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Outline

@ Introduction: derived topologies and hyperstationary sets
© Hyperstationary sets and indescribable cardinals
© The consistency strength of hyperstationarity

@ Potential applications and Open Questions
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Provability Logic

Provability Logic is the logic in the language of propositional logic with an

additional modal operator O.
Axioms:
© Boolean tautologies.
Q@ O(p = ¢) = (By — V)
© D(Byp = ¢) = Oy
Rules:
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corresponding dual operators —[n]— are denoted by (n). The logic system
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More generally, for any ordinal £ > 2, one considers the language of
propositional logic with additional modal operators [«], for each o < €.
The corresponding dual operators —[a]— being denoted by (a). The logic
system GLP¢ has the following axioms and rules:
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Topological semantics

People have been interested in proving completeness for GLP¢, with
respect to some natural semantics.

Problem: Kripke-style semantics do not work!

So the goal has been to prove completeness for GLP¢ with respect to
topological semantics.
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Thus, one considers polytopological spaces (X, (Ta)a<¢).

A valuation on X is a map v : Form — P(X) such that:

0 v(=p) = X —v(p)

@ v(p A1) = v(g) N V(1)

Q v({a)p) = Du(v(p)), for all a < &, where D, : P(X) — P(X) is the
derived set operator for 7, (i.e., D,(A) is the set of limit points of A
in the 7, topology).
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A valuation on X is a map v : Form — P(X) such that:

0 v(=p) = X —v(p)

@ v(p A1) = v(g) N V(1)

Q v({a)p) = Du(v(p)), for all a < &, where D, : P(X) — P(X) is the
derived set operator for 7, (i.e., D,(A) is the set of limit points of A
in the 7, topology).

Hence, v([a]p) = X — Do(X — v(p)) = the T4-interior of v(yp), for
all a < €.

A formula is valid in X if v(¢) = X, for every valuation v on X.

Joan Bagaria (ICREA & UB) An Introduction to Hyperstationary Sets 7 / 56



Introduction: derived topologies and hyperstationary sets

Topological semantics

For the GLP¢ axioms to be valid in (X, (7 )a<¢), the topologies 7, have
to satisfy:
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Topological semantics

For the GLP¢ axioms to be valid in (X, (7 )a<¢), the topologies 7, have
to satisfy:

@ 7, is scattered, all a < &.
Q@ 73C 7 forall B<a <.
© D,(A) is an open set in 7,41, for all A C X.
Moreover, for GLP¢ to be complete, one must also have:

© The 7, are non-trivial (i.e., non discrete).

So, one doesn’'t have much choice on how to define the 7,: One fixes a
scattered topology 79 on X, and the other topologies are determined by
the D, operators. One only needs to make sure the 7, are non-trivial.

Such polytopological spaces are called general GLP-spaces.
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Introduction: derived topologies and hyperstationary sets

Ordinal GLP-spaces

Fix some limit ordinal ¢ (we also allow 6 = OR).

Recall that the order topology on ¢ (a. k. a. the interval topology) is the
topology 79 generated by the set By consisting of {0} and the intervals

(a, B)-

To is a Hausdorff scattered topology in which 0 and all successor ordinals
are isolated points, and the accumulation points are precisely the limit
ordinals.

Now define a continuous sequence of derived topologies
T0oCT1C...CeC...

as follows:
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Derived Topologies

Given ¢, let D¢ : P(d) — P(J) be the Cantor derivative operator:

D¢(A) :={a € : v is a limit point of A in the 7¢ topology}.
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Introduction: derived topologies and hyperstationary sets

Derived Topologies

Given ¢, let D¢ : P(d) — P(J) be the Cantor derivative operator:
D¢(A) :={a € : v is a limit point of A in the 7¢ topology}.

Note that D¢(A) is a closed set in the 7¢ topology.

Then let 7:,1 be the topology generated by the set

B§+1 = BE U {DS(A) A C 5}.
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Do(A) N« is a club subset of a.
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Introduction: derived topologies and hyperstationary sets

Derived Topologies

Notice that if the cofinality of a is uncountable and a € Dy(A), then
Do(A) N« is a club subset of a.

The set By := By U {Dp(A) : AC §} is a base for the topology 71 on OR,
known as the club topology.

Note that the non-isolated points are exactly the ordinals of uncountable
cofinality.

Fact
For every set of ordinals A,

Di1(A) = {a: AN« is stationary in o}.
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Derived Topologies

The next topology, T, is generated by the set

By =B U {Dl(A) tAC OR}.

If some stationary subset S of a does not reflect (i.e., D1(S) = {a}), then

« is an isolated point of 5. Thus, every non-isolated point « has to reflect
all stationary sets.
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Derived Topologies

The next topology, T, is generated by the set

By =B U {Dl(A) tAC OR}.

If some stationary subset S of a does not reflect (i.e., D1(S) = {a}), then
« is an isolated point of 5. Thus, every non-isolated point « has to reflect
all stationary sets.

Further, if some stationary subsets S, T of a do not simultaneously reflect
(i.e., D1(S)ND1(T) = {a}), then ais an isolated point of 7. Thus, every
non-isolated point has to reflect simultaneously all pairs of stationary sets.
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Stationary reflection

An ordinal « of uncountable cofinality reflects stationary sets if for every
stationary A C « there exists 8 < « such that AN g3 is stationary in 3.
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Stationary reflection

An ordinal « of uncountable cofinality reflects stationary sets if for every
stationary A C « there exists 8 < « such that AN g3 is stationary in 3.

Let us say that an ordinal « of uncountable cofinality is
simultaneoulsy-stationary-reflecting if every pair A, B of stationary subsets

of a simultaneously reflect, that is, there exists 8 < « such that AN 5 and
B N B are both stationary in 5.
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Jensen's Theorem

It is easy to see that every weakly-compact cardinal (i.e., Mi-indescribable)
is simultaneously-stationary-reflecting.
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Jensen's Theorem

It is easy to see that every weakly-compact cardinal (i.e., Mi-indescribable)
is simultaneously-stationary-reflecting.

Theorem (Jensen)

In the constructible universe L a regular cardinal k reflects stationary sets
if and only if it is I'I%—indescribable, hence if and only if it is
simultaneously-stationary-reflecting.?

°R. Jensen, The fine structure of the constructible hierarchy. Annals of
Math. Logic 4 (1972)
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Jensen's Theorem

It is easy to see that every weakly-compact cardinal (i.e., Mi-indescribable)
is simultaneously-stationary-reflecting.

Theorem (Jensen)

In the constructible universe L a regular cardinal k reflects stationary sets
if and only if it is I'I%—indescribable, hence if and only if it is
simultaneously-stationary-reflecting.?

°R. Jensen, The fine structure of the constructible hierarchy. Annals of
Math. Logic 4 (1972)

Thus, in L, the non-isolated points of the topology ™ are precisely the
ordinals whose cofinality is a weakly-compact cardinal.
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Moreover,

Theorem (Magidor)

If k is regular and reflects simultaneously pairs of stationary subsets, then
K is a weakly compact cardinal in L.?

M. Magidor, Reflecting stationary sets. JSL, Vol. 47, Num. 4 (1982)
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Moreover,

Theorem (Magidor)

If k is regular and reflects simultaneously pairs of stationary subsets, then
K is a weakly compact cardinal in L.?

M. Magidor, Reflecting stationary sets. JSL, Vol. 47, Num. 4 (1982)

It follows that the consistency strength of the non-triviality of 7 is a
weakly compact cardinal.
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&-stationary sets

Definition

We say that A C § is O-stationary in «, « a limit ordinal, if and only if
AN« is unbounded in a.

For £ > 0, we say that A is {-stationary in « if and only if for every ¢ <&,
every subset S of « that is (-stationary in o (-reflects to some 8 € A, i.e.,
SN g is (-stationary in 5.
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&-stationary sets

Definition

We say that A C § is O-stationary in «, « a limit ordinal, if and only if
AN« is unbounded in a.

For £ > 0, we say that A is {-stationary in « if and only if for every ¢ <&,
every subset S of « that is (-stationary in o (-reflects to some 8 € A, i.e.,
SN g is (-stationary in 5.

Note:
@ A is 1l-stationary in o & A is stationary in «, in the usual sense.

@ A is 2-stationary in a < every stationary subset of « reflects to some
B e A.
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(-s-stationary subsets B, C C « simultaneously (-s-reflect at some § € A,
i.e., BN g and CN g3 are (-s-stationary in .

Note:
Q@ A is 1l-s-stationary in a < A is stationary in a.

@ A is 2-s-stationary in o < every pair of stationary subsets of «
simultaneously reflect to some 3 € A.
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Introduction: derived topologies and hyperstationary sets

Recall from Lecture |

We are looking at ordinal GLP-spaces, i.e., polytopological spaces of the

form (0, (7¢)¢<¢), where 7g is the interval topology and 7¢41 is generated
by 7¢ together with the sets

D¢(A) := {a: o is a 7¢ limit point of A}
all ACé.
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Recall from Lecture |

We are looking at ordinal GLP-spaces, i.e., polytopological spaces of the

form (0, (7¢)¢<¢), where 7g is the interval topology and 7¢41 is generated
by 7¢ together with the sets

D¢(A) := {a: o is a 7¢ limit point of A}
all ACé.

71 is the club topology. The non-isolated points are those o with
uncountable cofinality.

We observed that D;1(A) = {« : AN« is stationary in a}.
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Recall also the following definition

Definition

We say that A C ¢ is 0-simultaneously-stationary in « (0-s-stationary in «,
for short) if and only if AN« is unbounded in a.
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Recall also the following definition

Definition

We say that A C ¢ is 0-simultaneously-stationary in « (0-s-stationary in «,
for short) if and only if AN« is unbounded in a.

For € > 0, we say that A C § is {-simultaneously-stationary in «
(&-s-stationary in «, for short) if and only for every ( < &, every pair of
(-s-stationary subsets B, C C « simultaneously (-s-reflect at some § € A,
i.e., BN B and CN g3 are (-s-stationary in .

A is 2-s-stationary in a < every pair of stationary subsets of «
simultaneously reflect to some 8 € A.
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Proposition }

« is not isolated in the T topology if and only if o is 2-s-stationary
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Proposition

« is not isolated in the T topology if and only if o is 2-s-stationary

Proof.

If v is not 2-s-stationary, there are stationary A, B C « such that

Di1(A) N D1(B) = {a}, hence « is isolated.

Now suppose « is 2-s-stat. and a € U = C N Dy(Ag) N...N D1(An-1),

where C C « is club. We claim that U contains some ordinal other than

a. It is enough to show that D;(Ag) N...N D1(An—1) is stationary.

Suppose first that n = 2. Fix any club C' C a.. The sets C' N Ay and

C’' N A;p are stationary in «, and therefore they simultaneously reflect at

some 3 < a. Thus 8 € C'N D1(Ag) N D1(A1).

Now, assume it holds for n and let us show it holds for n + 1. Fix a club

C' C «. By theind. hyp., C' N D1(Ag) N...N Dy(A,—1) is stationary. So,

since the proposition holds for n = 2, the set

D1(C"' N Dy(Ag) N ...N D1(An—1)) N D1(A,) is also stationary. But clearly

Dl(C, N Dl(A[)) n...N Dl(Anfl)) N Dl(An) cd'n Dl(Ao) N...N Dl(A,,).
[]
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Introduction: derived topologies and hyperstationary sets

A similar argument, relativized to any set A yields:

Proposition
D>(A) = {a : AN« is 2-s-stationary in ac}.
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Introduction: derived topologies and hyperstationary sets

The 7¢ topology

In order to analyse the topologies 7¢, for £ > 3, note first the following
general facts:

© For every & < ¢ and every A, B C 9,

Der(A) N D(B) = De(De/(A) N B).
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Introduction: derived topologies and hyperstationary sets

The 7¢ topology

In order to analyse the topologies 7¢, for £ > 3, note first the following
general facts:

© For every & < ¢ and every A, B C 9,

Der(A) N D(B) = De(De/(A) N B).

@ For every ordinal &, the sets of the form
N Dg/(Ao) n...N DE/(A,,_]_)

where | € By, n < w, & <&, and A; C 6, all i < n, form a base for Te.

Joan Bagaria (ICREA & UB) An Introduction to Hyperstationary Sets 23 / 56



Introduction: derived topologies and hyperstationary sets
Characterizing non-isolated points
Theorem

Q@ For every &,

D¢(A) = {a : A is {-s-stationary in o}.?

?For £ < w, this is due independently to L. Beklemishev (Unpublished).
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@ Forevery £ and o, A is € + 1-s-stationary in « if and only if
AND(S)ND:(T)Na # 0 (equivalently, if and only if
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Introduction: derived topologies and hyperstationary sets

Characterizing non-isolated points

Theorem
Q@ For every &,

D¢(A) = {a : A is {-s-stationary in o}.?

@ Forevery £ and o, A is € + 1-s-stationary in « if and only if
AND(S)ND:(T)Na # 0 (equivalently, if and only if
AN D¢(S)N De(T) is (-s-stationary in o) for every ( < & and every
pair S, T of subsets of « that are (-s-stationary in c.

© For every £ and «, if A is &-s-stationary in o and A; is (;-s-stationary
in o for some (; < &, all i < n, then AN D¢y (Ao) N ...N De, , (An-1)
is £-s-stationary in «.

?For £ < w, this is due independently to L. Beklemishev (Unpublished).
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Introduction: derived topologies and hyperstationary sets

Taking A =0 in (1) above, we obtain the following

Corollary

For every £, an ordinal o < & is not isolated in the 1 topology if and only
if o is &-s-stationary.
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Introduction: derived topologies and hyperstationary sets

The ideal of non-£-s-stationary sets

For each limit ordinal a and each &, let NS be the set of
non-§-s-stationary subsets of a.
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For each limit ordinal a and each &, let NS be the set of
non-§-s-stationary subsets of a.

Thus, if @ has uncountable cofinality, NS} is the ideal of non-stationary
subsets of a and (NS})* is the club filter over a.
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The ideal of non-£-s-stationary sets

For each limit ordinal a and each &, let NS be the set of
non-§-s-stationary subsets of a.

Thus, if @ has uncountable cofinality, NS} is the ideal of non-stationary
subsets of a and (NS})* is the club filter over a.

Notice that ¢ < ¢ implies NS$ C NS§ and (NS$)* C (NSS)*.

Joan Bagaria (ICREA & UB) An Introduction to Hyperstationary Sets 26 / 56



Introduction: derived topologies and hyperstationary sets

The ideal of non-£-s-stationary sets

For each limit ordinal a and each &, let NS be the set of
non-§-s-stationary subsets of a.

Thus, if @ has uncountable cofinality, NS} is the ideal of non-stationary
subsets of a and (NS})* is the club filter over a.

Notice that ¢ < ¢ implies NS$ C NS§ and (NS$)* C (NSS)*.

Also note that A C « belongs to (NS§)* if and only if for some ¢ < £ and
some (-s-stationary sets S, T C «, the set D¢(S) N D¢(T) N is contained
in A. In particular, if S C « is (-s-stationary, with { < &, then

D:(S) Na € (NS§)*.
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Introduction: derived topologies and hyperstationary sets

Theorem

For every &, a limit ordinal « is &-s-stationary if and only if NSS, is a proper
ideal, hence if and only if (NS§)* is a proper filter.
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Introduction: derived topologies and hyperstationary sets

Proof.

Assume « is &-s-stationary (hence o ¢ NS$) and let us show that NS, is
an ideal. For ¢ = 0 this is clear. So, suppose ¢ > 0 and A, B € NS5,
There exist (a4, (g < &, and there exist sets Sa, To C « that are
(a-s-stationary in «, and sets Sg, Tg C « that are (g-s-stationary in «,
such that DCA(SA) N DCA(TA) NA= DCB(SB) N DQ,(TB) N B = 0. Hence,

(DCA(SA) N DCA(TA) N DCB(SB) n DCB(TB)) N (A U B) = 0.

The set X .= DCA(SA) N DCA(TA) N DCB(SB) N DCB(TB) is
max{Ca, (g }-s-stationary in a. Now notice that

DmaX{CAKB}(X) c X

and so we have
Dimax{cacs}(X) NN (AU B) = 0

which witnesses that AU B € NSS. O
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Introduction: derived topologies and hyperstationary sets

Continued.

For the converse, assume NS is a proper ideal.

Take any A and B (-s-stationary subsets of «, for some { < £&. Then
D¢(A)Na and De(B) N e are in (NS§)*. Moreover, if S, T C « are any
(’-s-stationary sets, for some ¢’ < &, then also D¢/(S) N and Der(T) N«
belong to (NS§)*. Hence, since (NS5)* is a filter,

D¢(A) N De(B) N Der(S) N D (T) Na € (NSS)*

which implies, since (NS$)* is proper, that

Dc(A) N D((B) N DCI(S) N Dc/(T) Na # (). This shows that

D¢(A) N D¢(B) is &-s-stationary in «.. Since A and B were arbitrary, this
implies « is £-s-stationary. [
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Introduction: derived topologies and hyperstationary sets

Summary

The following are equivalent for every limit ordinal o and every £ > 0:

© « is a non-isolated point in the 7¢ topology.
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Introduction: derived topologies and hyperstationary sets

Summary

The following are equivalent for every limit ordinal o and every £ > 0:

© « is a non-isolated point in the 7¢ topology.

Q « is &-s-stationary.
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Introduction: derived topologies and hyperstationary sets

Summary

The following are equivalent for every limit ordinal o and every £ > 0:

© « is a non-isolated point in the 7¢ topology.
Q « is &-s-stationary.

© NS§ is a proper ideal.
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Hyperstationary sets and indescribable cardinals

Indescribable cardinals
Recall that a formula of second-order logic is § (or M3) if it does not

have quantifiers of second order, but it may have any finite number of
first-order quantifiers and free first-order and second-order variables.
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Hyperstationary sets and indescribable cardinals

Indescribable cardinals

Recall that a formula of second-order logic is § (or M3) if it does not
have quantifiers of second order, but it may have any finite number of
first-order quantifiers and free first-order and second-order variables.

Definition

For £ any ordinal, we say that a formula is Z%H if it is of the form
IXo, ..., Xkp(Xo, - - -, Xk)

where ¢(Xo, ..., Xk) is ﬂ%.
And a formula is I'I%_s_1 if it is of the form

VXO, cee ,Xk(p(Xo, N ,Xk)

where ¢(Xo, ..., Xk) is Z%.
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Hyperstationary sets and indescribable cardinals

Definition
If £ is a limit ordinal, then we say that a formula is I'I% if it is of the form

N »c

(<€

where ¢ is M, all ¢ < &, and it has only finitely-many free second-order
variables. And we say that a formula is Z% if it is of the form

V e

(<€

where ¢ is Y1 all ¢ <&, and it has only finitely-many free second-order
variables.
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Hyperstationary sets and indescribable cardinals

Definition
A cardinal & is I'I%-indescribable if for all subsets A C V|, and every I'I%

sentence ¢, if
(Vi, €,A) E o

then there is some A\ < k such that

(s, €, AN Vi) = o
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Hyperstationary sets and indescribable cardinals

Theorem

Every I'I%-indescribable cardinal is (§ 4 1)-s-stationary. Hence, if{ is a

limit ordinal and a cardinal k is I'Ié-indescribable for all { < &, then k is
&-s-stationary.
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Hyperstationary sets and indescribable cardinals

Proof.
Let x be an infinite cardinal. Clearly, the fact that a set A C k is
0-s-stationary (i.e., unbounded) in x can be expressed as a 1} sentence
©o(A) over (V,, €, A). Inductively, for every £ > 0, the fact that a set
A C k is &-s-stationary in k can be expressed by a I'I% sentence ¢ over
(Vi, €, A). Namely,

/\ (A is (-s-stationary)

(<¢

in the case ¢ is a limit ordinal, and by the sentence
/\ (A is (-s-stationary) A
(<€-1
VS, T(S, T are ({ — 1)-s-stationary in k —
38 € A(S and T are (§ — 1)-s-stationary in 3))

which is easily seen to be equivalent to a I'I% sentence, in the case £ is a
successor ordinal.

Ol
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Hyperstationary sets and indescribable cardinals

Continued.

Now suppose « is I'I%—indescribable, and suppose that A and B are
(-s-stationary subsets of x, for some { < £. Thus,

(Vie: €, A, B) = @c[Al A e[ Bl
By the I'Ié—indescribability of k there exists 8 < k such that
(Vg,€,ANB,BNP) = pc[AN Bl Apc[BN F]

which implies that A and B are (-s-stationary in 5. Hence k is
(& 4 1)-s-reflecting.
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Hyperstationary sets and indescribable cardinals

Reflection and indescribability in L

Theorem (J.B.-M. Magidor-H. Sakai, 2013; J.B., 2015)

Assume V = L. For every £ > 0, a regular cardinal is (§ 4+ 1)-stationary if
and only if it is I'I%-indescribable, hence if and only if it is
(€ + 1)-s-stationary.?”

?Reflection and indescribability in the constructible universe. Israel J. of
Math. Vol. 208, Issue 1 (2015)

bDerived topologies on ordinals and stationary reflection. Preprint (2015)
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Hyperstationary sets and indescribable cardinals

The proof actually shows the following:

Theorem

Assume V = L. Suppose £ > 0 and k is a regular (§ + 1)-stationary
cardinal. Then for every A C k and every I'I% sentence V, if

(Lg, €, A) =V, then there exists a {-stationary S C k such that W reflects
to every ordinal \ on which S is -stationary.
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Hyperstationary sets and indescribable cardinals

Theorem

CON(Tr < A (K is I'I%-indescribable A X is inaccessible)) implies
CON(7¢41 is non-discrete N Teio is discrete).
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Hyperstationary sets and indescribable cardinals

Theorem

CON(3k < X (k is I'Ié-indescribable A A is inaccessible)) implies
CON(7¢41 is non-discrete N Teio is discrete).

Proof.

Let s be I'I%—indescribable, and let A > k be inaccessible. In L, k is
I'I%—indescribable and ) is inaccessible. So, in L, let kg be the least
I'I%—indescribable cardinal, and let A\g be the least inaccessible cardinal
above kg. Then L), is a model of ZFC in which kg is I'I%—indescribable and
no regular cardinal greater than kg is 2-stationary. The reason is that if «
is a regular cardinal greater than kg, then o = 3T, for some cardinal §.
And since Jensen'’s principle [lg holds, there exists a stationary subset of o
that does not reflect. )
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Hyperstationary sets and indescribable cardinals

| ecture |l
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Hyperstationary sets and indescribable cardinals
Recall from Lecture Il

If V =L, then the following are equivalent for every regular cardinal x and
£E>0:
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Hyperstationary sets and indescribable cardinals

Recall from Lecture |l
If V =L, then the following are equivalent for every regular cardinal x and
£E>0:

Q « if (£ + 1)-stationary.

@ « is (£ + 1)-s-stationary.

Q xis I'Ié-indescribable.

Hence, for every limit ordinal &, a regular cardinal is &-stationary if and
only if it is £&-s-stationary, and if and only if it is I—Ié—indescribable for every

¢ <&.
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Hyperstationary sets and indescribable cardinals

Recall from Lecture |l
If V =L, then the following are equivalent for every regular cardinal x and
£E>0:

Q « if (£ + 1)-stationary.

@ kK is (£ + 1)-s-stationary.

Q Kis I'Ié-indescribable.

Hence, for every limit ordinal &, a regular cardinal is &-stationary if and
only if it is £&-s-stationary, and if and only if it is I—Ié—indescribable for every

¢ <&

Question
What is the consistency strength of &-stationarity? And of f—s—stationarity?J
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Hyperstationary sets and indescribable cardinals

The consistency strength of 2-stationarity
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Hyperstationary sets and indescribable cardinals

The consistency strength of 2-stationarity

Let us write:

de(A) :={a: AN« is ¢-stationary in o}
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Hyperstationary sets and indescribable cardinals

The consistency strength of 2-stationarity

Let us write:

de(A) :={a: AN« is ¢-stationary in o}

Definition (A. H. Mekler-S. Shelah, 1989)

A regular uncountable cardinal « is a reflection cardinal if there exists a
reflection ideal on k, i.e., a proper, normal, and k-complete ideal Z on &
such that for every X C k,

XeIt = d(X)eI".
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Hyperstationary sets and indescribable cardinals

The consistency strength of 2-stationarity

Let us write:

de(A) :={a: AN« is ¢-stationary in o}

Definition (A. H. Mekler-S. Shelah, 1989)

A regular uncountable cardinal « is a reflection cardinal if there exists a
reflection ideal on k, i.e., a proper, normal, and k-complete ideal Z on &
such that for every X C k,

XeIt = d(X)eI".

Note: if k is 2-stationary, then NS, is the smallest such ideal.
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Hyperstationary sets and indescribable cardinals

The consistency strength of 2-stationarity

Let us write:

de(A) :={a: AN« is ¢-stationary in o}

Definition (A. H. Mekler-S. Shelah, 1989)

A regular uncountable cardinal « is a reflection cardinal if there exists a
reflection ideal on k, i.e., a proper, normal, and k-complete ideal Z on &
such that for every X C k,

XeIt = d(X)eI".

Note: if k is 2-stationary, then NS, is the smallest such ideal.
K is weakly compact = many reflection cardinals below x.
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The consistency strength of hyperstationarity

The consistency strength of 2-stationarity

Theorem (A. H. Mekler-S. Shelah, 1989)

If k is a reflection cardinal in L, then in some generic extension of L that

preserves cardinals, k is 2-stationary. (In fact, the set Reg N k of regular
cardinals below & is 2-stationary.)
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The consistency strength of hyperstationarity

The consistency strength of 2-stationarity

Theorem (A. H. Mekler-S. Shelah, 1989)

If k is a reflection cardinal in L, then in some generic extension of L that

preserves cardinals, k is 2-stationary. (In fact, the set Reg N k of regular
cardinals below & is 2-stationary.)

Corollary

The following are equiconsistent:
© There exists a reflection cardinal.
@ There exists a 2-stationary cardinal.

© There exists a regular cardinal k such that every k-free abelian group
is kT -free.
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The consistency strength of hyperstationarity

On the consistency strength of 2-stationarity

Definition
A regular cardinal « is greatly Mahlo if there exists a proper, normal, and
k-complete ideal Z on k such that Reg Nk € Z*, and for every X C &,

Xel* = d(X)eI"
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The consistency strength of hyperstationarity

On the consistency strength of 2-stationarity

Definition

A regular cardinal « is greatly Mahlo if there exists a proper, normal, and
k-complete ideal Z on k such that Reg Nk € Z*, and for every X C &,

Xel* = d(X)eI"

Theorem (A. H. Mekler-S. Shelah, 1989)

If V =L and k is at most the first greatly-Mahlo cardinal, then k is not a
reflection cardinal.
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The consistency strength of hyperstationarity

On the consistency strength of 2-stationarity

Definition
A regular cardinal « is greatly Mahlo if there exists a proper, normal, and
k-complete ideal Z on k such that Reg Nk € Z*, and for every X C &,

Xel* = d(X)eI"

Theorem (A. H. Mekler-S. Shelah, 1989)

If V =L and k is at most the first greatly-Mahlo cardinal, then k is not a
reflection cardinal.

Thus, in L, the first reflection cardinal is strictly between the first
greatly-Mahlo and the first weakly-compact.
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The consistency strength of hyperstationarity

On the consistency strength of ¢-stationarity

We would like to prove analogous results for &-stationay sets.
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The consistency strength of hyperstationarity

On the consistency strength of ¢-stationarity

We would like to prove analogous results for &-stationay sets. So, let's
define:

Definition

For £ > 0, a regular uncountable cardinal  is an &-reflection cardinal if
there exists a &-reflection ideal on k, i.e., a proper, normal, and
k-complete ideal Z on k such that for every X C &,

XeIt = d(X)eIt.
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The consistency strength of hyperstationarity

On the consistency strength of ¢-stationarity

We would like to prove analogous results for &-stationay sets. So, let's
define:

Definition
For £ > 0, a regular uncountable cardinal  is an &-reflection cardinal if

there exists a &-reflection ideal on k, i.e., a proper, normal, and
k-complete ideal Z on k such that for every X C &,

XeIt = d(X)eIt.

Note: k is 2-stationary if and only if NS, is a 1-reflection ideal. Thus,
every 2-stationary regular cardinal is a 1-reflection cardinal.
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The consistency strength of hyperstationarity

Proposition

Every I'I%—indescribab/e cardinal is a (§ + 1)-reflection cardinal.

Proof.

If K is I'I%—indescribable, then NSS! is a (€ + 1)-reflection ideal. The point
is that if  is ﬂ%—indescribable, then (NS5+1)* is contained in the
(€ 4 1)-indescribable filter, and hence it is normal. O

v
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If K is I'I%—indescribable, then NSS! is a (€ + 1)-reflection ideal. The point

is that if  is ﬂ%—indescribable, then (NS5+1)* is contained in the
(€ 4 1)-indescribable filter, and hence it is normal. O

v

However,
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The consistency strength of hyperstationarity

Proposition

Every I'I%—indescribab/e cardinal is a (& + 1)-reflection cardinal.

Proof.

If K is I'I%—indescribable, then NSS! is a (€ + 1)-reflection ideal. The point
is that if  is ﬂ%—indescribable, then (NS5+1)* is contained in the
(€ 4 1)-indescribable filter, and hence it is normal. O

However,
Proposition

For every £ > 0, the fact that k is a &-reflection cardinal is 3 expressible
over the structure (Vi;, €,&, k). Hence, if k is a {-reflection cardinal and is
weakly compact, then the set of &-reflection cardinals smaller than
belongs to the weakly compact filter.
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The consistency strength of hyperstationarity

On the consistency strength of ¢-stationarity

Theorem (J.B., M. Magidor, and S. Mancilla, 2015)

If k is a &-reflection cardinal in L, then in some generic extension of L that
preserves cardinals, k is ({ + 1)-stationary.

(In fact, the set Reg N k of regular cardinals below k is (§ + 1)-stationary).
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The consistency strength of hyperstationarity

Problem

Suppose S is a subset of k that does not 2-reflect, i.e., d2(S) = (. Then
T :=SU{a < k: cof (a) = w} does not 2-reflect either: for if & € do(T),
then since a & da(S) there exists X C « i-stationary, some i < 2, such
that di(X)NSNa=10. If i =0, then d;(X) N« is a club subset of «
disjoint from S, and therefore d;(X) N T N« is a 2-stationary subset of «
contained in { < « : cof (8) = w}, which is impossible. But if i = 1, then
di(X)NTNa=d(X)NSNa=0, contradicting o € do(T).
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Problem

Suppose S is a subset of k that does not 2-reflect, i.e., d2(S) = (. Then
T :=SU{a < k: cof (a) = w} does not 2-reflect either: for if & € do(T),
then since a & da(S) there exists X C « i-stationary, some i < 2, such
that di(X)NSNa=10. If i =0, then d;(X) N« is a club subset of «
disjoint from S, and therefore d;(X) N T N« is a 2-stationary subset of «
contained in { < « : cof (8) = w}, which is impossible. But if i = 1, then
di(X)NTNa=d(X)NSNa=0, contradicting o € do(T).

Now, if we shoot a club through the complement of T, then in V[G] the
club contains ordinals of cofinality w but whose cofinality in V' is
uncountable. Hence cardinals are collapsed.
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The consistency strength of hyperstationarity

Definition
For x an uncountable regular cardinal, S C x, and { > 0, let D¢ s be the
forcing notion whose conditions are functions

p:d+1—{0,1}

where § < r and p~![{1}] is not {-stationary in a for every a € S, ie.,
de(p~![{1}]) € s\ S. The ordering is by end-extension, i.e., p < q if and
only if p is an end-extension of g.
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Definition
For x an uncountable regular cardinal, S C x, and { > 0, let D¢ s be the
forcing notion whose conditions are functions

p:d+1—{0,1}

where § < r and p~![{1}] is not {-stationary in a for every a € S, ie.,
de(p~![{1}]) € s\ S. The ordering is by end-extension, i.e., p < q if and
only if p is an end-extension of g.

Lemma

D¢ s is < k-distributive.
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The consistency strength of hyperstationarity

Lemma

Suppose that H is D¢ s-generic over V and let

X = J{p " [{1}]: p € H}.

Then Xy is a stationary subset of k and d¢(Xy) Nk C K\ S.
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The consistency strength of hyperstationarity

The iteration

We do an iteration IP, of length x™, with support of size < «, and such
that at every successor stage «, if the subset S of k given by the
bookkeeping function is a stationary set that does not reflect, then the
forcing Q, shoots a club through the complement of S; and if S is a
stationary set such that d:(S) # 0 but dc41(S) = 0, some 0 < ¢ <&, then
Q. adds a set of the form d¢(X), with X stationary, through the
complement of S. Moreover, we destroy at later stages of the iteration all
potential counterexamples to X being (-stationary
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The consistency strength of hyperstationarity

On the consistency strength of n-stationarity

Definition
A regular cardinal k is £-greatly Mahlo if there exists a proper, normal, and
k-complete ideal Z on k such that Reg Nk € Z*, and for every X C &,

XeI* = di(X)eTI"

Joan Bagaria (ICREA & UB) An Introduction to Hyperstationary Sets 52 / 56



The consistency strength of hyperstationarity

On the consistency strength of n-stationarity

Definition
A regular cardinal k is £-greatly Mahlo if there exists a proper, normal, and
k-complete ideal Z on k such that Reg Nk € Z*, and for every X C &,

XeI* = di(X)eTI"

Theorem (J.B. and S. Mancilla, 2014)

In L, if k is at most the first £&-greatly-Mahlo cardinal, then x is not an
E-reflection cardinal.
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The consistency strength of hyperstationarity

Conclusion

Corollary

The consistency strength of the existence of an (£ + 1)-stationary cardinal
is strictly between the existence of a &-greatly-Mahlo cardinal and the
existence of a I'I%—indescribable cardinal.
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The consistency strength of hyperstationarity

On the consistency strength of £-s-stationarity.

Theorem (Magidor)
The following are equiconsistent:

© There exists a 2-s-stationary cardinal (i.e., a cardinal that reflects
simultaneously pairs of stationary sets).

@ There exists a weakly-compact cardinal.?

?M. Magidor, On reflecting stationary sets. JSL 47 (1982)
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The consistency strength of hyperstationarity

On the consistency strength of £-s-stationarity.

Theorem (Magidor)
The following are equiconsistent:

© There exists a 2-s-stationary cardinal (i.e., a cardinal that reflects
simultaneously pairs of stationary sets).

@ There exists a weakly-compact cardinal.?

?M. Magidor, On reflecting stationary sets. JSL 47 (1982)

Conjecture
The following should be equiconsistent for every £ > Q:
© There exists an (£ + 1)-s-stationary cardinal.

@ There exists an I'I%—indescribable cardinal.
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Potential applications and Open Questions

The GLP completeness problem

In order to solve the GLP completeness problem under ordinal topological
semantics it only remains to prove the following:
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Potential applications and Open Questions

The GLP completeness problem

In order to solve the GLP completeness problem under ordinal topological
semantics it only remains to prove the following:

Theorem (7)

Assume whatever you need (e.g., large cardinals, global square, ...). For
& > 1 and some k, for every finite rooted tree (T, <), there exists a
function S : T — P(k) \ {0} such that

Q {Sx:x € T} is pairwise disjoint.
Q Ifx<tyanda€S,, then S,Na € (NS5)*.
© Foreveryx € T, ifa € S, then (Uy<,, Sy) N € (NSS)*.
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Potential applications and Open Questions

Open for exploration

@ Develop the theory of hyperstationary sets for P.(\). What are the
large cardinals involved?
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Potential applications and Open Questions

Open for exploration

@ Develop the theory of hyperstationary sets for P.(\). What are the
large cardinals involved?

@ Define the hyperstationary version of Woodin's stationary tower and
study its properties.

© Characterize the non-isolated points of general GLP-spaces. What
are the large cardinals involved?

@ What is the notion of almost-freeness for abelian groups that
corresponds (i.e., is equiconsistent) to {-stationarity?

© Take any result about stationary sets and prove it or disprove it for
hyperstationary sets (assuming appropriate large cardinals).
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