate f, | {ve T |1th(v) <k}™*, then for every distinct a,be C, f, | na, =
fo } nep; and (3) for every distinct a,be C and for every o<Dom(f, | ng),
floU{anb})=f.(c). We denote n=n", n,=nf, C=C, and n,; =nk,.

Let p,qe P, then p<q if n°<n? and C,c C,

We prove that P is c.c.c. Let {p, € a <X;}< P. W.lo.g. (1) for every a, B <Xy,
nP=nP=n=(ng, ..., m_y), and {C, | a <R} is a A-system; (2) for every a <
B<Ry, C,.=1{8a0s - -+ s Oar—1> Bours - - - » Aus—1} Where {@p 0, . - ., Gy ,—1} is the kernel
of the A-system, and a,,<':-<a,,-1<ag,; (3) for every a, B <R, and i<s,
Qoi Py =ag; P ey and fo T mey=Ffo, | mey.

We regard each C, as an element of L°. We use the usual topology on L and
define D to be the topological closure of {C, | a<X,}in L*. D is definable from
some parameter e in M. Let i, be such that e, a,, ..., a,,-1 <o, and let p, be
such that o, =a,,, ..., Gus_3-
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We apply the duplication argument to p,. Let us denote p,=p, C,=C and
Ao = ;. We define by a downward induction formulas
Py 1(Xps oo X 1)s e, 0(x,), ¢,_q4 Wwith parameters <a; such that MF
ela, ..., al Ps1(Kpy o ooy Xe—1) is the formula saying that
{Qgy ..oy Quyy Xpy « -+ 5 Xs—1) € D. Suppose ¢;,; has been defined. By the definition
of f, there are b', b2 such that MF¢,,(a, ..., a,b'], j=1,2, th(b*Ab>)=n,_,
and for every oeDom(f, | m_,), floU{b*'AbZ)=f, (o). Let v, =b'Ab>
and 5
QX ..oy xi)anla Y2 (/\1 Cir1(Xgs .oy X, y")/\(yl/\y2= Vi+1))-

.

Next we construct by induction sequences (b., ..., bi_;)=b’, j=1, 2 such that:
(ag,...,a,.1) ~beD, and for every i=r...,s—1, bl!Ab7=v. Since
{C,. | « <R} is dense in D there are a, B <X, such that for every i=r,...,s—1,
Ao Nag; =v. Let m>max({lth(;) |i=r,...,s—1}); recalling that for every i,
fau l Meo1=Ffq,, | mc_y, it is easy to see that (n™(n.), Cp U Cp,)€ P. Hence P is
c.c.c.

P is not yet as required in Lemma 3.9, since if G is P-generic, |J{C, | pe G}
need not be uncountable. However, by a standard argument, it is easy to find a
countable set A'c A such that if P’={peP|C,NA’'=§}, then for every P'-
generic filter G |J{C, |pe G} is uncountable. P’ is obviously as required in
3.9. O

This concludes the proof of Theorem 3.7.
Remark. As in Lemma 3.2 we can also prove that TCA + MA +ISA is consistent.
Question 3.10. Prove that TCAm=> TCAm +1.

Our next goal is to find a generalization of OCA which is equivalent to TCA.

Let D,,(A) be the set of 1-1 m-tuples from A. Let X be second countable and
of power X,. An open m-coloring of X is a finite open cover U ={U,, ..., U,} of
D,.(X) such that each U; is symmetric. We next define what it means for an open
m-coloring to be strongly open. We define by a downward induction
¢;(Vy, ..., V;) where ¢; is a property of i-tuples of open sets from X.
em(Vi, ..., V) =3U, (V;X---XV, < U,). Suppose ¢;,, has been defined;

eV, ..., V)=(Vx, 66 V) (x; #x,— (3 vV, v?3 (x1€ VliAx,e v?
AV, VZare open) A @i 1( Ve, ..., Viey, VE V),
@ (Vy, ..., VO=A{ei(Vawys - - -» V) | ™ is @ permutation of i}.

Definition 3.11. Let % be an open m-coloring of X. U is strongly open if ¢,(X)
holds.

Let t,, be the number of isomorphism types of models of the form (g, <<;, <g)
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where o€ TI™). Let % be an m-coloring of X. A < X is U-homogeneous if there
is a subset U’ < AU such that |U'|<t, and D,,(A)cU{U|Uecu".

Awinee MIA e T V ic cnnnn A A alla ~f Qs
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gly
open m-coloring of X, then X can be partitioned into countably many -
homogeneous subsets.

anAd

...... a o

Theorem 3.12. (a) OCAm +1>>TCAm.
(b) TCAm+MA, =>OCAm +1.

D) AR T UVAAAR, 7 NN

Proof. (a) Assume OCAm+1, and let f: T'™—n be an m-coloring of T and
A c L be of power X,. For every ie N and g € T'™! we define a symmetric open
subset of D, ,(A):

UO'I.= {(aO’ MR am>6Dm(A) i <T[{a0’ L] a’m}]’ <L7 <R>E<o" <L’ <R)
and f(T[{ao, .. ., anx}]=0}

Clearly % ¥ {U, ;| o0 T'™ and i< n} is a finite open cover of D,,.1(A), and it is
easy to check that U is a strongly open (m + 1)-coloring of A. Applying OCAm +
1 to A and % one gets a countable partition of A into %-homogeneous sub

It is easy to check that these sets are in fact f-homogeneous.

(b) Assume MA, +TCAm. Let U ={U,,..., U,} be a strongly open (m + 1)-
coloring of a second countable space X of power X;. W.l.o.g. X is Hausdorff. Let
% be a countable open base of X. A tree approximation of U is a function g such
that: Dom(g)< T, Rng(g) <= % and (1) if 'n<fveD0m(a\ then n € Dom(g); (2) let
v,meDom(g); then if » and m are incomparable with respect to =, then
g(v)Ng(n)=9, and if v=<m, then g(v)2g(n); and 3) if i<m and v,,..., €
Dom(g) are incomparable in T, then ¢;,(g(¥), ..., g(#;)) holds. Let g be an
approximation of %, and let B < X; we say that g is an approximation of % on B
if: (1) for every b € B there is a branch ¢, of Dom(g) such that be (" {g(v)|vet};
and (2) the function mapping b to ¢, is 1-1.

Using MA,, it is easy to see that there is a family {(g;, B) | i € w} such that g; is
an approximation of % on B; and {J;., B;=X WJlo.g. Dom(g)=T. Let A; =
{t, | be B;}, hence A; < L. For every i we now define an m-coloring f; of T. Let

o € T!"™: if there is no C < A, such that T[C]= o, define f.(o) = 0; otherwise, let

ty - - - » &, be such that T[{t,,..., 4 }|=0c and let f(o)=i where (b, ..., b,)e
U,. Clearly, f(o) does not depend on the choice of bo, ..., b,. One can easﬂy
check that if Ac A, is f-homogeneous, then {b]|, } is U -homogeneous,

hence OCAm +1 follows. O

Remarks. (a) We did not mention the polarized versions of TCA, however the
proof that they are consistent resembles the proof that TCA is consistent.

(b) The consistency of OCAm or TCA implies by absoluteness a special case of
Blass’ theorem [4], namely that if % is a strongly open coloring of “2, then “2
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contains a perfect set in which at most ¢,, colors appear. The existence of such a
perfect set is a 3| statement, and since it holds in some extension it must exist in
the ground model.

The main question in this matter is whether our consistency result can be
strengthened to include all open colorings as in Blass’ theorem.

An open coloring can be regarded as a continuous function from X X X to the
set of colors equipped with its descrete topology. It seems thus natural to examine
partition theorems for general continuous functions. We did not investigate these

questions thoroughly, however here is one example of such a theorem.
Let the nowhere denseness axiom be as follows

Axiom NWDA2. If X and Y are second countable Hausdorff spaces, |X|=8;
and Y is regular and does not contain isolated points, and if f: D,(X)— Y is a
symmetric continuous function, then X can be partitioned into {A, |i € w} such
that for every i, je w, f(A; X A;) is nowhere dense.

Note that even the weakest form of NWDA does not follow from ZFC, for if
A =R is an uncountable Lusin set (i.e. its intersection with every nowhere dense
set is countable) and f(a, b) = a + b, then for every uncountable B c A, f(B X B) if
of the second cateogry.

Question 3.13. Does NWDA?2 follow from MA,, ?
Theorem 3.14. MA +NWDAZ2 is consistent.

Proof. We deal with the atomic step in the interation, and we assume CH in
every intermediate stage. Let X, Y, f be as in the axiom, let 8 and € be
countable bases of X and Y respectively, and let M be a model whose universe is
X, and which encodes f, X, Y, & and 4. Let {E, | i <X} be an enumeration of the
Cys-slices in an increasing order. Let U< Y be a finite union of elements of €,
and let a € E,. We say that U is permissible for a, if for every formula ¢(x) with
parameters in Jg<o Eg: if MFe[a), then there are distinct b, ¢ such that

MEe[b], MEo[c] and f(b, ¢)¢ cl(U). Let
P=Pxy;={(0, U)| 0 € Pxo(X), o is Cy-separated,
f(D,y(a))Necl(U)=0, and for every aca, U is permissible for a}.

(o, Up=(oy U, if 0,20, and U,c U,.

One can easily check that if U is permissible for a and V<Y is open and
non-empty, then there is U, 2 U such that U; N V# @ and Y, is permissible for a.
It is easy to check by the duplication argument that P is c.c.c. Let G be P-generic
and A =|J{o |3U ({0, U)e G}. Then f(D,(A)) is nowhere dense. Let P% v, be
the forcing set gotten by iterating P v @ times with finite support. It is easy to
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check that if G is P% v, generic, then in V[G], X has a partition {A; | i € } such
that for every i€ w, f(D,(A,)) is nowhere dense.
The proof will be completed if we show the following claim. [

Claim. Let {A, | i< o} be a family of second countable spaces of power Ry, Ybea
second countable space without isolated points, and fnr every i <j let f tA; X A —-Y
be a continuous function. Then there is a c.c.c. forcing set P of power X, such that
after forcing with P each A; can be partitioned into {A; | j € w} such that for every
distinct (iy, jy), (ia, j2), fi,i,(Ai;, X Ay,) is nowhere dense.

We leave it to the reader to construct such P. (Here one does not have to

assume CH in the ground model.)

Question 3.15. Let NWDAm denote the axiom analogous to NWDA2 where
m-place functions replace 2-place functions. Prove that NWDAm is consistent.

. The semi onen nlm'mo axiom does not imnlv the onen
r

=T T T

colormg axiom; the tail method

In this section we present another trick called the “tail method”. This method is
used in the proof of the following theorem.

Theorem 4.1. MA +SOCA +10CA +2% =R, is consistent.

Indeed in Section 11 we prove that MA,, + OCA=> 2" =R, and in Section 5 we
prove that MAR1+SOCA+2“°>K2 is consistent, hence this means that MA, +
SOCA +OCA + 2% >R, is consistent.

Still Theorem 4.1 adds some information, but more importantly it is a simple
application of the tail method and thus will well serve in presenting this method.

The consistency of MA,, with the existence of an entangled set which is proved

in [1], implies that MAN1+—180CA+—10CA is cons1stent

TAawavar w
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Question 4.2. Does OCA imply SOCA? Does MA +OCA imply SOCA?

Proof of Theorem 4.1. We give a detailed description of the proof, but skip the
details which are standard; we aiso skip some formalities in order to simplify
notations.

Definition. (X, f) is a SOC pair if f is a SOC of X; it is called an OC pair if in
addition f*(0) is open in D(X).
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We want to construct a universe W in which MA + SOCA +—10CA holds. To
do this we start with a universe V and an OC pair (Y, g)e V such that
VE“CH+2" =R, and Y does not contain uncountable g-homogeneous subsets”.

W is gotten from V by a finite support iteration of forcing sets {P, | @ <R,}, and

we want that (Y, g) will be a counter-example to OCA in W. So we prepare in
advance a list of tasks which will enumerate all possible SOC pairs (X, f) and all
possible c.c.c. forcing sets of power K. In addition we prepare a 1-1 enumeration
{ya | B<R} of Y. We define by induction on a <R, a forcing set P, and a club
C,cR,. let Y, —{ys!,Bc(“]» We call Y, the ath tail of Y. Qur induction
hypothesis is that I, Y, does not contain uncountable g-homogeneous subsets.

Let P= P, It is clear that the induction hypothesis assures that Ik “Y is not a
countable union of homogeneous sets”.

If § is a limit ordinal, then Ps=J,s P,. We choose a club Cs; =X, such that
for every a <8, |G —C,.|=R,. We want to check that the induction hypothesis
holds.

Case 1. cf(8) = X,. Suppose by contradiction for some Pj-generic filter G there
is A e V[G] such that A is an uncountable g-homogeneous subset of Ys. Since
(Y, g) is an OC pair we can assume that A is closed; and since Y is second
countable there is o <8 such that Ac V(GNP,]. ANY, is an uncountable
homogeneous subset of Y, belonging to V[GNP,)], and this contradicts the
induction hypothesis.

Case 2. cf(8) =R,. Suppose by contradiction that there is a Ps-generic G and
A € V[G] such that A is an uncountable homogeneous subset of Ys. Let {o; | i€
w} be an increasing sequence converging to 8. Then there are A, i € w, such that
A =Uico A and A;e V[GNP,]. Some A,; is uncountable, hence A;NYj; is

uncountable. This again contradicts the induction hypothesis.
T at 11¢ cae how tn dafine D 'S in tha

Let us see how to define P, C, ., in the su s t i
deal with a c.c.c. forcing set P,, we will use a version of the explicit contradiction
method, this will be explained later.

We first deal with the case when the ath task is a P,-name of a SOC pair
(Xa f,). For a SOC pair (Z, h) such that Z does not contain uncountable
0-colored sets, let M(Z, h, Y, g) = M be a model whose universe is X;, and which
encompasses enough set theory, and Z, h, Y and g. Let C,; be the club of initial
elementary submodels of M. Let P(Z, h, Y, g) be the forcing set consiSting of all
Cys-separated finite 1-colored subsets of Z,

Suppose X, does not contain uncountable 0-colored sets. We want to add to X,
an uncountable 1-colored set without destroying the induction hypothesis. For
this we need the following lemma.
Lemma 4.3 (CH). Let <Y, g) be an OC pair which does not contain un
homogeneous subsets, and let {yg | B <R} be a 1-1 enumeration of Y. Let (X, f) be
a SOC pair which does not contain uncountable 0-colored subsets. Then there is a
club C= R, an uncountable X'< X and a c.c.c. forcing set Py ;= P of power X,
such that \Fp “{yg | B € C} does not contain uncountable homogeneous subsets”.
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Let {8, | y<R,} be an order preserving enumeration of C,. In order to define
P,.y, Cyvy we apply Lemma 4.3 to (Y,, g), (X, f) and the enumeration {yg ly<
R} of Y, Let X', C be respectively the subspace of X and the club whose
existence is assured in 4.3. We define P, to be P, *Py.¢and C,.,={B,|ve C}
It is clear that P,,,, C,., satisfy the induction hypothesis.

Lemma 4.3 is broken into two claims.

Lemma 4.4 (CH). Let (X, f) be a SOC pair, (Y, g) be an OC pair and {yg | 8 <X}
be a 1-1 enumeration of Y. Suppose X does not contain uncountable 0-colored
subsets, and Y does not contain uncountable homogeneous subsets, then there are
uncountable X' < X and a club C <R such that letting Y’ be {yg | B € C}, for every
uncountable 1-1 function h= X' XY’ and every 1 €{0, 1}, there are x,, x,€ Dom(h)
such that f(x1, x,) =1 and g(h(x,), h(x,)) =L

Lemma 4.5 (CH). Let (X', f), (Y’,g) be as assured by Lemma 4.4, and let
P=P(X',f Y’ g), then |Fp “Y' does not contain uncountable homogeneous sub-
sets’’.

Proof of Lemma 4.4. We first prove the following claim.

Claim 1. Let (X, ), (Y,g) and {yz|B<R,} be as in 4.4, let F<XXY and
1€{0, 1}, and suppose that for every x, x,€ X and y, y2€ Y: if X, # X3, V17 V2
(x1, V1), (x5, y22€F and f(xy, x,)=1, then g(y,, y»)=1 Then there are at most
countably many x’s in X for which {y |{x, y)e F}|>R,, and there are at most
countably many y’s in Y for which |{x | (x, y)€ F}|>R,.

Proof. Let F(x)={y|{(x,y)e F} and F'(y)={x|{x, y)e F}. Suppose by con-
tradiction that A %'{x ||F(x)|=X,} is uncountable. Since Y does not contain
uncountable [-colored sets, for every xc€ A there are y,, y>e F(x) such that
g(yl, y2)=1-1, and the choice of the yi’s can be made so that for every u# v in
A, {yl yAn{yl, yZ}=0. By the second countability of Y and the openness of g,
there is an uncountable B < A such that for every distinct u, ve B, g(y', y?) =
1 -1 Since X does not contain uncountable 0-colored sets there are u, v € B such
that f(u, v) = 1. This contradicts the assumption about F, since f(u, v)=1, yi+#y2
for (u, ya), (v, y2)e F but g(ys, yo) # 1L
The agrument why [{y | |[F~'(y)|> R} <R, is similar. O

We now return to the proof of Lemma 4.4. For F as above let D(F)=
{x | |IF(x)|=<Ro} and R(F)={y ||F '(y)}{=<Ro}. Let {F, |i<¥;} be an enumeration
of all closed subsets F < X X Y which satisfy (*): there is I = Iz €{0, 1} such that for
every x;, x;€X and yy, y,€ Y: if f(xy, x5)=1, y1#y, and (xy, y1), {x2, y2)€ F,

then g(y;, y2) =1
We define by induction on i <N;, x; € X and B, <X, with the purpose that X’
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will be {x; | i <R} and C will be {8; | i <X;}. Suppose x;, B; have been defined for
every j<i. If i is a limit ordinal let 8; =sup({B; | j <i}), otherwise let B; be an
ordinal greater than any ordinal in the set {y|y,elU{F.(x)|k j<i and
x; € D(F )R U{B; i]<l} Let x;eX—{x “<i}_U{F;1(}’Bj) i k<i, j=i and
¥s, € R(F)}

Let C={B;|i<N;} and X' ={x; | i <R;}. Clearly X’ is uncountable and C is a
club. Let Y'={yg | 8 € C}. Suppose by contradiction there is an uncountable 1-1
hc X’xY' and 1 €{0, 1} such that for every x;, x,€ Dom(h): if f(x;, x,) = 1, then
g(hi{xy), h(xx))=1 Let FES XX Y be the closure of h in XX Y. Since f (1) is
open and g~ (1) is closed, F satisfies (*), hence for some i, F = F,. Let (x;, yg )€ h
be such that i <j, B, x; € D(F) and yg_€ R(F). If j =k, then we picked x; not in
F~'(yg,), a contradiction. If j<k and k is a successor, then we picked B, such
that yg ¢ Fi(x;), a contradiction. Suppose j<<k and k is a limit ordinal. Let

i<k <<k be a successor ordinal. Then B8, >8, and B, 1is ereater than any
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element of the set {y | y, € F;(x;)}, hence B.¢{v |y, € Fi(x;)}, a contradiction. This
concludes the proof of the lemma. [

Proof of Lemma 4.5. Lemma 4.5 is very similar to the first part in the proof of
Lemma 3.3. We leave it to the reader to translate the first
to a proof of this lemma.

We next have to deal with the following case. Suppose P,, C, have been
defined, and the «th task is as follows: we are given a P,-name of a c.c.c. forcing
set R, of power <N,;, and we have either to add a generic filter to R, or to

destroy the c.cc.-ness of R ¥ |l— “V dnec not contain uneountahla
GOSUVY uic C.C.C-NSSss F OO TR, GOCS 1107 COMainl | ULCOUNwaoil

homogeneous sets”’, then P,.,=P,*R, and C,,,=C,. We deal with the case
when there is re R, such that ritz_“Y, contains an uncountable homogeneous
et”. In this case we will construct a c.c.c. forcing set Q, such that k5 “R,, is not
c.c.c., and Y, does not contain an uncountable homogeneous set”.

Lemma 4.6. Let (Y, g) be an OC pair that does not contain uncountable
homogeneous subsets, let R be a c.c.c. forcing set and re R be such that rl-g “Y
contains an uncountable homogeneous set”. Then there is a c.c.c. forcing set Q of
power X, such that kg5 “R is not c.c.c. and Y does not contain uncountable

Proof. Let M be a model with universe R; encompassing the space Y, the
function g and enough set theory. Let Cyy,={a|M } a<M}. Let B be an
R-name, re R and 1€{0, 1} be such that rlFg “B is an uncountable l-colored
subset of Y. W.l.o.g. r=0g and [ = 1. We choose a sequence {(r_, vy, v2) | a <R}

VYor Yo/
e, 1

such that: for every a, r,lFg “yl, y2e B”; for every a <B <R,, yi<y2< ys, and
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{ve ¥2. ¥4, va} is Cyy-separated. W.l.o.g. there are basic open sets Uy, U, of Y
such that for every a <¥, and i€{1,2}, y.Le U, and g(U,x U,) ={1}.

We define Q as follows. Q ={o € Py (R,)|for every distinct o, € there is
i €{1, 2} such that g(y., yg) = 0}. Note that the last clause in the definition of Q is
just the ‘explicit contradiction’ clause, hence if «, B € 0 € Q are distinct, then r,
and ry are incompatible in R. The partial ordering in Q is of course: o =<7 if
ocT.

The proof that Q is c.c.c. resembles the analogous proof in Section 3. The
argument why Ik, “R is not c.c.c.” is also as in Section 3.

Let us show that Ik, “Y does not contain uncountable homogeneous subsets”.
Suppose by contradiction that the above is not true. Then there is a sequence
{(ge, ya) | B <R;} and 1 €{0, 1} such that for every a <8 <Ri, q, € Q, y.# yg and if
4o YU gg € Q, then g(y,, yg) = . As usual we uniformize the sequence {{qg, yg) | B <
N;} as much as possible, hence we may assume that gg=
{ag, ..., o, @f, ..., aB_;} where for every B<vw, ao<' <o <af<- - -<
af_;<al. Let us denote yis by y(B,j,i), and y; by y(,i). Let y=
(y(0,0),y(0,1),...,y(k—1,1)), y(B, D =(y(B,],0), y(B k, 1)), y(B)=
y~y(B, k)™ -~y(B,n—1) and z(B)=y(B) " (ys). Recall that if we take two
pairs y(B,i) and y(B,j) where i#j, then either their first or their second
coordinates have color 0, ie. either g(y(B,i,0),v(B,j,0)=0 or
g(y(B,i, 1), y(B,j, D))=0. Hence by more uniformization we can assume that
there are my’s for k <i<j=<n-—1 such that for every 8, i and j, g(y(B, i, my),
y(B, j» my)) =0, and that there are basic sets U;", i=k,...,n—1, m=0,1, such
that for every B, y(B, i, m)e U{" and for every k<i<jsn-—1, g(UMX Uj)=0.
Let F be the closure of {z(B)| B <R;} in Y™, let y,€ Cys be such that F is
definable in M from a parameter belonging to y,. Let 8 be such that all the
elements of z(B) except the first k of them do not belong to y,. We duplicate
z(B). Note that y(8) is separated. Let E be the C, -slice to which yg belongs.
Hence there is at most one element of y(B) which belongs to E. To simplify the
notation let us assume that this element is y(B, k, 0). Hence by the duplication
argument, and since we know that Y does not contain homogeneous uncountable
subsets, we can find z' =y~ (y'(k,0), yi(k, 1),...,y'(n—1,0), y'(n—1,1), yHe
F, i=1,2, such that g(y', y)#1L and gyt j), y2(t))=0 for {j)=(k, 1),
(k+1,0), (k+1,1),...,(n—1,0),(n—1,1). Since g is continuous we can find
neighbourhoods V,, V, of z', z? respectively such that the same equalities hold
whenever we pick z,€ V, and z,€ V.. Let z(a)e V; and z(B)e V, it is easy to
check that q, Ugg € Q but g(y,, y,)# I, a contradiction. T

This concludes the proof of Theorem 4.1.

The tail method will be used again in Section 9 and 10. The reader can check
by himself that combining the club method, the explicit contradiction method and
the tail method one can e.g., get the following consistency result that was
mentioned in Section 2.
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Theorem 4.7. MA+SOCA+3A (A is increasing and rigid) is consistent.

5. Eniarging the continuum beyond X,

According to our presentation in the previous sections, we always had to
assume CH in the ground model in order to apply the club method. Thus in the
resulting models of set theory 2% had to be equal to N,.
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method can work. Hence we will be able to prove that some of the axioms
considered in the previous sections are consistent with 2% >X,.

Indeed CH was used in more than one way. In Theorem 1.5 we used CH in
order to prove the following claim. If {F; | i  I'} is a family of closed subsets of X,

and VYV ic nat tha sininn ~Af ~annntahly mmanuy B2 than thara an nnsnnntahla
and X is not tne union oOf Coufitaoiy many 145, inén inere is an uncduniadic

X' < X which intersects every F; in at most countably many points. In Section 3
we used CH in order to preassign colors, and in Lemma 4.4 we used CH in still
another way.

It so happens that MA + OCA implies 2% = X,. However, MA® SOCA + 2% >

X, is consistent. We present the new method by means of an example. We will
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show that MA + SOCA + (2% >R,) is consistent. The reader will be able to check
that the consistency of MA +NWD2+(2%>X,) can be proved by the same
method. The proof that MA + OCA=> 2% =R, will be presented in Section 11.
But some questions remain open, and we will mention them in Section 11.

In view of this section and Section 11, certainly MA + SOCA 3 OCA, hence we
do not have to prove Lemma 4.4 in the absence of CH, however since the proof
exemplifies what can be done without CH we take the liberty to present its short
proof. This is done in Lemma 5.5.

Let A < B denote that |[A — B|<R,. Let M be a model in a countable language
such that [M|2R,, and let D be a finite subset of |M|; we denote Cyp, & {a e
R, | there exists N < M such that D <|N| and a =|N|NR;}. Clearly Cy,, contains
a club. A club C of X, is called M-thin, if for every finite D<|M|, C< Cyp-

Let us reconstruct the proof of Theorem 1.1. The central point in the proof was
to construct for a given SOC f of a second countable space X, a forcing set Py,
which adds to X an uncountable 1-colored subset. To do this we constructed a
model M which included all the relevant information about X and f, and defined

Py ¢ to be the set of all finite, Cy,-separated, 1-colored subsets of X. In the proof

that P, . was c.c.c.. the onlv nroperty of C,., that was used. wag its M- thinness.
..... xy Was C.C.C., LNC Oy Property O Ly nat was useq, was 1is HM-tninness

Let W be a universe in which 2™ >X,. In order to be able to repeat the
construction of Theorem 1.1. starting with W as the ground model, we thus need
that W will have the following property. If P W is a c.c.c. forcing set of power
<2%, G < P is a generic filter and M e W[G] is a model which is constructed for
some (X, fye W[G], then W[G] contains an M-thin club.

We will show that such W’s can be constructed, and in fact, the W’s that we
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construct will contain M-thin clubs for a wider set of M’s rather than for just
those M’s that come from some (X, f). This fact will be important in other
applications of the method.

We define the countable closure of a set A. For i <N, we define by induction
AP:A®=A; if 8§ is a limit ordinal, then A®=J;.;A®; and A V=
AYU{B<c AP ||B|=R,}. Let A°= A®?Y Acis called the countable closure of A.
For a model M, let M° be the following model. {M¢ =|M]|°, the relations in M°®
are those of M, and in addition: the belonging relation on |M|°, and a unary
predicate which represents |M| in M°. A model of the form M¢, where |M|| <2
and M has a countable language is called a low model.

Axiom Al. If P is a c.c.c. forcing set of power <2™, and if M is a P-name of a
model, such that I, “M is a low model”, then i, “there is an M-thin club”.

Proposition 5.1, Let W be a universe of set theory which satisfies Al, then there is
a c.c.c. forcing set Q of power 2% such that W2 ESOCA.

To prove the above proposition one has to reexamine the proof of Theorem
1.1. and check the following fact. Let f be a SOC of X, and suppose X does not
contain uncountable O-colored sets. W.lo.g. X=X; let M=R,UB;¢e,<,[)
where B is a countable base for X, € is the belonging relation between elements
of X and elements of %, and < is the ordering relation on Ry; and let C be an
M*¢-thin club. Then if P is the set of all finite C-separated 1-colored subsets of X,
then P is c.c.c., and IFp “X contains an uncountable 1-colored subset”. We leave
all the other details to the reader.

Our next goal is to construct a W in which 2% >R, and which satisfies A1. Let
us explain how such a W is constructed. We start with a universe V which satisfies
CH. Let A be a regular cardinal in V such that A®1= A,

We define a countable support iteration {(P,, )| @ <A} in which each =, is
the name of a forcing set which adds a club C to X,, such that C is almost
contained in every club which belongs to V%=, We will show that in V5, 2% =2
and A1l holds.

Let P, ={(D, f)| D is a closed and bounded subset of X;, F is a club in X, and
D c F}. let (D, F,), {(D,, F,)e Pq,, then (D, F)<(D,, F,) if D, is an initial
segment of D, and F,< F,.

Proposition 5.2 (R. Jensen). (a) P¢, is w-closed.

(b) (CH) P, is R,-c.c.

(c) (CH) Let {Pcy(a@) | @<=}, {mep(a) | a <A} be a countable support iteration;
P,(0) is a trivial forcing set, and for every aa <A, mo(a) is a Poy(a)-name of the
forcing set Pq, of the universe V¥ Then Po,(A) is w-closed and R,-c.c., and if
A=, then lbp_q, 2% = A.

Proof. Well known.
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Lemma 5.3. Let P, Qe V be forcing sets such that P is c.c.c. in V and Q is
w-closed in V. Then V" is closed under w-sequences in V¥>°.
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VP, Let r be a Px Q-name of an w-sequence of ordinals. We
qo€ Q there is q, = q, with the following property:

(*) For every poe P and new there is p;=p and an ordinal « such that
(p1, gk 7(n) = a. Suppose by contradiction q°c Q and there is no q;=q"° which
satisfies (¥). We define by induction on i a sequence {(q, p, n;)|i<R;}. Let
40=q° poeP, noew be such that there is ay such that {p,, go)lF7(ne) = a.
Suppose {(q;, p;, ;) has been defined for every j <i. Let q' = g; for every j <i. Since
q*>q° (*) does not hold for g, and hence there is p' € P and »; € @ such that for
every p=p' and an ordinal «, {p, ¢")IF-7(n;) = a. Let {p,, ¢;)=(p’, q') and «; be an
ordinal such that (p, g} 7(n;) = «;. Let i <j be such that n, = n;; we show that p,
and p; are incompatible. Suppose by contradiction r = p, p;. Hence (r, g)I-7(n;) =
a;. But g, <q’, hence (r, @)k 7(n;) = ;. But r=p;=p’, hence there is p=p’ and a
such that (p, ¢')it 7(n;) = . This contradicts the choice of p’, ¢’ and n;. Let n be
such that [{i | n; = n}|=X,, hence {p; | n; =n} is an uncountable antichain in P, a
contradiction.

For a Px Q-name 7 of an w-sequence of ordinals let D, ={qe Q | q satisfies
(*)}. We have thus shown that for every 7 as above D, is dense in Q.

Let GcPxQ be a generic filter, and let ae V[G] be an w-sequence of
ordinals. Let G, G, be the restrictions of G to P and Q respectively. We show
that a € V[G,]. Let 7 be a PX Q-name of a. Let g€ D, N G,. For every n € w, let
p. € G, and a, be such that (p,, @)+ 7(n) = a,. Hence a ={a, | n € w) and clearly
acV[(G,]. O

wa

how that for every

Let ({P, | @ <A}, {m. | @ <A}) be an iteration of length A. We denote by 13,3 and
P;-name of the iteration which is formed from the sequence of names {m, | B =<
41 <A}. Hence PB*PB =P.
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Proof. Let Q,=Po,(A). Let G = Q, be a generic filter and W= V[G]. Let Pe W
be a c.c.c. forcing set of power <2, let H< P be generic and U = W[H]. Let
M € U be a model in a countable language such that X, = |M| and ||M||<2%:. Since
Q, is N,-c.c., |P|<2% and (2™ )(W) = A it follows that for some a <A, Pe
VIG N Pgy(a)]. Similarly for some a<B8<A, Me V[GNP~(B)IH]. Let G,=
GNP&(B), Vi=V{(Gy) and Q, = VGI(IA"Cb(ﬁ)), and et G, be the generic filter of
Q, determined by G. Hence P is c.c.c. in V,, Q, is w-closed in V;, HX G, is
P X Q,-generic and V,[H][G,]= U. By the previous lemma V,[H] is closed under
w-sequences in U, and thus since M e V,[H], also M°e V,[H]. Let D be the club
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of X; which is added by the restriction of G to mw,(8), hence D is almost
contained in every club of V,. However since H is c.c.c. in V7, every club of
V,[ H] contains a club of V,, and hence D is almost contained in every club of V;,
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implies that D is M°-thin. O

Lemma 5.5. Lemma 4.4 is true in a universe VF where VEA1 and P is a c.c.c.
forcing set of power <28

Proof. Let (X, f), (Y, 8), {ys | B <Ry} be as in 4.4, and let M be a model which
encodes X, f, Y, g and {ys | B <R;}. Let C be M°-thin, and let {E, | « <X} be an
enumeration of the C-slices in an increasing order. Let D be a club in X; such

that {a | E, N{y, | vy € D} =0} is uncountable, and let X' < X be an uncountable
get such that for avery a <R if YYNE £0 than Iy IA,,— Nl =0 Wa chaow

set such that for every a <X, if X'NE,# @, then {y, | ye DINE, =@. We show
that D and X' are as required. Let Y'={y, | ye D}, and suppose by contradiction
for some hc X'XY' and 1[€{0,1}, h is uncountable and 1-1 and whenever
xy, x,€ X' and f(x,, x,)=1, then g(h(x;, h(x,))=1 Let F=cl(h). Then F is
definable in M°. Using the notation of 4.4, F satisfies (*). Hence by the proof of

4.4 for all but nnnntahlv many elements x ¢ X', F'(Y\ lies in the same (C-slice that x

does. This contradicts the choice of X’ and Y’. O

6. MA, OCA and the embeddability relation on X,-dense real order types

Let A<R. A is R;-dense if it has no first and no last element, and if between
any two members of A there are exactly X, members of A. If A, BSR, let
A*={-a|acA}, let A=B mean that the structures (A, <) and (B, <) are
isomorphic, let A< B mean that (A, <) is embeddable in (B, <), and let ALB
mean that for no X,-dense CcR:C< A and C<B. f: A— B is order preserving
(OP), if for every a,, a,c A, a,<a,>» f(a;)<f(a,); it is order reversing (OR), if
for every a;, a,e A, a1<a2:>f(a2)< f(ay); f is monotonic if F is either OP or
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there is an automorphism f of (A, <) such that f(a)=b. Let K" ={AcK|A is
homogeneous}. It follows easily from ZFC that for every A € K there is B € K™
such that A < B. Let {A; | i<a}< K, and let B € K. We say that B is a shuffle of
{A; | i<a}if there are A} such that A} = A, B=1J;-, A} and for every i <a and
by, b€ B such that b, <<h, there is a ac A} such that b, <a <b,.

Let AeK; BeK is a mixing of A if for every rational interval I there is A;
such that A, I, A;=A and B={J{A;|I is a rational interval}.

Baumgartner {2j proved that it is consistent that aii members of K are
isomorphic. Shelah [1] invented the club method and used it to show that
MA +R;<2% does not imply Baumgartner’s axiom (BA). He constructed a
universe in which MA holds but R contains an entangled set. An entangled set A
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has the property that there is no uncountable monotonic function g with no fixed
points such that Dom(g), Rng(g)< A. Thus A is rigid in a very strong sense. The
consistency of MA +X; < 2% with the existence of an increasing set was proved by
Avraham in [1]. An increasing set is an analogue of an entangled set when
monotonic functions are replaced by OR functions.

It was natural to ask how much freedom do we have in determining the
structure of the category whose members are the elements of K and whose
morphisms are the monotonic functions. In this section we start investigating such
questions under the assumption of MA +RX; <2,

We shall first see that MAy already implies many properties of K. Next we
shall see that MA,; + OCA determines K quite completely, namely if we conjunct
MAy, +OCA with the existence of an increasing set, then K™ consist up to
isomorphism of three elements and every element of K is built from these
clemernts in a simple W i

Baumgartner’s axiom.

Theorem 6.1. (MA,,). (a) If A€ K", ay, by, ay, b€ A, and a,<b; and a,<b,,
then there is an automorphism f of (A <) such that f(al) =a, and f(by) = b,.
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every a€ A and by <b, in B there is i € w such that g; € B N(by, b,). Then A< B.

(c) Let A, B and {g, | ic w} be as in (b), and suppose in addition that for every
beB and a,<a, in A there is i c w such that g;7*(b)e AN(ay, a,). Then A=B.

(d) If A, Be K", A< B and BX A, then A =B. (Hence < is a partial ordering

of KHf=)

(e) If Ae K", then A is isomorphic to every non-empty open interval of A.

(f) Let {A;|i<a=w}< K¥. Then (a) all shuffles of {A,|i<a} are isomorphic
and they belong to K™. In particular,if all the A;’s are isomorphic to some fixed A,
then every shuffle of {A;|i<a} is isomorphic to A; and (b) if B is a shuffle of
{A;|li<a} and Ce K" and for every i<a, A,<C, then BLC.

(&) If AcK and B,, B, are mixings of A, then B,=B, and B, K¥, and if
Ce K" and A< C, then B,<XC.

(h) If AeK and for every Be K A< B, then A e K¥",

(i) If for every A, Be K AX B, then BA holds.

(G) If |[K®/=|=1, then BA holds.

Proof. All parts of 6.1 follow easily from (b) and (c). We prove (c), (a) and (j),
and ieave the other paris to the reader.

(c) Let P={fe Py (AXB)|f is OP, and for every a € Dom(f) there is g such
that f(a)=g(a)}. fs<g if f< g It is easy to see that P is c.c.c.. It is also easy to
see that for every ac A, D, ® {fe P|aecDom(f)} is dense in P, and for every
beB, D*%{fe P|becRng(f)} is dense in P, hence if G is a filter in P which

intersects all N ’¢ and nb’c then | 1{fl fe G ic an icomo ig
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(a) It suffices to show that for every non-empty open intervals I, and J, of A,
Iy=1J,. Let I, J, be such intervals. For every interval J < J, let {(I7, g]}| i € o} be
such that I is an interval of A, g{ is an automorphism of A, g/(I/)<J, and
Uicw I} = A. Let # be a countable base for the order topoiogy of J consisting of
open intervals and let 9, ={g/|Je$,icw}. Then I, J, and 9, satisfy the
conditions of part (b). By a symmetric argument there is a family %, such that J,,
I, and %, satisfy the conditions of part (b). Hence I,, J, and 4§,U{g™"| g %}
satisfy the conditions of part (c), hence I,=J,.

(j) For every A €K let A™ be some canonical mixing of A. Let A, B €K, and
we show that A< B. Let B; be a nonempty open interval of B. A A™=BT,
hence let gg : A— BT be OP. Let B‘l"~ Uico B' where B'=B,, and let g, :B,—
B’ be an isomorphism. Let hp ;= g; 'ogg , hence hp ;S A X B;. Let {B; | j € w} be
a dense family of non-empty open intervals of B. Clearly A, B, {hBiJ| ji€w}

cntiels PRy P Py PN 1) A<D
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It follows from part (i) that BA holds. O

Theorem 6.2. Let VEMA +OCA+ISA, and let A € K be an increasing set dense
in R. Then:

(a) A, A*, AUA*c K" and every member
sets. (Of course A LA*®)

(b) If KaB<c A, then B=A.

(c) f AUA*cBeK, then B=AUA¥, (Hence AUA® is universal in K.)

(d) If BeK is dense in R, then there is a nwd set C <R, a countable ordered set
(L, <), and for every le L a member A; e K such that B— C=Y,.; A, where ¥,
denotes the ordered sum of linearly ordered sets.

() If BeK, then either B=A+1+A* or B=A*+1+A, or B can be rep-
resented in the form B, U B, where By(\B,=0, By=A or B,=0, and BZ—A or

B2=¢.

Proof. The proofs of all parts are easy, as an example we prove (b). Let
K>B< A. Let I, J be non-empty open intervals of B and A respectively, and let

fH:I— J be a 1-1 onto function. By OCA, "= {f’| i € o}, where for every i,
fH is monotonic. Since B < A and A is an increasing set, each f{’ is OP. Let # be
a countable dense set of non-empty open intervals of B, i.e. for every non-empty
open interval I of B there is I, € $ such that I, < I. Similarly let # be a countable

dense set of non-empty open intervals of A, and let 4={f"|Ic$,Jec$ and
i€ w}. Clearly B, A and G satisfy the conditions of 6.1(c) and hence B=A. [
Question 6.3. Construct a model of ZFC in which for every A, Be K, A< B, but
in which BA does not hold.

Let NA denote the following axiom: (VA, BeK)((3CeK)(CLAACXKB).
Clearly MA+ OCA=> (NA & —ISA). In Section 7 we shall see that MA+OCA +
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NA is consistent. We conclude this section by showing that MA+OCA +NA>
BA.

Proposition 6.4. MA +OCA +NA=>BA.

Proof. Let A, Be K and we show that A<B. Let B; be a non-empty open
interval of B. By NA there are C,, C,< B, such that C;e K and C,=C?%. Let
f:A—C; be a 1-1 function. Then f can be represented as a contable union of
monotonic functions f =, f.. Let g: C;— C, be an OR onto function; for every
icwlet hg ;=1 if f, is OP, and hg ;= gef; if f; is OR. Let {B; | j € } be a dense
family of intervals of B. Then A, B, {hy | j, i € w} satisfy the conditions of 6.1(b).
Hence AXB. O

7. Relationship with the weak continuum hypothesis

Our purpose in this section is to present a forcing set which makes two K,-dense
sets of real numbers near, that is, given A, B € K we want to add C € K such that
C< A and C<B. Let N(A,B)=(3CeK)(C<AACKB), and let the nearness
axiom be as follows.

Axiom NA. (VA, B K) N(A, B).

Obviously BA= NA. One can ask whether these two axioms are equivalent. We
will show in this section that BA=> 2% = 2% whereas CON(NA + 2% < 2™) holds,
so NA=» BA.

Let WCH denote the axiom that 2% <2%. AeK is prime if for every Be
K:A<XB; it is universal if for every Be K:B< A. {A,|ieI}cK is a prime
family, if for every B € K there is i € I such that A;<B.

Theorem 7.1 (WCH). (a) K does not contain a prime element. Moreover there is
no prime family of power <2,
(b) For every A €K there is B< A such that Be K and A#B.

Proof. Let T=""2 be the tree of binary sequences of length <X,. Clearly
|T|=2%. Let {a, | ve T} be a 1-1 function from T to R. For every ne™2 let
A, ={a;. | @ <Ry}, hence if n# ¢, then |A, N A,|<R,. Suppose by contradiction
A<2™ and {A; [i<A}is a prime family. W.l.o.g. for every i <A, A, contains the
set of rational numbers. For every n €™:2 let f, and i, be such that f,: A, —> A, is
an OP function. Clearly for some n#¢, f, | Q=f, | Q, and i, =i, But then f,
differs from f; on at most countably many points. Since i, = i, and |A, N A/ <R,,
we reach a contradiction.

(b) Suppose by contradiction that A € K, and it is isomorphic to every
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element of P(A)N K. For every B e P(A)NK let f; be an isomorphism between
A and B, we reach a contradiction in a way similar to what was done in (a).

Questions 7.2. (a) Does WCH imply that for every A €K there is Be P(A)NK

such that A< B?
(b) Does WCH imply K does not contain

AV asUCS 128/

Next we want to show that NA is consistent with WCH. This brings up a new
application of the club method, which we call the ‘nearing forcing’. Recall that Al
is the axiom introduced in Section 6 to replace CH when we want to apply the

) ET] SRS Ses |
LCIUU LIICULIUL.

Lemma 7.3 (Al). Let A, B< K. Then there is a c.c.c. forcing set P = P, 5 of power
R, such that +p N(A, B).

Proof. Let M, 3 =M be a model with universe X; which encodes (A, <) and
(B, <). Let N=M°* and C be N-thin. We identify A UB with X;, hence A <R,

and R ®. SQince there are two linear orderinos on 8. we denote a.<« b ta mean
CLliNd A7 — "1- WALLIVAY LRIWl W dAlWw LYY Ll Uluvllllso SLa l‘l’ Yo UMVIIVLWY W™\ v VW oalavaal

that a is less than b as real numbers, and a <b to mean that a is less than b, as
ordinals. Let {F; | i <X} be an enumeration of the C-slices in an increasing order.
Let P={fe Py (A XB) | f is an OP function, Dom(f) U Rng(f) is C-separated, for
every a € Dom(f) there is i <R; and 0<Ne w such that ac E; and f(a)€ E;.,,
and for every distinct a, b e Dom(f) if a <b then f(a)<b}. f<g if f< g. For later

use we denote P=P, 5.

We prove that P is cc.c. Let {f,|]a<N}cP. Wlog f.,=

800> B 1)s - - - s {Agan—2> Guon-1)} Where i<j implies a,;<a,; there is m=<n
such that for every a < <¥,, and for every i <2n: if i <2m, then a,; = ag;, and
if 2m =i, then a,;<ag,, In addition we can assume that there are pairwise
disjoint closed intervals V,,..., V,,_; such that for every a <®; and i<2n,
a,; € V.
We regard each f, as an element in (A X B)™. Let F be the topological closure
of {f, |« <R} in (AXB)". Let pe|N| be such that F is definable from p, and
every rational interval is definable from p. Let yoe C be such that C N[y, Xy <
Cup- Let f, be such that y,<a,,,. We denote a,; by a;.

We will next duplicate f,. The new element in the duplication argument is the
nce of the following fact. If a; :£ a,. b.# b, are real numbers, then either

of the following fact. as, bi#Fb, real numbers, then eithe
{{ay, by), (a,, bo)} or {{ay, b,), (az, by} is an OP function. This fact replaces the
assumption that X does not contain uncountable 0-colored sets in the proof of
SOCA, and the need to preassign colors in the proof of OCA.

We define by a downward induction formulas ¢,,, ¢2,-1,..., ¢m and we
assume by induction that for every i:MFela,,...,a;_1], and that the only
parameters of ¢; is p. Let @o=(xq, - - . » Xn—1) € F. Suppose ¢;.1 has been defined.
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Since M‘:‘pi+1[a0’ R a’:]’
1
MFE(3x;0, X;1) (xi,o #F XA ./\0 @ir1(@os .+ o\ Aiq, X )
i=
Hence there are disjoint rational intervals U;,, U;; such that

1
MEA (axi,j € Uu,) ¢i1(ag, ..., a1, x:,)

i=0

Let

1

e=A (axi,j € U”) @ir1(Xgs - o o Xi1, x;,)

i=0

Let m <i<n, and let us consider the intervals Us; o, Uai1, Usiv1.0 Uzizn11- Let
g,€{0,1} be such that whenever (aj, b;)€ UyoX Uyiy, and <{a,, by)e

U2i,1 X U2i+1,i—€i! then {(al, b1>, <a2, b2>} iS an OP function. Using Pamy -+« s Pon WE
can inductively choose sequences <{(ab,,...,ab,—1), j=0,1, such that
(Ao, . . . » Aom—1s Aoy - + - » @by € F and for every m=i<n,

0 0 1 1
a5%€ Uso, a2i41€ Upiire, a2i€Uszyy and  api41€ Uging 1
Since F is the closure of {f, |a <X}, there are B and y such that for every
m=i<n,
g€ Uz p2ic1€Univ1e, ay2€ Uz and a1 € Usiyg 1o

It follows that f; Uf, € P. We have thus proved that P is c.cc. [
Corollary 7.4. NA +OCA is consistent.
Proof. Combine the methods of 3.2 and 7.3. O

Let cov(A, k) mean that k <A, and there is a family D < P, -(A) such that [D|=A
and for every c € P,+(A) there is d € D such that ¢ = d.

Theorem 7.4. Let VFCH, and let A be a regular cardinal in V such that
A <2 =y and cov(A,R,) holds. Then there is a forcing set P such that |-p NA+
(2% =A)+ (2% =pn).

Remark. Clearly cov(X,, X;) holds, hence one can start with the universe L, and
construct V in which 2% =X, and 2% =X;, and then by 7.3 get a universe
satisfying NA + (2% =R,) + (2% = R,).

Proof. Let V, A, i be as in the theorem. Let P = P~,(A), G < P be a generic filter
and W= V[G]. Using the fact that P is X,-c.c. and does not collapse X, it is easy
to see that Wkcov(A, X)).

Let W, = V[G NPg(a)l], and C, be the (a+ 1)st club which is added to V be
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Poy(A). Let {1,|a<A}cPy(AxA) be such that for every oePy(AX)),
{a| ¢ < 7,} is unbouned in A. If R is a forcing set and R < A, then each 7, can be
regarded as an R-name of subset of A of power <X;.

We define by induction on a<A a finite support iteration ({R,|a <A},
{po | @ <AD), {h. | @ <A} and {g, | @ <A} such that: (a) for every o, |R,|<A and
R, is c.c.c.; (b) h, is a 1-1 function from R, into A, and if a <, then h, < hg; we
denote by Q, the forcing set which is the image of R, under h,; (c) for some
y<A, g, €W, and ko, “g, is a 1-1 function from a subset of A onto R, and if
a<p, then g, =8,

If h is an isomorphism between forcing sets S, and S,, and 7 is an S,-name, let
h(7) denote the image of 7 under h, hence h(7) is an S,-name.

Let Ry be a trivial forcing set. For a limit ordinal § let Rs=|J,<s R, and
hs = Ua<s he There is some y <A such that Qse W,, hence if 5.3, if H is a
Q-generic filter, then RVH!=RY.I"1_ It thus follows that there is g€ W, such
that b5 “g5 is a 1-1 function from a subset of A onto R, and for every a <§,
5. <= 8”.

Suppose R,, h,, &, have been defined, and we define p,. Let g, € W, . Since
|Qul, I7a| <A and Poy(A) is R,-c.c., there is y; <A such that Q,, 7,€ W, . Let
YE v, =voU7y:Ue.

In W,, rg, “&.(7.) € P,(R)”, and hence there is a Q,-name 7€ W, such that
7,14 and in W, ko g.(7h)€ K. By the same argument as in 5.4, if H is
Q,-generic over W and A = vg(g,(75)), then C, is M} 4-thin. (Recall that M4 o
is a model with universe X; which encodes (A, <).) Hence there is a Q. -name p/,
such that |p,|=R; and Ik _p, =P, .. c. (The notation P4 p Was introduced in
the beginning of the proof of 7.3). Let p, = h;'(p’), hence p, is an R,-name of a
forcing set. Let R,,; =R, *p, and h,,, be a 1-1 function from a subset of A onto
R..., and h, 2 h,. &,,, is defined as in limit case.

Let H be an R,-generic filter, and H' = h, (H). Let U = W[H] and for every
a <A, g, =vglg). Clearly g, is a 1-1 function from a subset of A onto RV and
g =Uor & Let A, A,eKY, ;=g (A), i=1,2, and 7' be Q,-names such
that v, (") = 0, 7' can be regarded as an element of Py (A X A) by identifying *
with the set {(a, B) | a Ikq, € 7'} where B is the canonical name for B. Let a <A
be such that: r'Ur2< 1, 71, 72 W, and o, U o, Dom(g,). Let A = vy (8, (10)).
Hence

A205(8. (1)) = 8 (V1)) 2 8 (T1U ) = g (o Uar) = A, U A,

VAR (Pa) = Vrrno(Ps) = Paac,.
Q,, &, 71, T2€ W, , hence A; e W, [H'NQ]. Let M, be the expansion of My 4 in
which A, and A, are represented by some unary predicates. Clearly M,e
W, [H'NQ]), hence C, is M,-thin. It thus follows that for every C, -slice E,
ENA, is dense in A,, i =1, 2; so for every °pkv;, Dﬁdg{fe vidp,) | there is a> B
such that acDom(f)NA; and f(a)e Ay} is dense in wvy(p,). Let f,=

U {vg(7) | 7 € p. and for some p € R, {p, 7)€ H}, hence f, is an OP function from
A to A, and by the denseness of the Dg’s, f, M A;X A, is uncountable,.
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We have seen that UF(VA,, A, K) N(A,, A,). It remains to show UkF2%=
AA2M =y, Since VE2® =y, |PoA)*R,|=u, it does not collapse X, and is
Rz-ccc 2"1—;1. holds in U too. Since cov(A,R;) holds in W, then WEA=
A-RPe=2; |[R\|=A, hence UE2®™=<A. It is easy to see that for every a<§g,
W[HNRz]- W[HNR,] contains a real, hence UF2%=A. O

Let A, B € K. We say that A and B are densely near to one another (DN(A, B)),
if there is an OP function f< A X B such that Dom(f), Rng(f) € K, and Dom(f),
Rng(f) are dense in A and R respectively. Let DNA=(VA, Be K) DN(A, B).

23BN ale LOIIae 2122 1apCil £, £ O

Theorem 7.5. NA= DNA.

We need some lemmas and terminology. Let a, be “2, a<<b if there is ngew
such that for every n=n,, a(n)<b(n), and {n|a(n)<b(n)} is infinite. An
element of “2 which is not eventually zero is indentified with the real number in
the interval (0, 1] which it represents. X, + X¥ denotes the linear ordering which is
the sum of (¥;, <) and (X;, >).

Hausdorff using ZFC only constructed a sequence {a; [ieR;+R¥}<=“2 such
that: (a) if i<jeR;+R¥, then a;<gq;; and (b) there is no a €*2 such that for
every i €R; and je R}, q, <b<a. We call such a set a Hausdorft set.

Proposition 7.6. (2) Let A<R be a Hausdorff set, and let B<R be countable.
Then there is a Gs-set G such that G2 B and GN(A—-B)=0.

Proof. Easy and well known. [

Proposition 7( A). Let AR b
T T

Proof. Let A, B be as above, and let C be a Hausdorff set. Let f< CX A be an
uncountable OP function, let F be the closure of f in RXR, and let D=
U {F~%b) | beB}. Clearly for every beR, |[FY(b)|, |F(b)|<2, and hence D is

countable, Let V be an open set in R such that V2 D and [Dom{f)— V=N,

W.lo.g. if be B and F"'(b)={d,, d,}, then V contains the closed interval deter-
mined by d, and d,. (This can be assumed since the above interval does not
intersect Dom(f)— D. Let {V; | i € } be the partition of V into pairwise disjoint
open intervals. We can further assume that the endpoints of each V; belong to
cl(Dom(f)). (This is so since every open interval T is contained in an open interval
J with endpoints in cl(Dom(f)) such that INcl(Dom(f))=J Ncl(Dom(f)).) Let

= (¢, d;), let a; = min(F(c;)), b; = max(F(d;)) and U, = (a,, b;). It is easy to check

--rlp

that U= {J;c, U; 2B and |Rng(f)— U|=R,. O

Proof of Theorem 7.5. Assume NA, and let A, Be K. W.l.o.g. A, B are dense in
R. Hence we have to construct an OP function f< A X B such that Dom(f),
Rng(f) are dense in R and belong to K.
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We call an OP function f extendible, if Dom(f) belongs to K and, the closure of
f in RXR is an OP function.
Let us first see that if A, B € K, then there is an extendible function f< A X B.

P u i Iy m i dd i, IR,

LCL g = ﬂ /\B O¢€ an UllqullldUlC UI’ 1uuuuuu LCL U UC lllC blUbulC Ul. g lIl NAN
Let C={acR|there is a’€R such that a'# a and G(a)NG(a')# @}, and D=
{acR|there is a’c€R such that a’#a and G Y(a)NG *(a’)# P}. Obviously C
and D are countable. Let V be an open set containing C such that Dom(g)— V is

uncountable, and let g, =g | (Dom(g)— V). Let U be an open set containing D
such that Rno(o. \— I[J is uncountable. and let f =g, f(hnm(nl\—n I(TT\\ Tt ig

wLil lal ANBERAT wuvlunLaUviv, i e 1 sVl s iy 1S

easy to check that f; is uncountable and its closure is an OP function. Let f be a
restriction of f, to an element of K, then f is as desired. This concludes the proof
of the above claim.

Let {I,|icw} be a list of all rational intervals. We define by induction a
sequence of extendible functions {f.|ie w} where f,< AXB. Let fy AXB be
any extendible function. Suppose f; has been defined. If |Dom(f,)NIL|=2, let
f!=f.. Suppose otherwise, then using the fact that f; is extendible it is easy to see
that there are non-empty open intervals J,, J, such that: J, < I;, J, "Dom(f;) =9,
and for every a € Dom(f;): if a <J,, then f,(a)<J,, and if J;<a, then J,<f,(a).
Let g< (A NJ,)X(BNJ,) be an extendible function such that the endpoints of J,
and J, do not belong to Dom(g) and Rng(g) respectively. Let f/=f; U g. It is easy
to see that f! is extendible.

We define f,,, from f{ analogously in order to assure that |Rng(f. ) N L =R,

It is easy to see that f% |J;..f. is an OP function such that f< AXB nd

Dom(f), Rng(f) belong to K and are dense in R. O

BeK) (N(A, BJUN(A, B*)). Does NA~

A\

Question 7.8. Let NA =(VA,
LJ) (I and J are intervais A{(DN(ANLBNJ)v

imply that (VA, BeK) (3
DN(A NI (BNDH*))?

8. A weak form of Martin’s axiom, the consistency of the incompactness
of the Magidor-Malitz quantifiers

In this section we deal with two separate problems. The first is to construct a
model of set theory in which the Magidor~Malitz quantifier is countably incom-
pact. This question was raised by Malitz. It was first solved by Shelah (unpub-
lished) using methods of Avraham. The first solution involved properties of Suslin
trees which are expressible by sentences in the Magidor—Malitz language (MML).
So it was possible to show that CH did not imply the countable compactness of
MML. On the other hand, the solution that we present here shows that MA +
(R, +2%) does not imply the countabie compactness of MML.

The second question we are concerned with is whether the axioms like BA,
NA, OCA etc. imply MA,,. The answer to this question is negative; in fact,
forcing sets constructed with the aid of the club method do not destroy Suslin
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trees. We will formulate some strong form of the chain condition which preserves
Suslin trees but can still change the satisfaction of sentences in MML..

We start with the incompactness of MML.

lIl [l] l[lC HOUUH UI a K‘Clildﬂglcu set Ul l'cd.l IlUIIl[)Cl'b was HILIUUULCU, dll(.l ll
was proved (Theorem 6) that for every k >0 MA, + “There exists a k-entangled
set’ is consistent.

We will use a similar construction in order to get a model of ZFC in which
MML is not countably compact. (Using c.c.c.-indestructible S-spaces, K. Kunen

chowed that tha inecoamnactnoace af MMT halde in avery madel
snowed tnat the MCOmMpPaciness Oi Mivir. nGids in Cvery moad:

from a ground model satisfying CH by a c.c.c. forcing.)

Let us recall some definitions. A k-place configuration is a sequence € =
{eg, . .., €x—1) Of zeroes and ones. Let a, b be sequences of real numbers of length
k. {a, b) has configuration & (F €[a, b]) if for every i <k: if £, =0, then a; <b, and
if g, =1, then b, <g,

205 — 1, HICi] ~ L4

—
>
iy

o
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Definition 8.1 (Shelah [1]). Let A <R and |A|=R;. A is k-entangled, if for every
sequence {a; |i<N,}c A* of 1-1 pairwise disjoint sequences, and for every
k-place configuration & there are i, j <X, such that F £]a, a;].

Note that if A is k-entangled, then it is [-entangled for every I <k.
The following easy claim appears in [1].

Proposition 8.2. MA,, implies that there is no A such that A is k-entangled for
every k>0.

The incompactness of MML follows from 8.2 and the following main theorem.
Theorem 8.3. MA,, +(Vk >0) (3A) (A is k-entangled) is consistent.

Let V be a model of ZFC which satisfies the axiom mentioned in 8.3. We show
that MML is countably incompact in V.

|3 A
| tcw;, 1017 VT

o ¥
u
nd a binary predicate <. Let T

T ot o Tamaoniosn sontoiming 11m oy e

IetL bea 1afigudage COfitdiniiig uiiary pledlca
(n+ 1)-place predicate R,, a unary predicate Q a
be the following theory in MML.

(1) P, is uncountable; < is a linear ordering of P,.

(2) Q< P, and is a countable dense subset relative to <.
(3) Forn>0, R, is a 1-1 function from P§ onto P, (i.e. P represents the set of

A OO IO T L0 Oy A8 ) 0P

)
o

k<:
3

n-tuples from Py).

(4) {Py, <) is k-entangled for every k >0. (The reader should check that (4)
can be expressed by an MML-theory.)

By 8.2, MA,, implies that T is not consistent but since for every k € w there is a
k-entangled set, every finite subset of T is consistent.

We now proceed to the proof of 8.3.



172 U. Abraham et al.

Definition 8.4. (a) Let k=(k,, ..., k._,) be a sequence of positive natural num-
bers, k=Y, . k;, and A =(A,, ..., A,_;) be a sequence of uncountable subsets of
R. We say that A is k-entangled if for every sequence {a; € i<R;}c
Akox . x A'f:;‘l of pairwise disjoint 1-1 sequences, and every k-place configura-
tion €, there are i, j <X, such that k€[a; g;].

(b) Let k={k;|icw} be a sequence of positive natural numbers and A =
{A, | i€ w} be a sequence of uncountable subsets of R. A is k-entangled if for
every ncw, A | n is k | n-entangled.

The exact form of 8.3 that we prove is the following.

Lemma 8.5. Suppose VECH+(2%:=R,), and suppose A is an w-sequence such
that A is k-entangled. Then there is a c.c.c. forcing set P of power X, such that
bp “A is k-entangled, 2% =R, and MA holds”.

Proof. The general framework is the usual one, and we will not repeat it. In each
atomic step of the iteration we will apply the explcit contradiction method
introduced in Section 2, that is, we are given a c.c.c. forcing set Q of power X, if
ko “A is k-entangled”, then Q is the next stage in the iteration. If however there
is some qe€ Q which forces that A is not k-entangled, then we devise a c.c.c.
forcing set R of power R, such that g “Q is not c.c.c. and A is k-entangled”,
and add R as the next stage in the iteration. Hence the central claim in the proof
is the following.

Claim 1 (CH). Let A be k-entangled, let Q be a c.c.c. forcing set, € Q and
q ko “A is not k-entangled”. Then there is a c.c.c. forcing set R of power ®; such
that Fo “Q is not c.c.c. and A is k-entangled”.

Proof. The proof is very similar to the proof of Theorem 6 in [1]. However
technically the present proof is somewhat more complicated.

Let A, k, Q and g be as in the lemma. Let M be a model with universe X,
which encodes A and enough set theory. Let < denote the linear ordering of
ordinals in M, and < denote the linear ordering of real numbers in M. By
replacing q by a more informative condition we can w.l.o.g. assume that there is
an n € », and n-place configuration p ={po, . . . , p,—1) and a Q-name 7 such that
q ko “7 is an uncountable set of pairwise disjoint 1-1 sequences from Micn AN,
and for every a, be T, Fpla, b]”.

Let k =Y, ., k.. It is easy to construct a sequence {(q,, a(c, 0), ..., a(a, k)) [a<
R,} such that: (1) for every a, q. =q; (2) for every a and j, q, ko a(a, j)e7; (3)
{ala, j) | @ <R,, j<k} is a family of pairwise disjoint 1-1 sequences; and (4) for
every a <R,, there are ordinals B(a, 0)<- - -<B(a, k) in Cy, such that: for every
i<k, Bla,j)<ala,j), for every j<k, a(a, j))<B(a,j+1), and for every a'<a,
a(a’, k)< B(a, 0). (a<pB means that all the elements of « are less than B etc.)



The consistency of some partition theorems 173

Let ala)=ala,0)"- - -~ala, k), and let ale, j)={(ale, j,0),...,a(e,  k—1)).
By further uniformization we can assume that there is a family of pairwise disjoint
open rational intervals {U(j, i) | j <k, i <k} such that for every a, j, i, a(a, j, i)€
U, i.

We say that q, and qz are explicitly contradictory if for some j<k,
Fola(a, ), a(B, j)] or Fla(8B, j), a(e, j)]. Clearly if g, and g are explicitly con-
tradictory, then they are incompatible in Q. Let R ={o e Px(X,)]|for every
a# Bea, q, and gg are explicitly contradictory}. o<n if o <.

Clearly if G is R-generic and A ={q, |{a}€ G}, then A is an antichain in Q.
Once we show that R is c.c.c., there is a standard argument which shows that
there is ro€ R such that ry kg “A is uncountable” where A is the standard name
for {q, | {a}€ G}. Hence by replacing R by R’ {re R |r=r,} we can conclude
that kg “Q is not c.c.c.”.

The proof that g “A is k-entangled” already includes the arguments appear-
ing in the proof that R is c.c.c., so we omit the latter.

Suppose by contradiction there is r€ R such that r - “A is not k-entangled”.
W.lLo.g. r=0, and m =n is such that itg “A | m is not (k } m)-entangled”. Let £
be a configuration and n be an R-name such that kg “n is an uncountable set of

1 di + frrm IT k,

1-1 pairwise disjoint sequences from [}, .. A, and there are no &, < v such that
9

Fela, b]”.

Let {r,, b,)| @ <R;} be such that r, Ik “b, €n, and {b, | @ <R,} is a family of
pairwise disjoint sequences’’.

We now have to uniformize the sequence {(r,, b,) | a < as much a
We do not repeat the details of this process which have are

possible.
sO many
times.

Suppose r, ={y(a,0),..., v(a, | —1)} where the y’s appear in an increasing
order. Let us assume for simplicity that the r,’s are pairwise disjoint. For every «
we form the following sequence ¢, which belongs to a finite product of A;’s. Let
a,=a(y(a,0)" - -"a(y(a,1-1)) and ¢, =a,b,. Let F=cl({c, | @ <X,}), and
8o€ Cys be such that F is definable in M by some parameter <8,. Let a be such
that §,=c,

We want to dupilicate (r,, b, ). Before stating the exact cilaim we need additionai
notations. Let d(i, j} = a(y(w, i), ), d(i)=d(,0)~- - -~d(i, k), and a, b, ¢ denote
respectively a,, b, and c,.

Duplication claim. There are ¢°, ¢' € F such that

c¢'=d'0,0)"---~d'(0, k)~ - -~di(1-1,0)" - -di (-1, k)b,
i=1,2

and (1) Ee[b° b'), (2) for every i <I, there is j <k such that Ep[d°(, J), d*(i, j)].

The contradiction follows easily from the duplication claim by choosing a ¢g
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near enough to ¢’ and a ¢, near enough to ¢!, because for such B and
y:rgUr,€R but Felbg, b, ].

Proof of the duplication claim. Let <, denote the lexicographic order on I xX(k +1)
let t=1U(k+1) and let sy <; 5, <; - - *+ <4 S,_; be an enumeration of I x(k+1). By

the construction, there are B(s;) = B; in Cy such that By<d(sy)<B;=---<
B.-1=<d(s,,). Let E(s;))=E; =[B;, B,-+1). We next divide b and € into parts in the
following way. b =<by, . .., by_1, by, . . ., b,) where by, . .., b,_, belong to some A;

233 nd h hal + A h
where i <n and uk, ..., 0, OC1IONE G sOMC A; WICIC 1 =i<m. Let v\ol) =& be

the restriction of b to those coordinates w for which b,, € E; "<, A;, and let f;
be the restriction of b to those coordinates w such that b, € E; N {UJni<m Ai. Let
€; be the restriction of £ such that Dom(e;) = Dom(g;), and similarly p; is a
restriction of £ such that Dom(p;) = Dom(f}). Let e=Ui< e

By the entang gledness of A we can construct ¢ rlc F havin

¢ =d(s) ~d(s)~(U ) i=1,2,
]<t

such that for every j<t: if ¢;=A, then Fp[do(s,-), d'(s,)] and Ep[f}, f']; and if
e;# A, then Fg;le], e}] and Fp,[f,,f,l]

This is proved by the usual duplication argument, that is, we first define by a
downward induction some formulas ¢,_,, ..., ¢, and then starting with ¢, we
construct by induction on j, d'(s;), €} and f}, i=1,2.

Since e contains only k elements whereas for every i we have k+1 d(i,j)’s it
follows that for every i <[, there is j such that e(i, j) = A. Hence for every i, there
is j such that Fp{d°(,j), d'(i, j)]. Hence the duplication claim is proved. This
concludes the proof of claim 1, and hence the proof of 8.5. [

There is still a gap betwen 8.3 and 8.5. In order that 8.3 will follow we still
need the following easy claim.

Claim. There is a universe V satisfying CH and 2% =R, such that there is a
sequence A in V which is k-entangled, where k=(1,2,3,...).

In fact (CH) implies that there is A € K such that A is k-entangled for every k,
and hence if {A; | i € w} is a partition of A into uncountable sets, then {A, | i € }
is k-entangled for every k.

However, instead, we can start with a universe V satisfying CH and 2™
and then add to V a set of N Cohen reals. Tt is shown in f1] that such an

@it il QG SO OL 4 OIS Icas wir 21 Lilal il

n A_ is
k-entangled for every k.
We turn now to the proof that Suslin trees are preserved under forcing sets

constructed by the club method.

Definition 8.6. Let P be a forcing set. P has the strong countable chain condition
(P is s.c.c.) if for every uncountable A < P, thereis B€ A and {B; |icw,j=0, 1}
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such that B is uncountable, for every i and j, B;; < B; and (1) for every ic o,
boe B, and b, € B;,, b, and b, are compatible, (2) for every uncountable C < B,
there is i such that B;,NC=§ and B;;NC#§.

Remarks. Clearly every s.c.c. forcing set is ¢.c.c. Kunen and Tall [10] defined the
following property of forcing sets. P has property S if every uncountable subset of
P contains an uncountable subset of pairwise compatible conditions. Clearly
S=>s.c.c. Let MML, be the portion of MML in which only the quantifier Q
which bounds two variables is used. If @ cxvuvxLQ, M l‘q) and P has property S,
then Ikp (ME@). If P is s.c.c. this is not longer true, since e.g. N(A, B) can be
expressed by an MML, sentence about the model M=(AUB; <, A, B). Now
suppse "1IN(A, B) holds in V, and let P the nearing forcing of A and B. Then P is
s.c.c., and IFp N(A, B).

It seems that “P is s.c.c. and |p 7 is s.c.c.” does not imply that P* 1 is s.c.c.
However, since we are dealing with the preservation of MML sentences we can
avoid this problem by using the following lemma.

Lemma 8.7. Let MeV be a model and ¢ e MML be a sentence of the form
1Q"x; - - x, R(xy, . .., x,) where R is a relation symbol. Let ({P; |i<a}, {m |i<
a}) be a finite support iteration of c.c.c. forcing sets such that o is a limit ordinal,
and for every B<a, Ibp, (MF@). Then Irp_ (MFo).

Proof. Suppose by contradiction that p +p (MF—¢). Then there is a P,-name
such that plp “7 is uncountable and every n-tuple from + satisfies R”. Let
{p,, a)| i<N1}_<;PaX|M| be such that for every i, p;=p, if i#] then a;# g;, and
p; I+ G; € 7, where 4§; is the canonical name of g;. For gel, let Si.ip\q) be the
support of g, hence sup(q) € Py (a). If there is B such that sup(p)< f and for
N1 p’s, sup(p) =B, then Ibp (MF—@), which is a contradiction. Hence the
cofinality of & must be R;, and we can w.l.o.g. assume that sup(p;) constitutes a

A-system of the following form: sup(p;) = ¢ U o; where for every i#j, o; No; =0,

and for every Beo and yeg, B<v. Let 8 be suc chthatforocc 8 enn{n\r— A and

E-3 31038 80 ) § alxa Y< O, Ci: Uiar 1 = 4 DU o alia

for every i and vyeo, B<v. Let T —{(pi B, a;)| i <R} 7 is a Pg-name. Clearly
for every iy, ..., i, <X;: there is g€ P, such that g=p,,...,p, iff thereis qe Py
such that g=p; 1 B,..., p;, | B. It thus follows that for some p’e Py, p'Itp, “7' is
uncountable and every n-tuple from 7' satisfies R”. Hence lp, (MFg), a

contradiction. []

Recall that our aim is to show that Suslin trees are preserved under forcing sets
constructed by the club method. Let (T, <) be a Suslin tree in V. In order that it

QLSTRCICC LC e, 2.0 (4, VT a Susaill 00 I - a1l Vi1 wian an

will remain a Suslin tree after forcing with some forcing set P it has to satisfy in
V¥ the following sentence

e==1Q%y ((x<yA—y<x)—>x=y).
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By the last lemma if P=P, where ({P,|i<a}, {m|i<a}) is a finite support
iteration of c.c.c forcing sets, then it suffices to show that for every i <a, Itp, “If
(T, <) is Suslin tree, then I, (T, <) is a Suslin tree”. So we prove two claims.

Lemma 8.8. If Piss.c.c., and T e V is a Suslin tree, then \p “T is a Suslin tree”.

Obhservation 8.9. If P is constructed by the club method, then it is s.c.c.

o4,

Observation 8.9 is not an exact mathematical statement since we have never
defined what it means for a forcing set P to be constructed with the aid of the club

method. However, the reader can easily check that in every case in which we
applied the club method the resulting forcing set was indeed s.c.c.

Proof of 8.8. Let P and T be as above and suppose by contradiction that there is
p®e P such that p°I+p “T is not a Suslin tree”. Then there is a P-name 7 such that
p®Ikp “7 is an uncountable antichain in T”. Let {(p, a;)|i <®;}< Px T be such
that for every i <X;, p;=p° p, bp d; € 7, and if j# i, then q;# a,. W.Lo.g. there are
{B; |iew, j=0, 1} such that B;; ={p, | i <Ry}, for every q;€ B;;, j =0, 1, g and q,
are compatible, and for every uncountable B < {p; | i <R} there is i € @ such that
BNB;;#§ for j=0,1.

Let A={a;|i<R{} and A;={a,|p,€B;;}. Hence we have the following
situation: (1) A is an uncountable subset of T; (2) if icw a®c A;; and a'e A;;,
then a® and a' are incomparable in T; and (3) if A' is an uncountable subset of
A, then for some iew, A'NA;, A'NA#9.

We will now show that if T is a Suslin tree, then there are no A and

11‘1[] | Ltw—‘_,"“U lj’ as dUUVC

Let T be a Suslin tree and h : T— P(w) such that if a <b, then h(a) < h(b). We
show that there is a € T such that for every b>a, h(b) = h(a). Suppose not. Let
{(a;, b)) | i<R;}c TXT be such that for every i, a;<b, and h(a;) g h(b;), and if
i#j, then a;#a;, b, Wlo.g. there is new such that for every i<RX,, ne
hibY—hi{a) and if i <i then the level of b. is less than the level of g.. Tet i and 7

h(b,)—h{a;), and if i <j, then the level of b, is less than the level of a;. and j
be such that b; <b;. Hence b, <a; however ne h(b,) and n¢ h(A;), contradicting
the monotonicity of h.

Returning to our original claim, suppose by contradiction T is a Suslin tree and
A, {A;; |icw, j=0,1} satisfy (1), (2) and (3) above. Since A is a Suslin tree, we
can assume that T=A. Let h:T—P(w Xw) be defined as follows: h(a)=
{(i, j | there is b=<a such that b € A;;}. Hence, if b=<a, then h(b) < h(a). Let a be
such that for every b>a, h(b)=h(a), and let A'={b|b>a}. Since A’ is
uncountable there are i € w and by, b; € A' such that bye A, and b, € A; ;. Hence
{i, 0y h(by) and (i, 1) e h(b,). Since a < by, b,, there follows (i, 0), (i, 1)< h(a), but
this means that there are agy, a;,=<a such that g€ A;;, j=1,2. aq, a, are
comparable, and this contradicts (2). Hence the lemmma is proved. [

Let MSA, be the axiom saying that for every s.c.c forcing set P and every
family {D; | i <k} of dense subsets of P, there is a filter of P intersecting every D..
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Corollary 8.10. (a) -SH+MSA,,_ is consistent.
(b) °SH+TCA is consistent.

Proof. (a) follows from 8.7 and 8.9, and (b) follows from 8.7, 8.8, 8.9. In fact in
(b) one can replace TCA by any consistent conjunction of axioms whose consis-
tency was proved by the club method. Also in (b) one can add 2%=R,. O

9. The isomorphizing forcing, and more on the possible structure of K

The new tool to be presented in this section is the isomorphizing forcing. Given
A, Be K we construct a forcing set P, 5 which makes A and B isomorphic.

Baumgartner [2] constructed a P, g as above in order to prove the consistency
of BA. However, since our construction is more canonical, it is easier to combine
it with the other methods we have presented.

In this section we use P, g in order to get (seemingly) a strengthening of BA.
by combining the new technique with other methods we obtain a variety of
consistency results on the structure of K.

Let & be a partition of X, and o <X, X R;. We define the graph GZ. The set of
vertices of the graph V2 is {E<c#|(3a, b) ({a, b)co and (acE or beE))}. The
set of edges is o, and E,, E, which belongs to VZ are connected by (a, b) € o, if
acE,and beE, or b€ E; and a € E,. When ¥ is fixed and o varies, we denote
G and V¥ by G, and V, respectively.

We say that a graph G is cycle free it it does not contain cycles, i.e. it does not
contain a sequence of vertices a,, ..., a, and a set of distinct edges e;,..., e,
such that ¢; connects a; and a;., and e, connects a,, and a,. Let C =X, be a club,
let €€ denote the set of C-slices and let {EF|i<X,} be an enumeration of € in
an increasing order. We regard the set E ={a |a <min(C) as a C-slice, hence
E=E§. Ef and Ef are near, if for some n€w, i+n=j or j+n=i Let aeR,.
E“(a) denotes the member of €€ to which a belongs. E€(a) is abbreviated by
E(a) when C is fixed.

Let < be a linear ordering of a subset of X;, C<X; be a club and A, B<R;. We
define P=P(C,<, A, B):

P={fe Py (AXB)|f is an OP function with respect to <, Gf is cycle
free, and if f(a)=b then E<(a) and E“(b) are near}.

f=sgif fecg

Theorem 9.1. Let A, B € K, and M be a model such that |M| 2R,. There is a linear
ordering < on X, definable in M such that {},, <) is embeddable in (R, <), and
(AUB, <) is embeddable in (R, <), w.lo.g. A,B<N,, and X, and the usual
linear ordering < of X, are definable in M. Let C be M*-thin, and suppose further
that for every C-slice, E, (ANE,<) and (BNE,<) are dense in (A,<) and
(B, <) respectively. Then (a) P=P(C, <, A, B) is c.c.c.; and (b) kp A=B.
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Remarks. (a) Baumgartner [2] proved a similar theorem but he used (CH).

(b) Note that we did not have to assume that A and B are definable in M.

o= f cuch tha at

Pranf. (W)Y Tat fc P and ac A —Daom{f) We chaw th
\JJ 3 i ul

Proof. (b) Let fe P and ac A —Dom(f). We show g=f such that
a € Dom(g). V; is finite, hence there is a C-slice E such that E¢ V,, E# E(a), and
E and E(a) are near. Since B is dense in itself and B N E is dense in B, there is
be B NE such that g ¥ fU{(a, b)} is OP. By the choice of E, ge P, hence g is as
required. Similarly if b € B ~Rng(f), then there is g € P such that b € Rng(g). This

proves (b).

(a) If V and W are sets of pairs of real numbers we say that (V, W) is OP if for
every (v, v)€V and (wg, wiye W, {(vg, 01), {Wo, wy)} is OP. Analogously we
define the notion (V, W) is order reversing (OR). Note that if U, i=0,....,3,
are pairwise disjoint intervals, then (UyXx Uy, U, X Us) is either OP or OR.

Let {f, | @ <R,}= F,< P. As in the previous cases we uniformize F, as much as
possibie. We thus assume that Fj is a A-system, and it will suffice to deal with the

case when the kernel of F is empty. Hence let us assume that
fo={a(a,0), ala, D)), ..., {ale, 2n—2), a(a, 2n - 1))}

where the a(a, 2i)’s are distinct, and if a« <8, ce Dom(f,) URng(f,) and de
Dom(fz) URng(fs), then E(c)# E(d). This last condition assures that if f, Ufg is
OP, then f,UfzeP.

Let a(a)=(a(a,0),..., ala,2n—1)), F,={a(a) | a <¥,} and F be the topolog-
ical closure of F, in ((X;, <))?". It will be convenient (however not necessary) to
assume that all the a(a, i)’s are distinct, hence w.l.o.g. we assume that A N B = 0.
Let De|M® be such that F is definable from D in M, and there is some
countable open base of (X,,< ) consisting of intervals whose elements are defina-
ble from D in M°. Let yo€ C be such that C N[y, R;)={a | AN <M (D e|N]|
and |N|NR; = a)}. Let f, = f be such that for every i <2n, yo< a(a, i). We denote

a(a, i) by a(i), a(e) = a and W =Dom(f,) URng(f,). Let E°, ..., E“"! be the set

of (_qlices which intercect YW/ arrancged in an increagi
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{(x(0),...,x(2n—1)) be a sequence of variables. For every s<k, let R,=

{ila(®)eE*}, a,=a ! R, and x,=x | R,. Hence | J;<x @, =a and J, - x, = x.

We are now ready for the duplication argument. We define by a downward
induction on s =k, ..., 0 formulas p,(x,,...,x._,) such that the only parameter
in p, is D, and M*® ‘:.'-L[‘lss ...,a, ;). Let o, =], x, € F. Suppose ¢, has been

defined and we define ¢,. Clearly by our assumptions

1
MeE@AxS x1) (Brofx® A Rrol(x1) — 0 A o N
T \=Ag, A ) \1‘115\~“s}' VAN EAAS) YN N Ws+1\%Qy > Wg -1y "'sl} .
1=0
For every ie R, and =0, 1, let U! be an interval definable from D such that: (1)
the UPs are pairwise diciaint: (N o' >e 'R, and I'cf0 1V then ITINTIY == @4-
9 siw) l D alb pau Wlb\.o \.llblelll, \L) 1L 3 0y 8 T .l\s' CLLIN L ClU, Lfy LIILIL Ul' LI Y
and
1 1 \
() ACE (4.0 ._1\//\ /.. T r?\,\ Ao Aa . +1)
1) v r\:l.ls:-ksl\/\ \Jsc 11 Ul/"/\ ELs+1\&os> s Gs b-n/}-
1=0 ieR 1=0
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o
e
-

@, =(3x?, x) (/1\ (x e[l U)A A @arEo, - X, xs)>.

1=0 ieR,

We prove that we can find for every s <k, I(s) € {0, 1} such that for every i <n:
if 2i € R, and 2i+ 1€ R,, then (UL x U'®, U3'®x U7 }{P) is OP. Recall that the
graph G; has vertices E°, . .., E*™'; the edges of G; are (a(0), a(1)), . .., (a(2n—2),
an— 1)), E* is connected to E' by ({(a(2i),aRi+1)) if a(21)e E* and
a(2i+1)e E'or a(2i)e E' and a(2i + 1) E®; and G is cycle free. Let S < k be such
that for every component T of Gy there is a unique s€ S such that Ee T. Let
S;={sek | there is te S and a 1-1 path in Gy of length j connecting E* with E*}.
Since G is cycle free the S;’s are pairwise disjoint and moreover for every t€ S;.;
there is a unique edge in G; which connects E* with some element of {E* | s € S;}.

For every se S, define I(s)=0. Suppose I(s) has been defined for every
SE Um<1 S, Letie o +1; let {a(2i), a{2i + 1)) be the unique edge connecting E'to
an element of {E° I s€§8;}, and w.lo.g. suppose that s e S, a(2i)e E° and
a(2i+1) e E. Define I(t) in such a way that (UXO x UL ,, U1 x UL }P) will be
OP. We have defined [(s) for every s € k, and it is easy to check that {I(s) | se k} is
as required.

TTeing tha weoe will naw
Olilg the v.yl wo wiil

b§ such that MkbJelicg, U 1(b ). Suppose b, ..., bY_, have been defined
in such a way that M Cl:qos[b 5, ..., b% ,]; hence by the definition of ¢, there is b?
such that MEb{e[licr Ui A @gi1(D0, . . ., bY). According to this definition we
obtain bg, ..., bs_, such that |, b€ F (this is assured by ¢,) and for every
s<k, ho(—‘ﬂ T]l(s) Similarlv we can define bl s < k, such that | J | h c F and

Ys T riieR SIIally (O B E 1 L s> SOt gt

blellicg, U!T'®. For 1=0, 1, let b' =, bt and b' =(b'(0),. . ., b (2n 1)). By
the construction, for every i<n, {(b°(2i), b°2i+1)), (b*(2i), b (2i +1))} is OP.
Since F=cl({a(B)| B <N,}), there are B, vy such that for every s <k,
a@ ! Re [ U® and a(y)tRe[] U
ieR; ieR,
Thus for every i <n, {(a(B, 2i), a(B, 2i + 1)), {a(y, 2i), a(y, 2i + 1))} is OP. By the
method F, was uniformized. If i#j then {{a(B,2i),a(B,2i+
1)), (a(y, 2j), aly, 2j+ 1))} is OP. Hence fz Uf, is OP, and by the uniformization
its graph is cycle free, so f; € f, € P. This concludes the proof of 9.1. [
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Let A ={A,|i<R;}<c K be a family of pairwise disjoint sets such that for every

i<R;, A; is dense in |J;«x, A, Let M(A) be a model whose universe is

A Ef) A. M(A) has a binary relation which denotes the linear or At o
U, <Nl '. ivL \n) 1nad a uviiiai .y i1viatiuvils Al lll\rll UCLIVLLD lllc e al vlided 1115

which A inherits from R, and it has unary predicates P, which denote A;. A model
of the above form is called a K-shuffle.

Axiom BA1. Every two K-shuffles are isomorphic.

Theorem 9.2. MA +BA1+2%=X_ is consistent.
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Proof. The proof follows from the methods developed so far. We start with a
universe V,FGCH and construct first a universe V 2 V, in which A1 holds and
2%2=N,. Then step by step we isomorphize all pairs of K-shuffles. We thus have
to show the following claim.

Claim (A1). Let M(A) and M(B) be K-shuffles, then there is a c.c.c. forcing set
P, g of power X, such that Fp,  M(A)=M(B).

Proof. Let M be a model whose universe is X; and which encodes A and B. Let
C be M*-thin. Let A =;«x, A; and B = J;<x, B.. Let P={fe Py (A xB)|fis an
OP function, for every i <Xy, f(A;)< B; and f"'(B,) < A,, G¥ is cycle free, and if
f(a) = b, then E€(a) and E€(b) are near}. f<g if f < g. It follows from the proof
of 9.1 that P, y is as required. O

Question 9.3. Prove that BAZ> BA1.

One can ask whether BA can be strengthened to say that every two members of
K are isomorphic by a differentiable OP function. This strengthening is inconsis-
tent with ZFC.

Proposition 9.4. There are A, B<c K dense in R, such that for every uncountable
1-1 function f= A X B there is aeDom(f) such that every neighborhood of a
contains uncountably many elements of Dom(f) and

f(b)~f(a)

does not exist.
Dom(f)2b—a b—a

Proof. For re Q) we construct A,, B, SR such that: (1) A,, B, are countable and
contain r; (2) A, B, have the order type of the rationals; and (3) for every M
there is 8 >0 such that for every r, s eQ and for every {a,, b,), {a,, b,)€ A, X B, if
a, ¥ a, and b, # b, and |a,— a,l, |b;— by <e, then

bz_bl

a,—ay

a—a,

2= by

>M or > M.

The construction of such a system of sets is done unductively, and if we define
A =U,eqcl(A,) and B =J,.q cl(B,), then it is easy to see that A and B are as
required. O

Question 9.5. Is it consistent that there is A € K such that every two dense subsets of
A which belong to K are isomorphic by a differentiable function?

So far we have presented several techniques for constructing forcing sets. It
seems that there is a large group of consistency results concerning the structure of
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K that can be proved using the methods presented. However, we did not try to
find an exact formulation to the scope of consistency results that can be proved
using these methods. Instead we bring several examples how the various methods
can be combined to yield universes in which K has quite a diverse range of
properties.

It seems to us that the techniques that have been presented so far, suffice in
order to prove any consistency result about the structure of K which is consistent
with MA and 2% =X,. However, we did not make an attempt to formulate what
are exactly those consistency results about K which can be proved by our models.
In the sequel we prove some consistency results in which we apply the previous
methods, and which hopefully exemplify the power of the above methods.

Let A L B mean that there is no Ce K such that C< A and C< B, in this case
we say that A and B are far; A UL B denotes that A L B and A 1 B*, and this case
we say that A and B are monotonically far (M-far).

Suppose that G I H, and that we want to isomorphize A and B without
destroying the M-farness of G and H. In the following lemma we show how this
can be done.

Lemma 9.6 (Al). Let A <2%; for every i<\ let G,, H; € K be such that G; 1 H..
Let A, B € K be such that for every i <A, A Il G; and B 1i G,. Then there is a c.c.c.
forcing set P of power R, such that |Fp A = B, and for every i <A, Fp G; L H,, if G, is
increasing, then |Fp G, is increasing”, and if G; is 2-entangled then Ip “G; is
2-entangled’.

Proof. We first construct a model which encodes all the information we need. Let
h:AUB — X, be a 1-1 function, and for every i <A, let h;: AUB UG, UH,—R,
be a 1-1 onto function containing h. Let M be the following model: |M|=8, UA;
M has a three-place relation R ©{(i, a, B)| hi {(a) < h; (B)}, we denote a <, B tO
mean that (i, «, B)€ R; M has unary predicates which represent h(A) and h(B);
and finally M has the binary relations Sg={(i, a)|ach(G)} and Sy=
{(, a) | € by (H)}.

Let @ <° B denote that h™(a)<h Y(B), hence <° is definable in M. Let C be
M*-thin, and let P = P(C, <°, A, B) be as defined in 2.1. By 9.1, P is c.c.c., and it
isomorphizes A and B. We next show that for every i, IFp G; L H;. Suppose by
contradiction p Itp —(G; L H;). We denote G = G;, H=H; and < =<, By abuse
of notation we assume AUB UG UH =R,;. Let 7 be a P-name such that p IFp “7
is an uncountable OP function and +<GXH. Wlog p=0. Let
{(fo (@ By )) | @ <R} be such that for every a, f, IFp{a, b)e™, and a# B>
@y, by ) #{ag, bg). We will reach a contradiction if we find « and B such that
fo Ufs € P, but {{a,, b,), (ag, bg)} is not OP. We uniformize {(f., (a, b)) | @ <R,} as
in 9.1, hence we denote f, ={{a(a, 0), a(a, 1)),...,{(a(a, 2n—2), ala, 2n— 1))},
and we denote a, = a(a, 2n) and b, = a(a, 2n+1). W.lo.g. all the a(a, 1)’s are
distinct. Let a(a)=(a(a,0),...,a(a,2n+1)), F;={a(a)| a<RX;} and let F be
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the closure of F; in ({R;, <))*"*2. We define D, v,, a(i), @&, W etc. as in 9.1. In the
duplication argument we distinguish between two cases.
Case 1 E°(a(2n)) E°(a(2n +1)). Let v be such that (a(2n)) EY. We

MENWa<®R)3x,) (Rnglx,)>ar(x,, € GIA(x,, ., H)
17\ v/ N o\ / \vidn ~7 \Vin+1>-+24)
A‘Pu+l(a0’ L] a‘u~1’ xv))
Since G L H,

1 1
MeE@x0, x1) (Rngx) NRg(x) =9 A (+h,€ G A (hovac H)

1
A ({<xgm xgn+1>’ <xém x%n%—l)} is OR) A l/\O ‘pv+l(a05 cees Qu-1s xs.:)) .

For every i€ R, and [ =0, 1, let U} be an interval definable from D such that all
the UYs so far defined are pairwise disjoint and

1
M°F@@x), x3) (1/\0 xbe TT UIA xS X3na1)s (X Xns i}
= ieR,

is OR)A l/‘\o Coi1(@os - o5 @yy, xi,)).

| PV ey £ o Al 1 Lo
LCL (pb\.lo,...,o‘»v 1} UC [N Il lUllllud OLaAlICU 11VIIL

substituting a, by x, for every s <wv.

As in 9.1, we can find for every s <k, I(s)€{0, 1} such that for every i <n: if
2ieR, 2i+1eR, then (U X U, U x U3HP) is OP. We continue as in
9.1 and find B, v such that for every s <k

a(B) } Re[] U and a(y)}Re[] U,

ieR, ieR,

P P e a laxr
Uic dbuve 1ulliiula Uy

Nawe that £ (1f oD and that {{~ {a h \lic OR A ntradictinn
111 & Ljgwjy& L 4alih that 1\u3, UB/, \u.y, Uy/f 15 U, £ contraaicuon.

Case 2. ES(a(n))# E(a(2n+1)). Let E(a(2n))=E® and E(a(2n+1))= E™.
Case 2.1: E® and E* are not in the same component of G;. In this case we
define @, s <k, exactly as in 9.1. Let S, be a set such that v, w € S;, and for every
component L of Gy, [SoN{s|E*e L} =1. We define S; as in 9.1. Next we define
I(s) for every s € S;. For every s € §;—{w}, let I(s) = 0. We define [(w) to be equal
to 0 or 1 according to whether {(US, X U3,41), {U3. X U310} is OR or OP. We
now define [(s) for s € S; by induction on i as in 9.1. Let B, vy <X, be such that for
every s <Kk,
aB) | Roe [] U and a(y)} R e[] UV.
ieR, ieR;
It is easy to see that fz U f, € P and that {(ag, bg), {a,, b,)} is OR. A contradiction.
Case 2.2: E* and EY are in the same component of Gy Let v=1,,
vq,...,0,=w be such that E™, ..., E™ is the unique path in G; connecting E”
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and E¥. By the symmetry between the roles of A and B we can assume that E%

and E*' are connected by {(a(2jf), a(2j+ 1)) where a(2j)e E* and a(2j+1)e E*.

We define ¢, for s=<k inductively. ¢, is defined as in 9.1. If s# v, then ¢, is
A wxrn AAG

TN | N A

rom definad oo afine o
Ml Qg1 as in 9.1. ouppch Pp41 NAS been defined, and we define ¢,.

=
=

(=
v—b

MC':QXU ((Pu+1(a0, cees @y, xu)/\x2j €A ANXon € G)-
Since A 1L G, for Z=P and Z=R:

M°E@x*%, x;9) (A @oirlap, - ., @i, X" AYUEE, X555, (x37%, x50 s OZ))-

Let UM, 1=0,1, Z=P,R and i€R, be pairwise disjoint open intervals
disjoint from the previously defined I’s definable from D such that: (1)
(USFX UYZ, Ui*x U%y is OZ; and

(2) M°E A A 3IxL (xﬁ;ze I1 U repiiac, - - ., ap_y, x”Z)).
Ze{P,R} I=0 ieR,
iet ¢, be the formula obtained from the above formuia by replacing each a,
s <uv, by x,. This concludes the definition of the ¢,’s
Our next goal is to define I(s) for every s <k. In fact we have also to decide
whether to duplicate the U}®’s or the U®’s. Let T={s | E* and E" are connected
in G;}. We define I(s) for se k— T as in 9.1. So it remains to define I(s) for s T.

Toat € =fwl and we define € inductively ac in O 1 Naote that 13~ C Fnar < » wa
1.8l 5S¢ Wy, and we acnne o; maucuveiy as i .1, Note tnat v € 5,. ror i =<r we

define I(s) for s€S, as in 9.1. Let Z° be defined as follows. If (Ux X

U, UK x U3157) is OP, then Z° =R, and if the above pair of sets is OR,
then Z°=P. We denote each U’ by U! and proceed in the definition of I(s) as
in 9.1. Let B and vy be such that for every s <k,

aB) t Ree[[ UI® and aly)}Re[] U
ieR, ieR,

By the proof of 9.1, f Uf, € P. We check that {{ag, bg), {a,, b,)} is OR. By the
construction of I(s), (UXIx U, UN'@x Uy is OP. (Uy’X
UL, UL '™ x U3;1™) was chosen to be OR or OP according to whether (U5 X

U, Ué,l(l" Ox U315") was OP or OR. Since the composition of an OP and an
OR function is OR it follows that (UX?x UL, U™ x ULy is OR. Since
(ag, bg)e USP'x UK, and (a, b,)eU'™®xU3'Y” it follows that
{(ag, bg), (a,, b,)} is OR. Hence we reach a contradiction again.

The proof that, if G; is 2-entangled in V, then it remains 2-entangled after
forcing with P, is very similar to the above proof. So is the proof that G; remains

an increasing set, if it was increasing in V. [

Lemma 9.7 (Al). Let A <2%; for every i <A let G, H; € K be such that G, | H..
Suppose Q is a c.c.c. forcing set such that o —(GoL Hy). Then there is a c.c.c.
forcing set R of power R, such that g (Q is not c.c.c.)A(Vi<A)NG; L H,).
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Proof. This is an instance of the explicit contradiction method
similar to Claim 1 in 8.5. So we omit the details.
Let M be a model encoding Gi, H; as in 9.6, and let C be M°-thin. Let 7 be a

Q-name such that ik, “7 is an uncountable OP function and 7 < Gyx Hy”. Let
{(ge» a(a, 0,0), a(a, 0, 1), ala, 1,0), ala, 1, 1)) | @ <R}
be a sequence with the following properties: denote
a(a, )=(a(a, ,0),a{e, , 1)) and a(a)=a(e, 0)rale, 1);
then (1) q.IFAl_o ala, De 1, and (2) if (o, 1) #{B, m), then
{E%ala, 1, 0)), ESa(a, [, D}IN{E(a(B, m,0)), E(a(B, m, 1))}=

=73 N baghd

Let a, B <X,. We say that q,, qg are explicitly contradictory if there is [(a, B) =l
{0, 1} such that {a(a, 1).a(B, 1)} is OR. Clearly if g, and g, are explicitly contradic-
tory, then they are incompatible in Q. Let R ={o € Py (R,)|for every distinct
a, B €0, q, and qg are explicitly contradictory}. o <7 if o = 7. The proof that R is
as required is very similar to the proof of ciaim 1 in 8.5, hence we ieave it to the
reader. O

In the next two lemmas we make the preparation for the use of the tail method
under the assumption Al. Let A < B denote that |A — B|<R,.

Lemma 9.8 (Al). Let A <2 for every i <A let C; <R, be a club. Then there is a
club C =R, such that C< C; for evey i <A.

Proof. Let M =(\, <, R) where R ={{a, i)| a € C;}. It is easy to see that if C is

........ — ™/
1V1 llllll, l.IlCll IUI cvlry l \I\ b =4 Ul

Lemma 9.9 (A1), Let A <2%; for every i <\ let Ai={a(i,a)| a <R}€ K, where
{a(i, )| a <R} is a 1-1 enumeration of A;, and let A € K. Then there is BS A
and for every i<\ a club C,=R; such that Be K and is dense in A, and if

B, ={a(i,a) |« € C}}, then B, is dense in A,, B iL B; and B is 2-entangled.

Proof. Let {a(), a) | a <X;}, be a 1-1 enumeration of A;let h: (A +1) xR, —};
be defined as follows: h(i,a)=a(i, @). Let R={(i, a, B)| a(i, a)<a(i, B)}. Let
M={(r+1,<, h, R), and let C be M°-thin. Let {E_, | « <X,} be an enumeration of

£C in an incraacine arder T et D (‘X‘ hA a clubh euch that IN' — nl R For P\IPYy

[+ il QAL IMUICAoIE UIGUI. LA 45 o UL Q Viuy Sulil uiQe b Sj. £92 OV

i<Alet C,;=UU{E,|aeD}and B; = {a(t, a)|aeCl Clearly C, isaclub, B;e K
and is dense in A, It is easy to find B < A with the following properties:

(1) if a(A, @), a(A, B)e B and are distinct, then E€(a(}, a)) # E€(a(A, 8)) and
a¢ U{E, |ye D}; and

(2) BeK and is dense in A.

Suppose by contradiction f < B X B; is an uncountable monotonic function. Let
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f'={(a, B)[(h(A, @), h(i, B))ef}, F=cl(f) and F'={(a, B)|(h(A, @), h(i, B))e F}.
There is d €|[M®| such that F is definable from d. Let y,<X; be such that for
every a =v,, if a € C, then there is N< M€ such that d €|N| and [N|NR; = a. Let
(a, BYef and yo<a, B. W.lo.g. a <. By the definition of B and C, there is
v € C such that a <y = . Let N< M° be such that d €|N| and |N|NX; = y. Hence
a €|N|3 B. However, |F'(a)|=<2 hence 8 is definable from « and d, and thus
B €|N], a contradiction.
The 2-entangledness of B is proved similarly.

Let A€ K. A is into rigid (I-rigid) if there is no monotonic f: A — A other than
the identity. Let RHA be the following axiom:

Axiom RHA. For every A €K there are B, C< A such that B, Ce K and are
dense in A, B is I-rigid and C is homogeneous.

Note that RHA = —CH.

Theorem 9.10. Let VECH, and A be a regular cardinal in V satisfying A™ = A and
Y.<x2“=A. Then there is a forcing set PeV such that p (2" =A)AMAA
RHA ANA.

Remark. The assumption that Y, ., 2* =\ is needed just for MA and not for
RHA or NA.

Proof. Let Vo2 V and VyE(2% = A)A Al. The construction, of such V, is done in
5.4. Let {r;|i<A} be an enumeration of H(A) such that for every 7€ H(A),
[{i | 7. = 7}| = A. We regard each 7; as a task of one of the following types: if =, is a
name of an element of K, we shall find two subsets H and R of ; belonging to K;
we shall make H homogeneous, and will make some obligations which will assure
that R will be I-rigid. If 7; is a name of a pair of members of K, then we will
define 7r; to make these two sets near to one another. If 7, is a name of a c.c.c.
forcing set, then either we make 7; the next step in the interation or by the explicit
contradiction method we destroy the c.c.c.-ness of T,

We define a finite support iteration {({P;|i=<A}, {m |i<A}). Along with the
construction of the m;’s we also define some obligations. An obligation which is
added in the ith stage of the iteration is a P;,-name of an object of the following
form (H, {d, | @ <R,}) where H,{d, |a<R}eK, {d, |« <R} is a 1-1 enumera-
tion and Irp (H 1L {d, | @ <R}). If s =(H, {d,, | @ <R,}) is an obligation, then i(s)
denotes the stage in which it was defined; H(s) denotes H; ﬁ(s) denotes the
name of the set {&a € a<NX;} and d(s, @) denotes d,. If s is an obligation, then
for every j=i(s) we will have a club C(s,j)=®; such that
ks, H(s) 1{d(s, a) | a € C(s, j)}. We denote {d(s, a) | a € C(s, j)} by D(s, j).

Suppose 8 <A is a limit ordinal and for every i <§, P, has been defined. P; is
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defined automatically. Let s be an obligation with i(s) < 8. By Lemma 9.8 there is
a club C <X, such that C<= C(s, j) for every i=<j<8. Let C(s,8)=C.
Suppose P; has been defined. In order to simplify the explanation we define the

value of 71, in a P.-generic extension of V. instead of definine 7. itself. Hance lat
Liva UL ey A & X 5\-/ WA AW WALWALIJAVIIL VL v U AiEOVw AL VL \.I\./Llllllls "l ALOM AL, LAAWILIINVA IVL

G be P;-generic and W= V[G]. Suppose first that Q € v5(7,) is a c.c.c. forcing
set. If for every obligation s, Iko H(s) it D(s, i), we define vg(m;) = Q; for every
obligation s we define C(s,i+1)= C(s, i); and we do not add new obligations.
Otherwise, by 9.7 there is a c.c.c. forcing set R of power X, such that kg (Q is not
c.c.cIAVYs(H(s) It D(s, i)). Let vg5(m)=R, for every g let C(s, i+ 1)=C(s, i), and
we do not add new obligations.

Suppose that vs(m;)e K and denote vg(1;)=A. W.lo.g. A is dense in R. By
Lemma 9.9 there is B< A and for every s a club C(s,i+1) such that BeK is
dense in A and is 2-entangled, and for every s, B 1Ll D(s,i+1). Let H R< B be
disjoint dense subsets of B such that H, Re K.

By repeated application of Lemma 9.6 there is a c.c.c. forcing set P of power X;
such that

I+p (H is homogeneous) A (R is 2-entangled) AVs (H(s) 1L D(s, i + 1)).

Let vg(m) = P. For every two disjoint rational intervals of R, I and J, we define a
new obligation s(R, I, J):

S(RRLN=(RNL{d, | a <R}

where {d, | @ <X} is a 1-1 enumeration of R NJ. For every new obligation s we
define C(s, i + 1) to be X;. It is easy to check that the induction hypotheses hold.

If vg(7;) =(A, B) where A, B €K, then as in the previous case we find A'c A,
B’ < B and for every obligation s, C(s, i + 1), such that A’, B'€ K, and for every

< A' B’ 1 n(c i 4—1\ Rv 9.6 there ig a c.c.c. forcine set P of power R such that

s, ALB L D(s,i+1). B there is a c.c.c. forcing set P of X; such that
Il—PA’_B AVs (H(s) L D(s, i+1)). Let P=vg(m).

If vs(w) is none of the above, we define vg(mr;) to be a trivial forcing set. This
concludes the definition of P, and .

Let P=P,, let G be P-generic and W=V, [G]. Let AcK"Y. It is easy to see
that A contains a homogeneous member of K which is dense in A. For some i,
A =0v5np(7). Let RS A be as defined in the ith stage of the construction. We
show that R is I-rigid in W. Suppose by contradiction f: R—>R is monotonic and
is not the identity. For some disjoint rational intervals I and J, f(JM R)= INR,
and let s =s(R, I, J). Let j=i be such that fe V)[G NP;]. But D(s, )< JNR and
VoG NP]ED(s, j) L INR. A contradiction, hence R is I-rigid.

The proof that WEMA is well known. []
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Question 9.12 (Baumgartner). Is it consistent with ZFC that 2% >, and every
two R,-dense sets of reals ae isomorphic?
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10. The structure of K and K® when K" is finite

started the investigation of the possible structure of K and K*

(&
pf on of MA In thig cection we continue the invectioation in
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this direction. Our main goal is to characterize the structure of K™ under the
assumption MAy, + (K"/= is finite). In this case we obtain a full description of the
possible structure of K¥, and we also obtain quite a good description of how K is
built from K*.

We did not pursue an analogous result for the general case, still we know to
construct a large variety of different K*’s. There is still a shortcoming in our
proof — we do not know how to enlarge 2™ beyond R,.

We make an abuse of notation and denote K*/= by K*.. By 6.1(d), < induces a
partial ordering on K*/=, hence we regard < as a partial ordering of K*/=. Since
(A =B)=>(A*=B%) * too can be regarded as an operation on K¥/=. Clearly * is
an automorphism of order 2 of (K¥/=, <); we call such an automorphism an
involution. The main theorem in this section is the following.

Theorem 10.1. Let (L,<,*) be a finite poset with an involution. Then
CON(MAy, + (K" U{pl/=,<, »)=(L, <, %)) iff (L, <, *) is a distributive lattice
with an involution.

Definition 10.2. Let of < K¥; o generates K™ if every element of K™ is a shuffie
of a countable subset of &f. K* is countably generated if there is & < K¥ such
that |of| <R, and & generates K",

Lemma 10.3 (MA,). (a) K" is a o-complete upper-semilattice, that is, every
countable subset of K™ has a least upper bound.
(b) If K™ is countably generated, then K™ U{p} is a distributive complete lattice.
(c) If (KH, <) is well founded, then for A € K there is a nwd subset B of A such
that A — B is the ordered sum of members of K*.

Proof. (a) is just a reformulation of 6.1(f).

(b) Suppose K* is countably generated, then by (a), K¥ is a complete
upper-semilattice, but then K™ U{@} is also a complete lattice. Let K¥ U{@} be
denoted by K¥4, In order to show that K™ is distributive it suffices to show one
of the distributive laws. We show that (a,va,)Ab = (a;Ab)v(aAb). In fact we
can show somewhat more: (A;c, @)~ b= Aic, (@ A b). We do not know however

whether the dual identity holds

BT ULATE Wb Guad Gy auaius.

Let us denote the operations in K¥* by A and v. Let A € K™ and for every
i € w, let B; € K™ and suppose that A< V,., B;. We prove the following claim:
(*) There are A; e K¥# such that A;,<B; and A =V,_, A.
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W.l.o.g. each B; is dense in R, hence B\ J;_, B; = V,.., B.. Let f: A— B be OP.
Recall that C™ denotes a mixing of C. If |C|=<R,, let C™=4§. For every i € w, let
C, =f'1(B) and A;=C" C<A, B hence by 6.1(g), A, <A, B. Hence
\‘/iew n, < A. On the other hand Uy' piCK g appropria iate COpit:b of \,, as Ai, one
can assume that A <lJ;., A, and since Ui, A; = Vi, A; it follows that A<
Vieco Ai- Hence A =V, A;. We have thus proved ().

Let A € K*# and for every i € w, B;€ K™%, A AV:c, Bi< Vico, B;, hence there
are A;< B; such that V., A; = AAVicw Bi. A;< A, B, hence A;< A AB,. Thus

/ I\\\/ n =\/ A < \/. {AARN Thea in equ alit r \/. (A ARN A AN/, n.
A A Vieew Bi = Vico AiX Vico{AAB;). The inequality V.. ,(AAB)<AAVico B:
holds in every lattice. in

(c) Suppose (K¥ <) is well founded, and let A € K. It suffices to show that
every non-empty open interval of A contains a homogeneous subinterval. If A,,
A, are intervals of A and A, < A,, then AT AY. Let A, be an interval of A,
since K¥ is well founded A; has a non-empty open subinterval A, such that for
every subinterval A; of A,, AT= AJ. We show that AT< A,. For every subin-
terval I of A,, there is a family {g;; | i € w} of OP functions such that Rng(g;;)=1
and Ui, Dom(g;)= AF. Let $ be a countable dense family of subintervals of
A,. Then AT, A, and {g;;|ic$,ic o} satisfy the conditions of 6.1(b), hence
AP A, A,< AT, hence by 6.1(g), A,=AT. O

We next turn to the proof of the other direction of Theorem 10.1. Let
{L, v, A, *) be a finite distributive lattice with an involution. a € L is indecompos-
able if for no b,c<a, bvc=a. Let I(L) denote the set of indecomposable
elements of L. Clearly I(L) is closed under *, and every element of L is a sum of
elements in I(L). The following proposition shows that I(L) determines L
uniquely, and will guide us in the construction of a universe in which K*# =L

Proposition 10.4. (a) Let (A, <, *) be a finite partially ordered set with an involu-
tion. Then there is a unique distributive lattice with an involution L such that
(I(L), 5, #)=(A, =, %),

- (b) (MA) Let {A; |i<n}< K" be such that: for no j<n, A, is a shuffle of other
members f TA. li<nl and for enerv A c T(H, Aisa chuffAe nf como mombore nf

(13 f12 0 AN LR | & T~Tvy, e JUS CUGTy £ T s a Sl Uy SUNRT Tnierivo o Uy

{A;] i<n}. Then K% is finite, and I(

Proof. Easy. []

By the above proposition it is clear what has to be done in order to construct a
universe in which K™% =[.. We start with a universe V satisfying CH, and with a
family {A, | a e I(L)}< K™ such that no A, is a shuffle of other A,’s and such
that a — A, is an isomorphism beiween {I{L}, =, *) and {A, | ac (L)}, <, *).
We then construct W 2 V which satisfies MA, and in which every element of K™
is a shuffle of some members of {A, |acI(L)}, and no A, is a shuffie of other

A,’s. In such a universe K** =L,
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For the rest of this section L is a fixed finite distributive lattice with an
involution. W.l.o.g. I{(L)={0, ..., n—1}, and we denote the partial ordering on
I(L) by <. Recall that * is an involution of ({0, ..., n—1}, <).

The method of proof of the following lemma is well known and is due to
Sierpinski [8]. We take the liberty to present a proof here since the technical
details are not completely obvious.

Lemma 10.5 (CH). There are {A; |i<n}< K" such that:
(1) If i<, then A, < A,
(2) If i =j*, then A,= A™.
(3) Let B, = A, —U;: A;. Then, if i<], then B, L A;.

Question. Does the above lemma follow from A1?

Proof. Let fcRXR. f is a maximal OP function if f is an OP function and there
is no OP function g such that f& g cRXR. Let {f, | « <X,} be an enumeration of
all maximal OP functions. Let § denote the function such that for every z,
Z(z)=—z; for every f let f¥=gefog '; and if F is a set of functions, let
F*={f*|feF}.

We define by induction on a <R, a family of pairwise disjoint countable dense
subsets of R, {B(i,@)|i<n}, and families of OP functions {F(i, «) | i <n}. Let
A(i, @) = U;<: B(j, @). Our induction hypotheses are: (1) if i =j*, then B(i, a)=
B(j, @)* and F(i, «) = F(j, )*; and (2) for every i <n: if fe F(i, @), then f:R—R
and f(A(i, a))= A(i, @), and for every x, y€ A(i, «) there is f€ F(i, ) such that
fx)=y.

It is easy to define {B(i, 0) | i <n} and {F(i, 0) | i<n}. If & is a limit ordinal, let
B(i, 8) = Uo=s B(i, @) and F(i, 8) =, s F(i, a).

Suppose {B(i, a)|i<n}, {F(i,@)|i<n} have been defined, and we wish to
define {B(i,a+1)[i<n}. Let B(i, «)=B(i, «) UU {fa(B(i, a)) | B<a}. Let U<
{0, ..., n—1} be such that for every i <n, |UN{;, i*}|=1. For x€R and a set of
functions F, let cl(x, F) denote the closure of x under FU{f ' |fe F}. It is easy
to construct a set {x;|ie€ U} such that: (1) for every ie U, cl(x;, F(i, «))N
cl(—x;, F(i*, &)) = @; and (2) for every i€ U, cl(x, F(i, @)) N\U;, B(j, @)= 9.

Let i<n;if ieU and i#i* let B(i, a+1)=B(i, a)Ucl(x;, F(i, )); if i =i* let
B(i,a+1)= B(i, a) Ucl(x, F(i, a)) Ucl(—x,, F(i, @)); and if x,¢ U let B(i, a +1)=
B(i, a) Ucl(~x;x, F(i, a)).

Since for every i, F(i, a)* = F(i¥, a), it follows that B(i, a + 1)* = B(i*, a + 1).
By the choice of the x;’s, B, a + 1) N B(j, « + 1) = whenever i#j. It is easy to
define for every i <n, F(i, « + 1) 2 F(i, ) so that the induction hypotheses will
hold.

Let A; = U,<x, A, @). It is easy to see that each A, belongs to K*, and (1) and
(2) of 10.5 hold. Suppose by contradiction i<j but N(B, A;). Hence for some
k# i, N(B;, B). Let f be a maximal OP function such that |f N B, X B,|=R,. For
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some «, f=f, By the construction, for every B>a, f,(B(i, 8))N(B(k, B)—
U{B(k, v) | vy<B}) =0, hence |f,(B,) N B,|=<X,, a contradiction. [

Let {A,,|i<n} and {B; |i<n} be as assured by Lemma 10.5. For every i<n
and every rational interval I let {b(a, i, I) | @ <X,} be a 1-1 enumeration of B;N L.
Let F, be the following filter: F,={B<B;|for every rational interval I,
{a | b(e, i, i) € B} contains a club}. For simplicity we assume that if i = j*, then for
every I and «a, b(a, i, I)=~b(a, j, I*); this ascertains that g is an isomorphism

hat } = nd I’ 1
oCIwedh & anda . Note that if B GF l.h\./ll BeK and B is dense in Bl

For subsets of R, C, . .., Cc_y, let A*Z3 C; =0 denote the following fact: there
1s no CeK such that C < C; for every 1<k. Note that for C, € K, there is no
meaning to AXZ) G, since there are not meets in K.

Let {x; | i <n}, {y. | 7<= n} be sets of variables. Let

@o=N\ (xiax,=0)A A\ (x4x%=0).
ik isj*

T ot ~E daw~t ~ f *
11

N
Lol 4 acnowe z v,

=
>

o =1
o — i,

o

E= and z
formula of the form A;.;z:® =0 where {z;|ieI} is any set of variables and
£(i)e{0,1}. Let x be an F-formula with variables belonging to {x; |i<n}U
{y. | T = n}. We say that ¢, implies x (¢o= x) if for every distributive lattice with
an involution L and for every assignment s such that for every 7, s(y,)=
\v/l (% !;c.J;ifTI:m{c\ then Thv[c] More explicitly,

AT SYAVL
‘Po'—') /\ xe(t) /\ e(r)_
iéI el

*® and for every tel, ige

if there is ip<n such that for every iel, iz=i
{i*®|ier}.

Let @, =1{x | x is an F-formula and ¢,=> x}. Let Co, ..., C,._,€ K and suppose
KE@i[Co, ..., C,_] It is obvious that KF¢,[s] where s is the assignment which
maps each x; to C; and each y, to U, C.. Let s be an assignment such that
Dom(s) < {x; | i <n}U{y. | r = n}. We say that ¢[s] holds (Fe,[s]), if x[s] holds
for every conjunct x of ¢, whose variables belong to Dom(s).

For every i <n, let 7, ={j | j < i}; let s be the assignment which maps each i to
B; and each 7, to A;; by the above discussion KFq,[s].

We now outline in more detail the proof of the second half of Theorem 10.1.
We start with a universe V satisfying CH, and with {A;|i<n}, {B;|i<n},
(F, | i <n} as described above. We define by induction on v <R, a finite support

iteration of c.c.c. forcing sets ({P,|v=R,}, {m |v<R,}, and a sequence

{B®,0),...,B(r,n-1))|v>R,} such that for every v and i, R(v,i) is a P,-
name, and

ke, (Vi<n) (B(v.i)e F,AB(, i)*
= B(V, l*) /\(K':‘Pl[B(Va 0), D] B(V, n— 1)7 A07 ses An—l])

where each B(v, i) replaces x;, and each A, is replacing Vi
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We prepare in advance a list of tasks. There are two kinds of tasks: the first one
is designed in order to take care that I-p,_ MA, and the second is to assure that
-5, KH"/= is finite.

If v is a limit ordinal, then P, is defined automatically and {B(v, i) li<n}is
defined as in 4.1 or 9.10.

Suppose P,, {B(v, i) | i <n} have been defined, and we wish to define =, and
{B(r+1,i)|i<n}

Case 1: Suppose the v’s task is a P,-name = such that IFp “m is c.c.c.”. If
e (F.KE@[B(#,0),...,B(r,n—1), Ay,...,A,_1]), then we define =,,, to
be 7 and B(v+1,i) to be B(y, i). Otherwise we define m,,, to be the P,-name
of the forcing set R which is constructed in the following lemma.

Lemma 10.6 (CH). Let s be an assignment such that KF¢,[s]. Suppose Q is a
c.c.c. forcing set such that o (KE—¢@,q[s]). Then there is a c.c.c. forcing set R of
power R, such that rr (KE@,[s)A(Q is not c.c.c).

Proof. R is constructed by the method of explicit contradiction. The details of the
proof are similar to claim 1 in Lemma 8.5. Thus we give the definition of R but
omit the proof that R satisfies the requirements of the lemma.

Since o ¢@4[s], there are C,, ..., C,_, € K such that in V, KEA, ., C, =0,
but Q forces that KF (A, C;=0). Let M be a model which encodes all
the relevant information. Recall that a set of two k-tuples {aq, ..., Gi_y),
(bo, ..., b1} is called OP, if for every i<j<k:a,<b, iff aq;<b. Let = be a
Q-name such that b5 (t [T CYA (7] =R A(every two element subset of 7 is
OP). The number of variables in ¢, is n +2", accordingly let m =2(n+2")+ 1. Let
{(qes a(a, 0), . .., a(a, m— 1)) | & <R} be such that: (1) for every a <R, and i <m,
qo Foala, i)er; (2) for every a <X, and i<j<m, there is yec Cy such that
a(a, iY<y=al(a,j); and (3) for every a<pB<N,, there is ye Cy such that
ala, m—1)<y=a(B,0).

We say that p, and p; are explicitly contradictory if for some i<m,
{a(a, i), a(B, i)} is not OP. Let R ={a € P (R,) | for every distinct a, 8 € o, p, and
pe are explicitly contradictory}. oy <o, if ¢y S a,. As in 8.5 it can be proved that
R satisfies the requirements of the lemma. O

Case 2: Suppose v’s task is a P,-name of a member B of K. In this case we
define m, and B(v+1, i) according to the following lemma.

Lemma 10.7 (CH). Let A, B;, F, be as above, let B(v,i)c F, be such that
KFeB(»,0),...,B(yv,n—1), Ay, ..., A,_,], and let Be K. Then there is an
interval A of B, r= n, B{€ F,, i <n, and a c.c.c. forcing set P of power R, such that
for every i <n, B* =B« and

”_P (K':(Pl[Bé, .. ’Bil~15 AO7 s sAn—l])/\<AEU Al)

ier
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The remainder of this section is devoted to the proof of the above lemma. But
first we show how to define ., and B(v+1, i), and how Theorem 10.1 follows
from what has been described so far. Let m, ., be the P,-name of the forcing set P
of Lemma 10.7 and I§(v+ 1, i) be the P,-name of B! of Lemma 10.7.

Let P= Py, Clearly Itp MA, and Ikp (VA € K¥) (1< n) (A =V, A). It re-
mains to show that if i#j, then Fp A;%¥ A;. Suppose the contrary. Let G be
P-generic and W= V[G], and let f: A;— A, be an isomorphism between A; and
A; belonging to W. For some v<N,, fe V[G NP1 W'. Wlo.g ifj Let
By, i)= Uan"(B(V, i)). Hence in W', B(v, i) L A, but f(B(v, i)) € A, a contradic-
tion.

The proof of Theorem 10.1 will be concluded if we prove Lemma 10.7.

Let {x{|i<n, 1€{0,1}}, {y'|r<n,1€{0,1}} be sets of variables, x°, x} are
called copies of x;, and y?, y} are called copies of y,. A formula ¢’ is called a copy
of ¢, if it is gotten from ¢, by replacing every occurance of a variable in ¢, by
one of its copies. Note that two occurances of the same variable need not be
replaced by the same copy of that variable. A copy of ¢, is defined similarly. Let
Y, be the conjunction of all copies of ¢, and y, be the conjunction of all copies
of ¢,. We again make the convention that for an assignment s with

Dom(s)c{xi|i<n,1e{0, 1JU{y | rcn 1{0, 1}},

KEyls] means that all conjuncts of i, whose variables belong to Dom(s) are
satisfied.

Proof of 10.7. Let A, B, F, B(v,i) and B be as in 10.7. We denote B(y, i) =
B(i), and let F(i) be the restriction of F, to p(B(i)). Note that F(i) is defined from
some enumerations of B(i) NI in the same way that F;, was defined. Hence for the
rest of the section we ignore B; and F;, and have to remember just the properties
of B(i) and F(i).

For further reference let us recall the properties of A, B(i) and F(i). (1) A,
B(i) are dense in R, B(i)e K; (2) {A;|i<n}cK"Y; (3) B()s Ai— U< A;; @)
g(B(i))=B(i*); (5) for every rational interval I there is a 1-1 enumeration
{b(a, i) | @ <R;} of B()NI such that F(i)={B’'c B(i)}|for every rational
interval I {a|b(a,i,I)eB'} contans a club}. b(a,i* I*)=—b(a, i, I); (5)
for every i<n let 7,={j|j<i} and A, =A,; then KF¢,[B(0),...,B(n—1),
Anos AL

For Dy, ...,D._1€K, let D A;<x D; mean that (Vi<k)(D<D,). Let DeK.
We define

n(D)={ocn|@D'eK) (D' DA Nicc A)A(Vid @) (D'~ A =0)).

Note that if D, < D,, then n(D,) < n(D,). Hence there is an interval A of B such
that for every interval A’ of A n(A")=n(A).
10.7 follows from the following three lemmas.

Lemma 10.8 (CH). Let A,, F(i), B(i) be as above, and let A € K be such that for
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every interval A’ of A, n(A")=n(A). Then there are §# < n, {By(i)|ie 1} and
{Bo(i) | i <n} such that:

(1) Ifj<ierT, thenjer

(2) B,(i)e K, By(i) is a dense subset of A, and for every i # j, B.(i) N B,(j) = 0.

(3) By(i)e F(i).

(4) Let m,={j|j<i}, A=A, Al=A, B)=By(i) and B/ =B,(i). Then KF
¥i[BS, ..., Ba ;B ljer; AL, ..., AY ALl
Lemma 10.9 (CH). For 1=0,1 let ny<n, Bi(0),...,B(n,—1)eK, I''c P(n;) and
{Al| re L} K. Suppose the following’ conditions hold:

(1) B,(i) and Al are dense in R.

) IfiereTl, then bi(i)c Al; and if i <j<ny, then B,(i)NB,(j)=0.

(3) If 7y, eI and 7, 7,, then A, c Al

@) Keg[B(i)]|1<2, i<n;AL|1<2,7el].
Let te{0, 1}. Then there are pairwise disjoint {B!|i<n,} such that

(1) K> B2 B,(i).

(2) For every 7T, A<=l,..Bi

(3 K':'IJI[B” i<ng; By (i) | i<ty A:_" Tel_.]

Lemma 10.10 (CH). Let ny<ngo<n, let {B{|1<2,i<n}, {D!|1<2,i<n,} be
such that all the B}'s and D{'s belong to K and are dense in R, for every | <2 and
i<j<m, BiNBj=@, Di=B; and KF[BS,...,BS 1,B},...,B} 1] Then
there is a c.c.c. forcing set P of power R, such that

ke (U DP= U DI)AKFwlBS, ... BY o1, B, BL1D.

P<n; i<n,

Remark. Lemma 10.8 and 10.10 can be proved assuming Al; we do not know
how to prove 10.9 without assuming CH; this is the reason why in 10.1 we cannot
enlarge 2™: beyond X.,.

We first conclude the proof of 10.7 assuming 10.8-10.10. Let A be an interval
of B such that for every interval A’ of A, n(A’)=n(A). From 10.8 we obtain
v<n and B(i)’s. By renaming {0,...,n—1} we can assume that t=
{0,...,n;—1}. Let us denote 7, ={j | j<i}, A2=A, A=A, T,={ro, ..., Tpu_1}
I'y={1}, no=n and t=1. (n, has already been defined.) The conditions of 10.9
are satisfied by the B;(i)’s, A"s etc., hence from 10.9 we obtain {B!|iec r}. By
intersecting each B} with A! we can assume that |J,.,Bl= Al the other
properties of the B’s are not destroyed. Obviously

Kt:ll’l[BO(i),i<nO;Bi1'i<n;A2’lT,€FO;A11-]-

We can now apply Lemma 10.9 with t =0 to the Bo(i)’s, Bi’s, A2’s and A!. We
thus obtain from 109 the B®s. From 10.9 we know that KE
WolBY, ..., BS_,,BS,...,BL _,]. For ier let D}=B} and D?=BN;.. A,
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The conditions of Lemma 10.10 hold, hence let P be the forcing set obtained in
10.10. Let je7; then Ui, B2 A, = A;. Since i<jer>ier, U7 =1 hence
Uje.DY=U;e- A;.  Recall that |J;.,Dj=A, hence IFpA=J.. A,
e (Kt @olBg, . .., Ba_i]); for o< n let AlL,=J;., B, hence for every i, AL2
A,. Clearly Itp (Kt [BY|i<n; AZ|i<n]). Recall that for every i, BY 2 Bo(i),
hence p (KF@i[Boli)| i <n; A, |i<n]). But according to 10.8, B(i)e F(i) < F.
For every i<n, let B!=By(i)Ng(By(i*)), hence B!eF, B*=Bl,, FpA=
Ujer Aj, and Ibp (KFE@4[B), ..., BY_1, Ao, . - ., A._1]- This concludes the proof of
10.7. O3

Proof of 10.8. W.log. A is dense in R. Let r1={j| Qo en(A)) (&€ MNics T)}.
Using the fact that Kk [A,,..., A, ], it is easy to see that for every o e n(A),
Nice 7: ¥ O (we denote ;g 7 = n). Since obviously n(A)# @ it follows that 7# @.
It is obvious that if j<ie 1, then je r. For every o€ (A), let D, € K be a dense
subset of R exemplifying that fact that ocen(A). For every jer, let D=
U{D,|ocemn and je;co =:}. By an argument similar to Lemma 9.9, it is easy to
find {B,(i) | i <n} and B,(i) | i € 7} such that for every i e 7, B;(i)€ K and B,(i) is a
dense subset of D}; if i# j, then B1(i) N B1(j) =@, Bo(i) = B(i), By(i) € F(i) and for
every i#j
B1(i) A (B(i)* U B4(j) N B1(j)* U Bo(j) U Bo(j)*) = 0.

(Here we assume that B,(j) =0 if j¢ 7.) Clearly (1)—(3) of 10.8 hold. Recall that A;
is denoted by A? and that Al = A. Let s be the assignment such that s(x)) = B,(i)
and s(y')= AL. Recall that an F-formula is a formula of the form A;c;z; =0. Let
x be an F-formula, let ¥* be the formula obtained from x be replacing every
variable z of y by z*. Let x* be the formula obtained from y by replacing every
occurance of (x)* or (y2)* in x by x and y2. respectively where o* ={i* | ie g}.
Clearly x is a conjunct of 4, iff x* is, and the same holds for x*. Also KF x[s] iff
KEx*[s] iff KEx™[s]. Let x be an F-formula and suppose KF—x[s]. We show
that y is not a conjunct of r,. By the definition of the B,;(i)’s it is clear that there
is at most one occurance of a variable of the form x| in x. Replacing, if necessary,
x by x*, x* or x** it can be assumed that
x=A yaaAlt|te T}=0,

where T is a subset of {x}|j<n}U{x]|jertU{(x})*|jestU{ys, (yD*}, and T
intersects the union of the first three sets in at most one element. The case
T ={x}} follows trivially from the fact that By(j) = B(j) and from property (6) in
10.7. Suppose T ={x/}, hence A;., A% 4 B.(j) # 0. By the definition of B,(j) there
is 0’em(A) such that je(Vicor T, and Aice A2AD, #0. It follows from the
definition of the D, ’s that o < ¢’, and hence j € ();c, 7. This means that x is not a
conjunct of .

We next check that if (B})* A Aice A2 70, then j*€ ()., . If the above holds,



The consistency of some partition theorems 195

then for some o' € n(A), jeNice 7 and (D,)* A Aico An# 0. (A9)*= A2, hence
Dy A Nico A2 #0. Let o*={i*|ica}, hence D, n/\;cor A2#0. By the defini-
tion of D,., o* < o’; hence j&(\ico* T, and hence

re( N )= Nrt= N me= N

We next check that if (B/)*A Al#0, then j*€ 7. Suppose the above happens,
and let o € n(A) be such that je(\;c, 7, and (D,)*A A!#0. Let KaD<Dir AL
Since D, A A; =0 for every i¢ o, and since D*< D,, D*A A; =0 for every i¢ o,
and hence DA A; =0 for every i¢ o*. Obviously D*< A,..« A, Hence o*e
n(A). Since j* € (Nico* 75 jFeT.

Suppose T={(x})*}. Then (B})*AAicoc A2#0, hence j*€(\;cy 7, and this
implies that x is not a conjunct of ;.

Suppose T ={y}. Then A;., A;~ A#0. So, there is ¢’ n(A) such that ¢ = ¢
Nicor A2#0, and since KF@[A,,..., A, ] it follows that (., #0. Let
J € ieo T hence je 7 and j € ()., 7. This implies that y is not a conjunct of ;.

The case T ={(y.)*} can be reduced to the previous case by replacing x by x**.

Suppose T ={(x})*, y1}. Then A\;cqe A2A(B})*a Al#0. This implies that j*e
TN { )ico T:» hence x is not a conjunct of ;.

The last case that we check is T={yl, (y)*}. Hence A\ic, A, AAAA*#0, so
there is D € K such that D A\;., A; A A and D*< A. Let ¢’ < n and D’ be such
that Ko D'c D, D' Aicor A; and for every i¢a’, D'aA,=0. Hence o co'c
n(A), and since (D)*< A, (6')* e n(A). Clearly, since Kk,[A2,..., A% ]it
follows that there is je{ )., 7:; and since o <o’, j€[),co 7. Moreover j*e
MNicw* 7 Hence j, j* € 7. These facts imply that y is not a conjunct of ;.

We leave the (easy) remaining cases to the reader. [

Proof of Lemma 10.9. Let M be a model with universe X; encoding all the
information mentioned in the lemma. Suppose w.l.o.g. t =0. For every C,,-slice E
we decide how to divide the elements of E among the various BY’s. This is done
independently of how the elements of other Cy,-slices are divided. Let {a,, | m e
w}=E. Let F be the set of all real monotonic functions definable from ordinals
a <min(E). Note that F is countable and is closed under composition. We decide
by induction on m to which B}, a,, will belong. Hence at stage m we have sets
{B{(m)|i<ny}. We denote B,(i) by B}(m). We assume by induction:

(%) If XEA/.\ (x?)e(o’j)/.\ A (le)s(l,i)/_\ A (yg)e(ox)/.\ A (yl)e(l,f)zo

jeET, jeo, TEMNY TEM,

is a conjunct of ¢, then there is no aecE, {fl|1e{0,1},jea}<F and
{fil1€{0,1}, re oy} < F such that: f! and f! are OP or OR according to whether
e(l,j) and (I, 1) are 0 or 1, fj(a)e Bi(m) and fi(a)e AL.
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Let BY(0) = By(i). The induction h

Khl”x[Bo(i)li<n0;B1(i),i<n1§A2|T€ro;AHTEF1],

and since M encodes the above sets.
Suppose By(m), ..., By, _(m) have been defined. Let

n=N{r|a.c A%,

=N {r|@feF)(f is OP and f(a,)eAd}, 1=0,1,
5= {7 |(3feF)(f is OR and f(a,)e AD}, 1=0,1,
i={i|@feF)(f is OP and f(a,)eBi(m))}, 1=0,1,
m5={i|@fe F)(f is OR and f(a,)eBi(m))}, 1=0,1.

induction hypothesis each of the sets 73U 7}, 72U 75 contains at most one
—_ 1.
=3

0||_1 [ - P Ty DRy At TN » UYL IS S INIPE im sk
i UTi, jT 94,0, alld 14, = (i5) . DY UIC inauction inypot

and if ierSU7l, then ier, and if ies2U7i, then i*er Let igeroUr; if
:é{\ i (91 ) r vk if 01112 and atharwice lat i he anv maembar of +~

TOUTI#0, ipe(rIUTl) TeU7s# 8, and otherwise let i; be any member of 7.
Let B;(m + 1) = B{(m) for every i# iy and B)(m +1)= B)(m)U{a,,}. It is easy to
check that the induction hypothesis holds, and that the construction yields BY’s as
required. O

Proof of 10.10. The construction of P resembles the forcing set constructed to
prove Theorem 9.2. The proof that IFp (KF[BS,...,B% 1, Bg,...,Bn 1)) re-
sembles the proof of 9.6. We thus leave the details of the proof to the reader. []

This concludes the proof of 10.1.

On the possible infinite K*’s

We did not pursue a characterization of all possible K™’s, and not even all
countably generated K*’s. However the construction of 10.1 can be applied to
yield some new infinite K*™’s. Also, some additional information about the
structure of K and K¥ can be derived from MA,..

In the remainder of this section we first present some additional facts about the
case of an infinite K™, we then discuss some open problems, and finally we prove

Definition 10.11. (a) A €K is quasi-homogeneous (QH), if there is a family
{A, | ie w}= K* such that for every icw, A; S A and |A —{J;c, Al =Ro.

(b) Let L be a o-complete upper-semi-lattice, a € L is countably indecomposa-
ble (CID), if a# 0, and whenever a=<V,_, a; there is i € ® such that a<a;. Let
L€ denote the set of CID elements of L.
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(c) Let (M, <, 0) be a poset with a smallest element 0. A = M is dense in M, if
for every b ¢ M —{0} there is a € A —{0} such that a <b.
(d) A poset M is scattered if {Q, <) is not embeddable in M.

Theorem 10.12 (MAy ). (a) Let A< B mean that A< B and A% B. If o gener-
ates KY, o is countable and (o, <) is well-founded, then K™ generates K*.
(o) If KY€ is dense in K¥4, then K™ is dense in K U{#}.
(c) Suppose K€ is countable and scattered, and K™ generates K"'%, then every
member of K is OH.

Lemma 10.13. Let (M, <) be a countable poset. Then up to isomorphism there is a
unique complete lattice L with the following properties: M = L. and M generates L.
In this unique lattice L the distributive law b A Vico, & = Vico (b A ;) holds.

Theorem 10.14. (a) Let (M, <, *) be a countable poset with an involution with the
following property: (x) “For every A < M: if for every T Py (A) there is b e M such
that for every a € T b < a, then there is b € M such that for every ac Ab=<a”. Then

CON(MA, + (KPS <, *)=(M, <, #))+ (K" generates K*)
+ (every member of K is QH)).

(b) Let VECH and A <« be cardinals in V. Then there is an extension W of V
which has the same cardinals as V such that WEMA, +“There is a family
{A,; | i <A}S K such that for every i# j, A, L A; and for every A €K, there is i <A
such that A, < AV + 2% =k,

(c) It is consistent that MAy, holds and (K™%, >)=(Py (R,) U{R}, ©). It is
consistent that MAy, holds and (K™%, <)=(R,+1, <).

Let us now explain what seem to be the main open questions.

Question 10.15. It is easy to construct a universe satisfying
MA+(VAe€eK)(@BeK)(B< A and B is 2-entangled).

In such a universe every A € K* contains B € K¥ such that every member of KX
contained in B is decomposable.

Construct a universe W satisfying MAy, in which K¥ is countably generated
but K¥¢ does not generate K™. Moreover, can W be constructed so that
KHC = ¢?

Question 10.16. Does the first or the second part of 2.14(c) remain true when X,
is replaced by some A >K;?

Question 10.17. Is MA, + (K" is countable)+(K"”C generates K%)+
(3A €K) (A is not QH) consistent?
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Question 10.18. Is the consistency result of Theorem 10.14(a) true when (M, <)
is any countable poset?

Proof of Theorem 10.12. (a) The proof is easy.
(b) The following claim follows easily from 6.1(b).

Claim 1. If A €K, B e K™ and for every interval I of A, B I™, then BX A.
Let us next prove the following claim.
Claim 2. If AcK, BeK¥ and B A™, then B< A.

Proof. Let A,=J{I|I is an interval of A and B<{I™}. By the countable
indecomposability of B, B AT". Let A,= A — A,, hence A, # @. Moreover, since
B< A™, for every interval J of A, B J™ Byclaim 1, B A,c A. O

(b) follows easily from claim 2.

(c) Claim 3. Suppose K™ is countable and it generates K™. Let A € K, B € K¥¢
and B A™. Then there is A, < A such that A — A= B and for every interval I of
A, if BLI, then there is B< Ce K¥€ such that CK L

Proof. Let A,=J{I|I is an interval of A and BL I}, A;=A—A, and A,=
\J{I|I is an interval of A; and for no Ce KH¢, B< C<I}. Clearly there is
B'= B such that B’ is a dense subset of A;. If |A|<R,, let A;=A—B’; it is easy
to see that A, is as required. Otherwise, it is easy to see that for some
{Bli<asw}cs K", Ar=V,_..B;, By=B and for every 0<i<a, B+B,.
Hence there is a countable family of OP functions % such that for every ge 9
there is i(g)<a such that g < B, X A,, and | {Rng(g)|gc9}=A,. Let B"=
B'U|J{Rng(g)| g€ ¥ and i(g)=0} and A, =A ~B". Since B’ is dense in B”,
B"=B. Let I be an interval of A; and suppose that B < I. Clearly B < I— A,, that
is, B< A;N1I Suppose by contradiction there is no Ce K™ such that B< C< L.
Let I’ be the convex hull of A;NI in A,. Since I'-1<B and I— A;« B there is
no C e KY€ such that B< C<I'. Hence I' < A,. We will reach a contradiction if
we show that B I'— B". Since I'~B”<|J{Rng(g) | g€ ¥ and (Dom(g))"« B} it
follows that B« I' — B”. Hence the claim is proved. [

Claim 4. Suppose that Ac K, Be K, B A and for no Ce K" B<CXA,
then there is B'=B such that BX A—B'.

Proof. This is a special case of claim 3. [

Definition. Let (M, <) be a poset and let {M, | i € w} be a family of subsets of M.
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M is an w-sum of {M, |ic w} if M=J;., M,, and for every i<j€w, ac M, and
beM,, b¥a. We define w*-sums analogously.

Let A, be the class of all posets with exactly zero or one element. For a limit
ordinal & let My =], s M, Let M ., be the class of all posets that can be
represented as w-sums or w*-sums of members of M. Let M = My,.

Claim S. Let M be a countable poset. Then M is scattered iff M € M.

Proof. It is easy to show by induction on « that every member of M, is scattered.

Let (M, <) be a scattered poset. By a theorem of Bonnet and Pouzet [5], there
is a scattered linear ordering <' on M extending <. Suppose M is countable,
hence by a theoerem of Hausdorff there is o <X, such that (M, <')e M,,. It is easy
to see that (M, <) also belongs to (,. [

For AeK let A" ={Be KH“| Bc A}. We assume that K¥© generates K*.
(c) follows from the following chain which is proved by induction on a <X;.

Claim 6. Let A € K and AYC is a sum of K, and K,, that is, A" c K,UK, and
for every B,€ K, and B, K, B><% B,. Then, if K, M,, then there is a QH set
A, < A such that (A—-A,)"“cK,.

Proof. The case a =0 is just a reformulation of claim 4. There is nothing to prove
for a limit ordinal a. Suppose the claim is true for « and we prove it for a + 1. Let
A™C€ be the sum of K, and K, and K, e . Let us first deal with the case that
K, is the w*-sum of {M;|icw} where each M, e.#, Using the induction
hypothesis we can define inductively {C,; | i € o} such that for every i, C; is QH,

HC
GcA-UC and (A-U c,.) cK,UU M,
j<i =i i>i
Let A,=J;c, G; it is easy to sse that A, is as required.

Let us assume that K, is an w-sum of {M; |ic w}. A" =J{rA+q]r,qeQ}. Let
f:U{B|BeK,UK,}—>A™ be an isomorphism. (We assume that each Be K, U
K, is dense in R. For every r, qe Q let g, .(x)= (1/r)(x —q). For every Be K, UK,
let fp,q=284°(f 1 B). Clearly, for every BeK,UK,, fg,,SBXA, and
U{Rng(fs,, | BEK;UK, and r,qeQ}=A. For every icw, let C;=
U {Rng(fp,q) | B€ K Uj<i M;, 1, € @}. Hence UJ;c, G, = A, and for every ic o,
(CH"= Ky UU < M. Since UJ;<; M; can be regarded as an @*-sum (where some
of the summands are empty), by the previous case there is a QH set D; < C; such
that (C,— D,)"“ < K,.

Let A, =J;., D.. It is easy to see that A, is as required. [J

Proof of Lemma 10.13. Existence. Let ~ be the following equivalence relation
on p(M): M, ~ M, if for every m; € M; there is m,e M, such that m, <m, and for
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every m,e M, there is m, € M, such that m,<m,. Let L = P(M)/~. M,/~< M/~
if for every m, € M, there is m,e M, such that m,<m,. Clearly the definition of
=< does not depend on the choice of representatives. It is easy to check that (L, <)
is as required.

Unigueness. For a lattice L, such that L$= M and L generates L, let ¢: Ly~
L be defined as follows: y(a) ={m e M | m <a}/~. Itis easy to check that ¢ is an
isomorphism between L, and L. [

Proof of Theorem 10.14(a). The proof of 10.14(a) resembles the proof of 10.1.
However, some modifications have to be made. We skip those parts of the proof
which are straight-forward generalizations of claims proved in 10.1. In order to
simplify the technical details we deal with the special case in which the involution
* is the identity function. However, the proof is easily extended to the general

case.

Lemma 10.19 (CH). Let (M, <) be a countable poset. Then there is a family

FA(m N e M KH cuol that (1) if mmn thon Afmlc Afu) (D Alm)=

LEARITE | P00t § 2= ax Dulie ke \(1) i rp\u, BETY LI\ f = LAN\TV )y, \&) La\Jiv)—

A(m)*; and (3) let B,, = A(m)— ), <m A(n); then, if m<n, then B,, L A(n).

Proof. As in 10.5. [

For the rest of the proof (M, =) denotes a fixed countable poset with the
property: (*) “If A <M and every finite subset of A has a lower bound, then A

nas a lower Dound . We aiso nX some Iamlly {A(m) | meM; as COHSU'UCICG lIl
10.19; B,, = A(m)~Un<m A(n).

Proposition 10.20. If M is countable and has the property (*), then M satisfies (*)
in every generic extension.

Proof. Easy. [

We define F,, ¢, and ¢, as in 10.1. The induction hypotheses of the iteration
are as in 10.1. So as in 10.7 at stage v of the iteration we have sets {A(m)|me
AL IR u1 = AML and Rltare SE(m) | me AM and we acenme {(1_{(R) nf 1ﬂ 7

AVAf, VAP0V ) | FTe T avay alna llll LS |4 | ', J 1Tt T AVAY, QIR WU aosouilib (a4 Tivy) Ul

hold.
Lemma 10.6 remains unchanged.

Definition 10.21. Let &f = K™ and D e K, D is #{-QH if there is % < o such that
|Bl=<R,, and for every Be® there is C(B)=B such that C(B)< D and
|ID-U{C(B)| B e B} <R,.
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Proposition 10.22 (MAy ). If & < K and every D € K is #-QH, then s generates
KX,

Proof. Trivial. [

For every me M, let 7,, ={n|n<m} and A(r,,) = A(m). The following lemma
is the counterpart of 10.7.

Lemma 10.23 (CH). Let A(m), B(m) and F(m), m e M, satisfy (1)~(6), and let
A € K. Then there are B'(m)e F(m) and a c.c.c forcing set P of power R, such that

IFp (KE@,[B'(m)| meM; A(r,,) | me M)A(A is {A(m) | me M}-QH).

It is obvious that 10.14(a) follows from 10.19, the analogue of 10.6, 10.20 and
10.21. We now formulate the analogues of 10.8-10.10. Let ¢, and ¢, be as in
10.1.

Lemma 10.24 (CH). Let A(m), B(m), F(m), me M, satisfy (1)~(6), and let
A € K. Then there is r< M, {B,(m)| me} and {Bo(m) | m e M} such that:

(1) If nsmenr, thenner.

(2) For every me1, K3B,(m)< A.

(3) For every me M, By(m)e F(m).

4) Let tn={n|n=sm}, Alr)EAm) and A A, then KE
Y[ Bo(m) , me M; B,(m) I meT; Ao(Tm) l meM; A(r)].

(5) For every ner and BeK, if Bin)cBcA and KE
Y1[Bo(m) | me M; B; Ay(,,) | me M; A,(1)], then By(n) is dense in B.

(6) If ns=men, then B,(n) is dense in B,(n)U B,(m).

Lemma 10.25 (CH). For1=0,1 let M,c M, I',c P(M,), {B,(m) | me M}< K and
{A,(7)| re T} < K. Suppose the following conditions hold:

(1) If m,ne M, are distinct, then B{(m)NB(n)=9, and if merel, then
B(i)c AL

2) If 7y, 7€ and 1, 75, then A|(7)) S A(7).

(3) If Iy and (\I'=@, then for some finite ' T, (\I"'=.

(4) KFgy[Bi(m)|1€{0,1}, meM,; Ai(7)1€{0, 1}, re I}].
Let t€{0, 1}. Then there are pairwise disjoint {B'(m)| m € M,} such that

(1) K>B'(m)=2B,(m).

(2) For every 7€, A,(1)2Ume. B'(m).

(3) KFyy[B'(m) ’ meM,; By (m) ' meM, ;A (1) I tel ]

Lemma 10.26 (CH). Let My, My M, L<MycM,, {B'(m)|1<2, me M}< K
and {D'(m)|1<2, me L}< K be such that:

(1) m# n implies B'(m)NB'(n)=.

(2) D'(m)< B'(m).
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(3) For every meL, D'(m) is dense in \J{D'(n)|neL}).
(4) KEyg[B'(m)|1<2, meM,].
Then there is a c.c.c. forcing set P of power R, such that
/ \ / \
ke { U D°m)= U D'(m) || KFdolB'(m) |1<2,meM]).

mel mel

The argument why 10.23 follows from 10.24-10.26, resembles the analogous
argument in 10.1. Also 10.26 is the same as 10.10. We also omit the proof of

10.25, since it involves no new difficulties.

Proof of 10.24. Let A(m), B(m), F(m) and A be as in 10.24. Let S(m)=
{BEB(m)|(YB'eF(m))(BNB'#%)}. Let KaC<c A and meM. We say C is
appropriate for m if: either m is a minimal element of M, for every n e M such
that n##m, C It A(n), and for every n¥m and B e S(n), B< C; or if for some
B e S(m), C=B. Note that if C is appropriate for m, then there is By(m)e F(m)
such that KFy,[s] where s is the assignment in which for every n# m, s(x2) =
B(n), s(x) = Bo(m), s(x;)=C and for every meM, s(y2 )= A(m).

Let r={meM|(3BCc A)@m’'=m) (C is appropriate for m’)}. W.lo.g. A is
dense in R. For every interval I of A with rational endpoints, let 7,=
{m e M| (3C<I)(C is appropriate for m)} and for every m € 1, let C(I, m)< I be
appropriate for m. For every ner, let C(n)=J{C(I, m)| mer and n<m}. It is
already standard to construct {Bo(m)|m e M}, {B,(m)| mer}< K such that: (1)
Bo(m)e F(m); (2) By(m) is a dense subset of C(m); and (3) for every m#n,

Bi(m) 1 (By(n) UBO(n)) (Here we assume that Bl(n) Q) if n¢gnr)

We check that T, 1D0\m) | me lVlj and 11) 1\m) | me 1V1] satisry the xequirements
of the lemma. Requirements (1)-(3) are automatically satisfied, (5) and (6) are
easily checked. We deal with (4). As in the proof of 10.8, we have to prove the
following claim. Let x =Apcq ¥o. A A {te T} where

T<ixh | meMbU{x, | meptU{xp)* [mertUlys, (y2)*

and T intersects the union of the first three sets in at most one element; and let s
be the assignment such that s(x})=B'(m), s(y2)=A(m) and s(y.)= A. Then if
KE—x[s], then x is not a conjunct of ;.

In fact, the above claim has to be proved just for x’s in which ¢ is finite. This
follows easily from the fact: (*) “For every L M, if every finite L, L has a
lower bound, then L has a lower bound”.

Of the many cases in 10.8 we check only that case which calls for a new
argument. Let x =(Anco Yo.) A Y+ and suppose that K F-ix[s]. We have to prove
that y is not a conjunct of s, that is, we have to prove that there is n e r such

e mmanna tha A AflwaYL D hoansa lat

that for eVery m € o, i< iii. KFE IXLDJ mcains tnat A /\/ \mea“\’”) 7 U, 0Cnce &
Ce K be such that C< A, and Cx A(m) for every m € o. If for some ne M and
some BeS(m), BLXC, then ner and n<m for every mea, hence we are
through. Suppose the above does not happen. We prove the following claim.



[V
<
(V8]

The consistency of some partition theorems

Claim. There is K 5 D < C such that every finite subset of L = {m |(A(m) L D)}
has a lower bound.
true. We define

e above claim i
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for every veT deﬁne m(v)e M and C, € K such that: (1) every member of T
has at least two successors; (2) for every veT, C,cC; (3) if v<¢ then
m)<m(v); and (4) if ve T and {&, ..., &_,} is the set of successors of v in T,
then {m(&,), ..., m(&_,)} does not have a lower bound in M. The construction is
done easily by induction.

We show that there is a branch {y; | i € w} of T such that {m(v;) | i € ®} does not
have a lower bound. Let {m; | i € o} be an enumeration of M. Let »,= A. Suppose
v; has been defined. By (4) there is a successor ¢ of v, such that m;£m(£). Let
v;.1 =& Hence {m(v,) | i € w} does not have a lower bound, however every finite
subset of {m(v,)|ie w} has a lower bound. This contradicts property (*) of M.
This concludes the proof of the claim. O

iLet D be as assured in the claim, and let L be as defined in the claim, and let n
be a lower bound for L. We check that D is appropriate for n. By our assumption
for every m e M and B € S(m), B« D, and it follows from the properties of L and
D that if 7(A(m) Il D), then n¥m. Hence n<r. For every meo, D& A(m),
hence me L and so n=<m. We have thus found n € M such that ner and for

A and tha ~ennf ~F
4 and the pivul Uil

( ]
¢
!
3
T
<
R
5
3
-3
-
=
[7:3
[}
Q
s
[¢]
)
=

We leave the proofs of 10.14(b) and (c) to the reader, since they do not involve
any new difficulties.

11. MA + OCA implies 2% =X,

In this short section we show that MA + OCA = 2™ = R,. This fact follows from
the following theorem.

Theorem 11.1 (ZFC). There is a c.c.c. forcing set P of power R, and a family
{D, | v <R,} of dense subsets of P such that if G € V is a filter of P which intersects
every D, v<X,, then V contains a set X =R and an open coloring U ={U,, U,} of
X such that |X|=R, and X cannot be partitioned into countably many U-
homogeneous sets.

1
X5, then V contains a filter G < P which intersects the D,’s, the thus V contains
coloring refuting OCA.
Moreover, Theorem 11.1 shows that it is consistent that VEA1, but still if
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W2V and WEMA +OCA, then R{¥’ or R are collapsed. This is true for the
universe V which is obtained in the following way. Let V FCH, and let V=
Vo Po(X3)[P] where P is the forcing set of 11.1.

main 2k PRSP, DIy

lllC [)IUUL Ul ll l lb UIVIUUU Iito UHUC lelll‘lb

Lemma 11.2. There is a symmetric function Fe V, F:X,XX,— R, such that for
every universe W2V and A e W: if RY =R}y, RY=RY, AcK, and |A|=R,, then
F(A X A) is unbounded in R;.

Proof. For every R, <v<R,, let {a(, @) | @ <¥,} be a 1-1 enumeration of v, and
for ésv <N, let F(§,v)=01if é=vorif v<R,, andlet F(§&, v)=a if E=a(v, a).
Tt

sy 1o I“‘\D{‘]{' ﬂ'\af '—7 1S as ‘I‘F\l'llllfpf‘ 1

iQ a
AL 4> vasy W HITA i Y s, —

We reserve the symbo F denote a function as in 11.2. Recall that for a set

Lemma 11.3. Let A ={a, | a <R }<=*2, U ={U,, Uy} be a partition of D(A) into
symmetric open sets, and let {H'|1=0, 1, v <X} be such that: for every v <R, and
1€{0,1}, D(HY< U, and for every v, <X, there is a(v,£)<R®; such that

HONHl=Ia Vv and n(u 3-‘\> F(vy .C\ Then A cannot be nnmnnnprl into counta-

EE LI R ¥ 5 Ba(pe)) Ge & WY, 1 LQRNO D¢ = L0

bly many AU -homogeneous subsets.

Proof. Suppose by contradiction {A;|i€w} is a partition of A into U-
homogeneous sets, and let (i) be such that D(A;)< U, -
For every v <X, let
B(v)=Sup({a | (31e{0,1}) @icw) (e()=1ra, € A,NH, ).

B(v) is a supremum of a countable set, hence B(v) <R;. Let 'SR, and By <R, be
such that |I'|=R, and for every ve I, B(v)= Bo. By the property of F there are
v, £€ T such that F(v, £)> B,. Hence ocgdéf a(y, £)> Bo. Suppose a(v, £)e A;. If
e(i)=0, then the fact that a, €A, NH; implies that B(£)=ay>Bo; and if
(i) =1, then the fact that a, € A; VH, implies that B(v)= ay> Bo. In both cases

PRV ol (]

we obtain that for some ¢ eI, B({)> B, contradicting the choice of I [

Lemma 11.4 (ZFC). There is a c.c.c. forcing set P of power R, and a family
{D, | v<R,} of dense subsets of P such that if V contains a filter of P which
intersects every D,, v<R,, then V contains a system A ={a, € a <X}, U=
{U,, Uy and {HL|1=0,1, v<R,} as in 11.3.

Proof. Let F be as assured by Lemma 11.2. We first define P. Each element p of
P is a triple % (p), g(p), f(p)) where:

(1) U, ={U(p, 0), U(p, 1)) is a pair of disjoint symmetric clopen subsets of “2
such that U(p, 0), U(p, 1) = D(®2). %, is an approximation of the coloring % we
wish to construct.
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(2) g(p) is a function such that Dom(g(p)) = o(p, 0) X a(p, 1) where the o(p, I)’s
are finite subsets of X,, Rng(g(p)) = X,, and for every (w, &) Dom(g(p)), F(v, £&) <
g(P)(v, &) <F(v, §)+ w. We denote g(p)(v, £) by g(p, v, £). g(p) is a finite approxi-

5) of 112 that ic ofn 1 f\;m will mean that

Ul 11,0, UGl 1Ly, 5\[,1, ¥y 5 Vil 1Tl Luun

mation of the function o
LlauUil Ui il julivuavun &

{a.}=HoNH;.

(3) f(p) is a function such that a-(p) Dom(f(p)) is a finite subet of Rng(g(p)) X
o, and Rng(f(p))<={0, 1}. f(p) is a finite information about the reals a, where
o € Rng(g(p)), that is f(p)(a, n)=0 will mean that for the real a, of 11.3,
a,(n)=0. We denote f(p)a, n)=f(p, a, n).

A triple p =<(U(p), g(p), f(p)) as above belongs to P if:

(1) For every distinct «, 8 € Rng(g(p)), f(p) already determines the % (p)-color
of (a,. ag), that is, if for every y <X, we denote by f(p, v) the function such that
for every new, f(p, v)(n)={f(p, v, n), then there is 1 €{0, 1} such that

Up, & B) = {a, bye 2| a2 f(p, a), b2 f(p, Bt = U(p, D).

(2) If @y, a, € Rng(g(p)), are distinct and for some », &, &,, a; = g(p, v, §), then
the coloring of (a,, a,,) is determined to be 0, that is U(p, «;, az) < Ul(p, 0), and if
a; = g(p. &, v), then the coloring of (a,,.a,) is determined to be 1, that is
U(p, a, ax) < U(p, 1).

p=sqif Ulp,)cU(q,1),1=0,1, g(p) < g(q) and f(p) = f(q). This concludes the
definition of P.

We leave it to the reader to check that by means of a family {D, | v <R,} of
dense subsets of P one can assure the existence of a system A, U, {H'|le
{0, 1}, v <R,} as required. We now turn to the proof that P is c.c.c.

Let {p2] a®<R;}< P. We uniformize {p, | @ <X} as much as possible. Hence

nnnnnnnnnnnnn thot far omenn 0 —=/TT TT N O { \ — M and that
WU Ldll add>UllIv uial 11Ul Sulldlc "' —\uU 1, 2/ 1Ul CVCI) (44 \l\l, u.\y w, aliu iidat
{ov(p.) | @ <R} are A -systems for 1=0,1. Let o(p,) =
{v(a, ,O), ..., v{a, L, n;— 1)}, and m; <mn be such that for every i <m,; and B, y<

Ry, v(B, L, i)=wv(y, | i). We assume that for every i, <ng and i; <n, either all the
g2(p., v(a, 0, ip), v(a, 1, iy))’s are pairwise distinct, or they are all equal. Finally we

assume that letting y(e, i, j) denote g(p,, v(e, 0, 1), v(e, 1,})), for every a, B<N;,

ST LUQL ICMAE TS, 5 j) MCUVEC 8\ Y% Vs FASy Ay sy AL
ig<np and i; <ny: f(pa ¥(e, ip, i1)) = f(pBa ¥{(a, io, 11))-

We prove that for every a and B, p, and pg are compatible. Let q'=
(U, g(p) U g(ps). f(p) U f(pg)). q' is not a condition, but we prove that q’ can be
extended to a condition g. First we check that q' does not contain contradictions.
Since f(pa, v(a, ig, i1) = f(pa, ¥(, iy, iy)) for every i, and i,, and since U, and U,
do not intersect the diagonal of “2x%2, U determines the color of
{Ayainiyy Coyi@joiy 1T (o, i) # o, j1), and if (i, i1} # (o, j1), then the color of the
above pair 1s equal to the color of {a ). This implies that q' makes
no mistakes in determining colors.

Let g'=g(p.)Ug(ps), and oy=o0i(p.)Uai(ge), 1=0,1. Dom(q’)# ooX 0y,
hence we have to define g g’ such that Dom(g)=o,Xo;. Since for every

Y(aio,in)? By(eioiv)
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v, £ <N, there are N, options of how to define g(v, £) and since Rng(g’) is
finite for every (v, §)eo-oo-1—Dom(g’) we can find gy, &e
[F(v, &), F(v, §) + @)—Rng(g’) so that g g' is 1-1. We leave it to the reader to

chaplr that M and fin VL1 fin can be extended so a
VAIVWV A Ulalr W aliu j\P, I\ ) \PB} vall ue ALUIILILU DU Lila
|y

{a, | vy € Rng(g)} will be determined, and every such pair will have the right color.
We thus constructed a condition extending p, and pg, hence p, and pg are
compatible. O

Discussion. Let A denote the axiom MA+2%>X,. We found that A is not
consistent with OCA, on the other hand it is consistent with BA, SOCA, NWD?2,
RHA and many other axioms whose consistency can be proved with the aid of the

club method. There are two cases in which we do not know the answer to such a

ARG, R AICA0 AT WY LAasSTS L WiLILLL WO a0 KRIIOW LC al to such a

question.

Nuactian 11 & (o) Ig concictont with COCA19

\luvﬂllvu B ALsJde \“’ AD L3 VULIDIOWLILL YV RLIL DN 2L
(b) For which (finite) lattices with involution L is A+ (K¥ =L) consistent?
MNhnnctine 11 Kia) 10 ralatad ta tha fallagwing Anagticnng
NJUUHLIVILL ll-J\ } 1D 1viatvul W oo 1U11UW1115 UL LIVIILY

Question 11.6. (a) Is "CH consistent with the following axiom: “If B is an

- | 2~ 15 PR T i

and 111 lltlj is a fami 1y of nwd subsets of B, which
contains all finite subsets of B, and such that B is not contained in a union of
countably many A;’s, then there is an uncountable B’ < B such that B’ intersects
each A; in at most X, points”’?

(b) Is there a universe V such that VE2¥: >R, and such that for every c.c.c.

farcine cat P of nawer (’)N ‘/P hag the fallowino nrnr\prfv “If [A. ( icIVi i€ a
1ULLCARE svr & UL pUWLh 1as ulC 1IVnOWiNg piOpoit L R rcSag a

family of <2™: subsets of R, such that X, is not the union of any countably many
A;’s, then there is an uncountable A ©X,; which intersects each A; in at most X,
points”?

Question 11.7. Is OCA consistent with 2%>R,?
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