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Borel circle squaring

Theorem (M.-Unger, 2016)

Tarski’s circle squaring problem can be solved using Borel pieces.
More generally, suppose k ≥ 1 and A,B ⊆ Rk are bounded Borel
sets such that λ(A) = λ(B) > 0, ∆(∂A) < k, and ∆(∂B) < k.
Then A and B are equidecomposable by translations using Borel
pieces.

λ is Lebesgue measure, and ∆ is upper Minkowski dimension.

Fix k and such sets A and B.
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Laczkovich’s ideas: Work in the torus

We may scale and translate A and B so that they lie in [0, 1/2)k .

View A and B as subsets of the k-torus Tk = (R/Z)k which we
identify with [0, 1)k . Then A and B are equidecomposable by
translations as subsets of the torus if and only if they are
equidecomposable by translations in Rk . (Using the same set of
pieces).

Fix a sufficiently large d and randomly pick u1, . . . , ud ∈ Tk .
Obtain an action a of Zd on Tk by letting the ith generator of Zd

act via ui .

(n1, . . . , nd) · x = n1u1 + . . .+ ndud + x

Laczkovich shows A and B are a-equidecomposable.
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Laczkovich’s ideas: Discrepancy theory
If F ⊆ Tk is finite and C ⊆ Tk is Lebesgue measurable, then the
discrepancy of F with respect to C is

D(F ,C ) =

∣∣∣∣ |F ∩ C |
|F |

− λ(C )

∣∣∣∣

Let RN = {(n1, . . . , nd) ∈ Zd : 0 ≤ ni < N} the “square” of side
length N.

Lemma (Laczkovich 1992 building on Schmidt, Niederreiter-Wills)

For A,B and the action as above, ∃ε > 0 and M such that

D(RN · x ,A) ≤ MN−1−ε and D(RN · x ,B) ≤ MN−1−ε.

Roughly, every square of side length N in the action contains close
to λ(A)Nd elements of both A and B.
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Flows in graphs

Suppose G is a graph (symmetric irreflexive relation) on a vertex
set X . If f : X → R is a function, then an f -flow of G is a
function φ : G → R such that

I For every edge (x , y) ∈ G , φ(x , y) = −φ(y , x), and

I For every vertex x ∈ X ,

f (x) =
∑

(x ,y)∈G

φ(x , y)

In finite graph theory, flows are usually studied with a single source
and sink (e.g. in the max-flow min-cut theorem). For finite graphs,
the above type of flow problem is equivalent to one with a single
source and sink (by adding a “supersource” and “supersink” to the
graph). For infinite graphs, there is not such an equivalence. E.g.
there are “Ponzi schemes” on infinite graphs.
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Flows and equidecompositions

For the rest of the proof, let G be the graph with vertex set Tk

where x , y ∈ Tk are adjacent if there is g ∈ Zd such that g · x = y
where |g |∞ = 1.

Proposition

A and B are a-equidecomposable with Borel pieces iff there is a
bounded Borel integer-valued χA − χB -flow of G.

→: A and B are a-equidecomposable with Borel pieces iff there is
Borel bijection θ : A→ B and a finite set S ⊆ Zd such that
∀x ∈ A∃g ∈ S(θ(x) = g · x).

To construct a flow, for each x ∈ A add 1 unit of flow to each
edge along the lex-least path from x to θ(x).
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Constructing an equidecomposition from a flow

←: Suppose now φ is a Borel χA − χB flow of G bounded by c .

Find a Borel tiling of each orbit by rectangles of side length ≈ N.
Each tile has roughly λ(A)Nd points of A and B, and the flow over
the boundary of the tile is ≤ O(cNd−1). Using discrepancy, if N is
sufficiently large, there are more points of A and B in every tile
than maximum flow out of the boundary of the tile.

Now construct a Borel bijection from A to B witnessing
equidecomposability. Suppose R,S are adjacent tiles. If∑

(x ,y)∈G : x∈R∧y∈S

φ(x , y) > 0

map this many points of A ∈ R to points of B ∈ S . If the quantify
is negative, map this many points of B ∈ R to A ∈ S . Since φ is a
χA − χB -flow, after doing this the same number of points of A and
B remain in each tile. Biject them to finish the construction.
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How to construct tilings

An independent set in a graph G is a set of vertices where no
two are adjacent.

Theorem (Kechris, Solecki, Todorcevic, 1999)

If G is a locally finite Borel graph, then there is a Borel maximal
independent set for G.

Let G≤n be the graph on Tk where x , y are adjacent if
dG (x , y) ≤ n. Let C be a Borel maximal independent set for G≤n.
Use the element of C as center points for “tiles” of G .

If we use these center points to make “Voroni cells”, the resulting
tiling suffices. Gao-Jackson (2015) give a more complicated
construction to make rectangular tilings.
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A sketch of our proof

1. We construct a real-valued bounded Borel χA − χB -flow of G
by giving an explicit algorithm for finding such a flow.

2. We show that given any real-valued Borel f -flow of G , we can
find an integer valued Borel f -flow which is “close” to the
real-valued one.

3. We finish by using the proposition we’ve proved above: there’s
a Borel equidecomposition iff there is a bounded Borel
χA − χB -flow.
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Finding a real-valued bounded flow

For every i > 0, let πi : Zd/(2iZ)d → Zd/(2i−1Z)d be the
canonical homomorphism. This yields the inverse limit

Ẑd = lim←−
i≥0

Zd/(2iZ)d

where elements of Ẑd are sequences (h0, h1, . . .) such that
πi (hi ) = hi−1 for all i > 0.

For each h ∈ Ẑd and x ∈ Tk , we give an explicit construction φx ,h
of a flow of the connected component of x . However, we cannot
pick a single x in each orbit to be a “starting point” for this
construction (since this would be a nonmeasurable Vitali set).

The construction is such that if g ∈ Zd , then φx ,h = φg ·x ,−g+h.
Hence, the average value of this construction is invariant of our
starting point (h 7→ −g + h is measure preserving):∫

h
φx ,h =

∫
h
φg ·x ,−g+h =

∫
h
φg ·x ,h
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In the last lecture, we’ll discuss how to turn a real-valued flow of G
into an integer-valued flow. This step uses:

I the Ford-Fulkerson algorithm in finite combinatorics.

I work of A. Timár on boundaries of finite sets in Zd .

I very recent work of Gao, Jackson, Krohne and Seward on
hyperfiniteness of free Borel actions of Zd .


