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We consider a modified version of the concept of measurability of sets and functions, and analyze 

this version from the point of view of additional set-theoretical axioms. The main feature of such an 

approach is that the measurability is treated not only with respect to a concrete given measure, but 

also with respect to various classes of measures. So, for a class M of measures, the measurability of 

sets and functions has the following three aspects:  

a) absolute measurability with respect to M;  

b) relative measurability with respect to M;  

c) absolute non-measurability with respect to M. 

 

 With the aid of additional set theoretical axioms, we specify the above-mentioned aspects of 

measurability. It is also investigated how the classes of absolutely measurable, relatively measurable 

and absolutely non-measurable functions (with respect to a fixed class M of measures) behave under 

action of standard operations, such as composition, addition, multiplication, limit operation, and so 

on. 

In particular, it is shown that: 

 

(1) Any function, which has a �2 -massive graph, is relatively measurable with  respect to the class 

of  extensions of Lebsgue measure;  

(2) There exists a Bernstein set which is absolutely negligible with respect to the class 

of all nonzero sigma-finite translation invariant measures on R. 

(3) There exists a Bernstein set which is absolutely non-measurable with respect to the class 

of all nonzero sigma-finite translation invariant measures on R. 
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