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The story so far
We’ve fixed A,B ⊆ Tk (the circle and the square), and an action
of Zd on Tk by translations.

If RN = {(n1, . . . , nd) ∈ Zd : 0 ≤ ni < N} is the square of side
length N, then by a lemma of Laczkovich, every set of the form
RN · x contains ≈ λ(A)Nd elements of both A and B.

Let G be the graph with vertex set Tk where x , y ∈ Tk are
adjacent if ∃g ∈ Zd(|g |∞ = 1 ∧ g · x = y).

If G is a graph and f is a real-valued function on its vertices, then
an f -flow of G with error ε is a function φ : G → R such that

I For every edge (x , y) ∈ G , φ(x , y) = −φ(y , x), and

I For every vertex x ∈ X ,∣∣∣∣∣∣f (x)−
∑

(x ,y)∈G

φ(x , y)

∣∣∣∣∣∣ < ε
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Proof overview

1. We construct a real-valued bounded Borel χA − χB -flow of G
by giving an explicit algorithm for finding such a flow.

I Relies on Laczkovich’s discrepancy estimates.
I Uses the fact that the average of flows is a flow.

2. We show that given any real-valued Borel χA − χB -flow of G ,
we can find an integer valued Borel χA − χB -flow which is
“close” to the real-valued one. Uses:

I the Ford-Fulkerson algorithm in finite combinatorics.
I a theorem of A. Timár on boundaries of finite sets in Zd .
I recent work of Gao, Jackson, Krohne and Seward on

hyperfiniteness of free Borel actions of Zd .

3. We finish by using the proposition we proved yesterday:
there’s a Borel equidecomposition iff there is a bounded Borel
χA − χB -flow.



We’ll describe an algorithm for constructing a real-valued f -flow
where f = χA − χB in the connected component of some x ∈ Tk .
We draw pictures with k = d = 2.



We’ll draw the connected component of x in a grid (which looks
like a copy of Zd ; its orbit is infinite).



Our flow will be constructed in ω many steps. At step n we work
in 2n × 2n squares. At step 1 we consider 2× 2 squares.



The idea is to spread out the error in the flow evenly over each
2× 2 square. Each point contributes 1/4 of its charge to the other
3 points.
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The error in the flow after step 1 is the average of f over the 2× 2
square.



We do this for every 2× 2 square in the orbit.



So the error in the flow after step 1 is the average of f on its 2× 2
square.



Now we use roughly the same idea in each 4× 4 square, but
dealing with 4 points at a time in the way given above.
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We add to the flow already constructed at the previous step.
Once again, each point contributes 1/4 of its charge to the other 3
points.



After this second step, the error at each point will be the average
of f over its 4× 4 square.
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Step 1: Constructing a real-valued flow

After step n, the error in our flow at each point will be the average
value of f over the 2n × 2n square containing the point. Since
f = χA − χB , and each 2n × 2n square contains nearly the same
number of points of A and B, this error is very small.

An easy calculation using Laczkovich’s discrepancy estimates
shows that this construction converges to a bounded f -flow (with
error 0 everywhere).

However, we cannot pick a single x in each orbit to be a “starting
point” for this construction (since this would be a nonmeasurable
Vitali set).

To fix this problem, we use an averaging trick (the average of flows
is a flow!).
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Step 1: Constructing a real-valued Borel flow
For every i > 0, let πi : Zd/(2iZ)d → Zd/(2i−1Z)d be the
canonical homomorphism. This yields the inverse limit

Ẑd = lim←−
i≥0

Zd/(2iZ)d

where elements of Ẑd are sequences (h0, h1, . . .) such that
πi (hi ) = hi−1 for all i > 0. Essentially, this describes how to choose
a 2× 2 grid, 4× 4 grid, 8× 8 grid, etc. that fit inside each other.

For each x ∈ Tk and h ∈ Ẑd , our above construction yields a flow
φ(x ,h) of the connected component of x , using the grids given by h.

The construction is such that if g ∈ Zd , then φ(x ,h) = φ(g ·x ,−g+h).
Hence, the average value of this construction is invariant of our
starting point (h 7→ −g + h is measure preserving):∫

h
φ(x ,h) =

∫
h
φ(g ·x ,−g+h) =

∫
h
φ(g ·x ,h)

This average value is our real-valued Borel χA − χB flow!
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Step 2: modifying to make an integer Borel flow

Now we want to modify the flow so that it takes integer values.

Suppose φ is an f -flow in G . Given a cycle in G if we add the same
real value to every edge in the cycle, this preserves the property of
being an f -flow. Hence, we can choose a value in [0, 1) to add to
this cycle so that a single edge in the cycle becomes integer.
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Suppose that F is a finite connected set in G .



The edge boundary of F is ∂F = {(x , y) ∈ G : x ∈ F ∧ y /∈ F}.
I claim we can modify the flow so that it takes integer values on
∂F .



To begin, find a 3-cycle (a triangle) having an edge in ∂F .



Modify the flow on the cycle to make this edge (the darker one)
integer.



Repeat this process.



Repeat this process.



By using work of A. Timár on boundaries of finite sets in Zd , one
can show using Euler’s theorem (on the existence of Euler cycles)
that for every finite set F , one can find a sequence of triangles that
can be used to change the flow to be integer on ∂F .



Step 2: modifying to make an integer Borel flow

Let [Tk ]<∞ be the space of finite subsets of Tk .

Theorem (Gao, Jackson, Krohne, and Seward, 2015)

There is a Borel set C ⊆ [Tk ]<∞ such that

I
⋃
C = Tk

I Every S ∈ C is connected in G .

I (Boundaries are far apart) all distinct R,S ∈ C are such that
∂R and ∂S contain no two edges of distance less than 4.

Use the process described on the previous slides to make the flow
integer on ∂S for every S ∈ C . After removing these edges, G has
finite connected components. Use the Ford-Fulkerson algorithm
from finite graph theory to modify the flow on these components
to be integer.

This finishes the proof of Borel circle squaring.
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Hyperfiniteness

An equivalence relation E on a Polish space X is hyperfinite if it
is a union E =

⋃
i Ei of Borel equivalence relations E1 ⊆ E2, . . . on

X with finite classes.

Hyperfiniteness is a crucial dividing line in descriptive set theory
(and also ergodic theory and operator algebras).

The tools used to prove the Gao-Jackson-Krohne-Seward theorem
originate with Gao-Jackson’s proof that Borel actions of countable
abelian groups are hyperfinite (2015).

Open Problem (Weiss)

Let Γ be a countable amenable group. Is every Borel action of Γ on
a Polish space hyperfinite?

This is known to be true if we are allowed to discard a nullset by
work of Ornstein and Weiss in ergodic theory (1980).
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Problem 2 from the Scottish book

Open Problem (Banach, Ulam)

In every compact metric space X is there a finitely additive
measure so that if A and B are Borel sets so that there is an
isometry of A onto B, then A and B have equal measure?

This has a positive answer when X is countable.



The Borel Ruziewicz problem, I

Theorem (Margulis-Sullivan (1980) n ≥ 4 Drinfeld (1984) n = 2, 3)

Lebesgue measure is the unique finitely additive rotation-invariant
measure on the n-sphere defined on the Lebesgue measurable sets.

Open Problem

Suppose n ≥ 2. Is Lebesgue measure the unique finitely additive
rotation-invariant measure on the n-sphere defined on the Borel
sets?

Using the work of Drinfeld-Margulis-Sullivan, this is equivalent to
asking whether every Borel Lebesgue nullset is contained in a Borel
Lebesgue nullset that has a Borel paradoxical decomposition.
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The Borel Ruziewicz problem, II

Every countably additive invariant Borel probability measure on the
n-sphere is equal to Lebesgue measure. Hence, one could equally
well ask whether every finitely additive invariant Borel probability
measure on the n-sphere is countably additive.

If this is true, it must be specific to the sphere.

Theorem (Conley, Jackson, M. Seward, Tucker-Drob, 2016)

There is a continuous free action of a nonamenable group (hence
the action is paradoxical) on a Polish space so that this action
admits a finitely additive invariant Borel probability measure, but
does not admit any countably additive invariant Borel probability
measure.

The proof uses Borel determinacy.
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