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Consider (2ω, λ), where λ is the standard product measure on 2ω.

I I ⊆ P(2ω) is a σ-ideal if
I A ∈ I implies that P(A) ⊆ I,
I A0,A1,A2, . . . ∈ I imples that

⋃
n∈ω An ∈ I.

I I has Borel (analytic) base, if
(∀A ∈ I)(∃B ∈ I)(A ⊆ B ∧ B is Borel (analytic))

I I is invariant, if I is invariant under maesure-preserving
homeomrphisms, i.e (∀h ∈ Hλ(2ω))(∀A ∈ I)(h[A] ∈ I).

I I is nontrivial, if 2ω /∈ I and I contains an uncountable set.

Problem.
Classify all nontrivial invariant σ-ideals I having Borel base.



Definition.
(X , µ) is called a Cantor measure space if the topological space X
is homeomorphic to the Cantor cube {0, 1}ω and the measure
µ : B(X )→ [0,∞) is continuous in the sense that µ({x}) = 0 for
any point x ∈ X .

Example.

There is a Cantor measure space (X , µ) that supports 2c pairwise
distinct invariant σ-ideals with Borel base.

E.Akin, Good measures on Cantor space, Trans. Amer. Math. Soc.
357:7 (2005), 2681–2722.
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Definition.
A Cantor measure space (X , µ) is called good if its measure µ is
good in the sense of Akin, i.e.,

I strictly positive (which means that µ(U) > 0 for any
non-empty open set U ⊆ X ),

I µ satisfies the Subset Condition which means that for any
clopen sets U,V ⊆ X with µ(U) < µ(V ) there is a clopen set
U ′ ⊆ V such that µ(U ′) = µ(U).

E.Akin, Good measures on Cantor space, Trans. Amer. Math. Soc.
357:7 (2005), 2681–2722.



I All infinite compact metrizable zero-dimensional topological
groups G endowed with the Haar measure are good Cantor
measure spaces.

I By Akin’s Theorem,

E.Akin, Good measures on Cantor space, Trans. Amer. Math.
Soc. 357:7 (2005), 2681–2722.

a Cantor measure space (X , µ) is isomorphic to a
(monothetic) compact topological group G endowed with the
Haar measure if and only if (X , µ) is good and
1 ∈ µ[Clop(X )] ⊆ Q ∩ [0, 1].



On each measure space (X , µ) consider the following four invariant
σ-ideals with Borel base:

I the σ-ideal M of meager subsets of X (it is generated by
closed nowhere dense subsets of X );

I the σ-ideal N= {A ⊆ X : µ(A) = 0} of null subsets of (X , µ)
(it is generated by Borel subsets of zero µ-measure);

I the σ-ideal M∩N of meager null subsets of (X , µ);

I the σ-ideal E generated by closed null subsets of (X , µ).



Main theorem
Each non-trivial invariant σ-ideal I with analytic base on a good
Cantor measure space (X , µ) is equal to one of the σ-ideals:

E , M∩N , M or N .



Lemma 1. (Akin)

E.Akin, Good measures on Cantor space, Trans. Amer. Math. Soc.
357:7 (2005), 2681–2722.

Two good Cantor measure spaces (X , µ) and (Y , λ) are
isomorphic if and only if µ[Clop(X )] = λ[Clop(Y )].

Lemma 2.
Let (X , µ) be a good Cantor measure space, U ⊆ X be a clopen
set and K ⊆ U be a compact subset. For every α ∈ µ[Clop(X )]
with µ(K ) < α ≤ µ(U) there is a clopen subset V ⊆ U such that
K ⊆ V and µ(V ) = α.
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Lemma 3. (Ryll-Nardzewski)

Any homeomorphism f : A→ B between closed nowhere dense
subsets A,B ⊆ X of the Cantor cube X = {0, 1}ω extends to a
homeomorphism f̄ : X → X of X .

Lemma 4.
Any measure-preserving homeomorphism f : A→ B between
closed nowhere dense subsets A,B ⊆ X of a good Cantor measure
space (X , µ) extends to a measure-preserving homeomorphism
f̄ : X → X of X .

Proposition 1.

E ⊆ I.
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Lemma 5.
If an analytic subset A ⊆ X of a Cantor measure space (X , µ) is
not contained in the σ-ideal E , then A contains a Gδ-subset G of
X such that µ(G ) = 0 and the measure µ� Ḡ is strictly positive.

Lemma 6.
If A ⊆ X is a closed subset of positive measure in a good Cantor
measure space (X , µ), then for any ε > 0 there are
homeomorphisms h1, . . . , hn ∈ Hµ(X ) such that the set
B =

⋃n
i=1 hi [A] has measure µ(B) > µ(X )− ε.

Lemma 7.
Let (X , µ), (Y , λ) be Cantor measure spaces such that
µ(X ) < λ(Y ) and the measure λ is strictly positive. Let GX ⊆ X
and GY ⊆ Y be two Gδ-sets of measure µ(GX ) = λ(GY ) = 0 such
that GY is dense in Y . Then there is a measure-preserving
embedding f : X → Y such that f [GX ] ⊆ GY .

Proposition 2.

If I 6⊆ E , then M∩N ⊆ I.
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Lemma 6.
If A ⊆ X is a closed subset of positive measure in a good Cantor
measure space (X , µ), then for any ε > 0 there are
homeomorphisms h1, . . . , hn ∈ Hµ(X ) such that the set
B =

⋃n
i=1 hi [A] has measure µ(B) > µ(X )− ε.

Lemma 7.
Let (X , µ), (Y , λ) be Cantor measure spaces such that
µ(X ) < λ(Y ) and the measure λ is strictly positive. Let GX ⊆ X
and GY ⊆ Y be two Gδ-sets of measure µ(GX ) = λ(GY ) = 0 such
that GY is dense in Y . Then there is a measure-preserving
embedding f : X → Y such that f [GX ] ⊆ GY .

Proposition 2.

If I 6⊆ E , then M∩N ⊆ I.



Lemma 5.
If an analytic subset A ⊆ X of a Cantor measure space (X , µ) is
not contained in the σ-ideal E , then A contains a Gδ-subset G of
X such that µ(G ) = 0 and the measure µ� Ḡ is strictly positive.
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Lemma 8.
Let (X , µ) be a good Cantor measure space, A be a closed
nowhere dense subset and B ⊆ X be a Borel subset of measure
µ(B) > µ(A) in X . Then there is a measure-preserving
homeomorphism h : X → X such that h[A] ⊆ B.

Proposition 3.

If I 6⊆ N , then M⊆ I.
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Lemma 9.
Let (X , µ) be a good Cantor measure space, and d be a metric
generating the topology of X . Let B ⊆ X be a Borel subset of
measure µ(B) = µ(X ). Let A ⊆ C be two closed nowhere dense
subsets in X such that A ⊆ B. For any ε > 0 there exists a
measure-preserving homeomorphism h : X → X such that
h �A = id�A, h[C ] ⊆ B, and dH(h, id) ≤ ε.

Lemma 10.
Let (X , µ) be a good Cantor measure space and d be a metric
generating the topology of X . Let B ⊆ X be a Borel subset of
measure µ(B) = µ(X ). For any ε > 0, homeomorphism
f ∈ Hµ(X ) and closed nowhere dense subsets A ⊆ C in X with
f [A] ⊆ B, there exists a homeomorphism g ∈ Hµ(X ) such that
g �A = f �A, g [C ] ⊆ B and dH(f , g) < ε.
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Lemma 11.
For any meager Fσ-sets A,B ⊆ X of measure
µ(A) = µ(B) = µ(X ) in a good Cantor measure space (X , µ)
there is a measure-preserving homeomorphism h ∈ Hµ(X ) such
that h[A] = B.

Proposition 4.

If I 6⊆ M, then N ⊆ I.
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Thank you for your attention!
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Taras Banakh, Robert Ra lowski, Szymon Żeberski, Classifying
invariant σ-ideals with analytic base on good Cantor measure
spaces, Proc. Amer. Math. Soc., 144 (2016) 837-851.

Open problem.

Classify all nontrivial invariant σ-ideals I having Borel base for
homogenous (X , µ).


