Nonseparable growth of ω supporting a strictly positive measure

Tomasz Żuchowski

Mathematical Institute, University of Wrocław

Winter School in Abstract Analysis Hejnice, January 2016

A compact space K is a **growth** of ω if there exists a compactification $\gamma \omega$ of ω such that $K \simeq \gamma \omega \setminus \omega$.

< □ > < @ > < 注 > < 注 > ... 注

A compact space K is a **growth** of ω if there exists a compactification $\gamma \omega$ of ω such that $K \simeq \gamma \omega \setminus \omega$.

Strictly positive measure

A measure μ on a topological space X is **strictly positive** if $\mu(U) > 0$ for any open $U \subseteq X$.

(ロ) (同) (E) (E) (E)

A compact space K is a **growth** of ω if there exists a compactification $\gamma \omega$ of ω such that $K \simeq \gamma \omega \setminus \omega$.

Strictly positive measure

A measure μ on a topological space X is **strictly positive** if $\mu(U) > 0$ for any open $U \subseteq X$. A finitely additive measure μ on a Boolean algebra \mathfrak{A} is **strictly**

positive if $\mu(a) > 0$ for any $a \in \mathfrak{A}^+$.

A compact space K is a **growth** of ω if there exists a compactification $\gamma \omega$ of ω such that $K \simeq \gamma \omega \setminus \omega$.

Strictly positive measure

A measure μ on a topological space X is **strictly positive** if $\mu(U) > 0$ for any open $U \subseteq X$.

A finitely additive measure μ on a Boolean algebra \mathfrak{A} is **strictly positive** if $\mu(a) > 0$ for any $a \in \mathfrak{A}^+$.

Remark

There is a strictly positive measure on a Boolean algebra \mathfrak{A} iff there is a strictly positive measure on the Stone space $ult(\mathfrak{A})$.

Any separable compact space is a growth of ω .

Any separable compact space is a growth of ω .

Fact

A Boolean algebra \mathfrak{A} can be embedded in $\mathscr{P}(\omega)/fin$ iff $ult(\mathfrak{A})$ is a growth of ω .

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Any separable compact space is a growth of ω .

Fact

A Boolean algebra \mathfrak{A} can be embedded in $\mathscr{P}(\omega)/fin$ iff $ult(\mathfrak{A})$ is a growth of ω .

Parovičenko Theorem: Any Boolean algebra of size $\leq \omega_1$ can be embedded into $\mathscr{P}(\omega)/fin$.

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Any separable compact space is a growth of ω .

Fact

A Boolean algebra \mathfrak{A} can be embedded in $\mathscr{P}(\omega)/fin$ iff $ult(\mathfrak{A})$ is a growth of ω .

Parovičenko Theorem: Any Boolean algebra of size $\leq \omega_1$ can be embedded into $\mathscr{P}(\omega)/fin$.

Lebesgue measure algebra

Let
$$\mathfrak{B} = Bor[0,1]/\mathscr{N}$$
, where $\mathscr{N} = \{A \subseteq [0,1] : \lambda(A) = 0\}$.

Any separable compact space is a growth of ω .

Fact

A Boolean algebra \mathfrak{A} can be embedded in $\mathscr{P}(\omega)/fin$ iff $ult(\mathfrak{A})$ is a growth of ω .

Parovičenko Theorem: Any Boolean algebra of size $\leq \omega_1$ can be embedded into $\mathscr{P}(\omega)/fin$.

Lebesgue measure algebra

Let $\mathfrak{B} = Bor[0,1]/\mathscr{N}$, where $\mathscr{N} = \{A \subseteq [0,1] : \lambda(A) = 0\}$. It has nonseparable $ult(\mathfrak{B})$ and the measure λ transfers to a strictly positive measure on $ult(\mathfrak{B})$.

Any separable compact space is a growth of ω .

Fact

A Boolean algebra \mathfrak{A} can be embedded in $\mathscr{P}(\omega)/fin$ iff $ult(\mathfrak{A})$ is a growth of ω .

Parovičenko Theorem: Any Boolean algebra of size $\leq \omega_1$ can be embedded into $\mathscr{P}(\omega)/fin$.

Lebesgue measure algebra

Let $\mathfrak{B} = Bor[0,1]/\mathscr{N}$, where $\mathscr{N} = \{A \subseteq [0,1] : \lambda(A) = 0\}$. It has nonseparable ult(\mathfrak{B}) and the measure λ transfers to a strictly positive measure on ult(\mathfrak{B}). Assuming CH, by Parovičenko ult(\mathfrak{B}) embeds into $\mathscr{P}(\omega)/fin$, so it is a growth of ω .

However...

Dow & Hart: Under Open Coloring Axiom the measure algebra does not embed into $\mathscr{P}(\omega)/fin$.

◆□ > ◆□ > ◆三 > ◆三 > ・三 ● のへで

However...

Dow & Hart: Under Open Coloring Axiom the measure algebra does not embed into $\mathscr{P}(\omega)/fin$.

Question

Is there a ZFC example of nonseparable growth of ω which supports a strictly positive measure?

However...

Dow & Hart: Under Open Coloring Axiom the measure algebra does not embed into $\mathscr{P}(\omega)/fin$.

Question

Is there a ZFC example of nonseparable growth of ω which supports a strictly positive measure? Equivalently: is there a ZFC example of a Boolean algebra with nonseparable Stone space that supports a strictly positive measure and can be embedded into $\mathscr{P}(\omega)/fin$?

Related results

 Bell, van Mill and Todorčević: ZFC examples of compactifications of ω with nonseparable ccc remainders

Related results

- Bell, van Mill and Todorčević: ZFC examples of compactifications of ω with nonseparable ccc remainders
- Drygier & Plebanek: under b = c (or some weaker statement) an example of γω with nonseparable remaider supporting a strictly positive measure

Related results

- Bell, van Mill and Todorčević: ZFC examples of compactifications of ω with nonseparable ccc remainders
- Drygier & Plebanek: under b = c (or some weaker statement) an example of γω with nonseparable remaider supporting a strictly positive measure
- Borodulin-Nadzieja & Inamdar: ZFC example of nonseparable growth of ω supporting a strictly positive measure

Asymptotic density

$$d(A) = \lim_{n \to \infty} \frac{|\{m < n : m \in A\}|}{n},$$

イロト (部) (日) (日) (日) (日)

if the limit exists for $A \subseteq \omega$. As d(A) = 0 for finite A, we can define also asymptotic density on $\mathscr{P}(\omega)/fin$.

Asymptotic density

$$d(A) = \lim_{n \to \infty} \frac{|\{m < n : m \in A\}|}{n}$$

if the limit exists for $A \subseteq \omega$. As d(A) = 0 for finite A, we can define also asymptotic density on $\mathscr{P}(\omega)/fin$.

Measure algebra, continued

Frankiewicz & Gutek: Under CH, there is an embedding $\Phi: \mathfrak{B} \to \mathscr{P}(\omega)/\text{fin}$ such that $\lambda(b) = d(\Phi(b))$ for any $b \in \mathfrak{B}$.

Theorem

There exists a Boolean algebra $\mathfrak A$ with the following properties:

- ult(\mathfrak{A}) is not separable
- ullet there exists a strictly positive measure μ on ${\mathfrak A}$
- there exists an embedding $\Psi : \mathfrak{A} \to \mathscr{P}(\omega)/\text{fin}$ such that $\mu(a) = d(\Psi(a))$ for any $a \in \mathfrak{A}$.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへで

Notations

 $\{ P_{\alpha} : \alpha < \mathfrak{c} \} = [2^{\omega}]^{\leq \omega} \\ \{ B_{\alpha} : \alpha < \mathfrak{c} \} \text{- an almost disjoint family in } \mathscr{P}(\omega).$

◆□ > ◆□ > ◆三 > ◆三 > ・三 ● のへで

Notations

 $\{ P_{\alpha} : \alpha < \mathfrak{c} \} = [2^{\omega}]^{\leq \omega} \\ \{ B_{\alpha} : \alpha < \mathfrak{c} \} \text{- an almost disjoint family in } \mathscr{P}(\omega).$

イロン イロン イヨン イヨン 三日

Definition of generators

$$P_{\alpha} = \{t_{n}^{\alpha} : n \in \omega\} \subseteq 2^{\omega}$$
$$B_{\alpha} = \{m_{i}^{\alpha} : i \in \omega\} \subseteq \omega$$

Notations

$$\begin{array}{l} \{P_{\alpha}:\alpha<\mathfrak{c}\}=[2^{\omega}]^{\leq\omega}\\ \{B_{\alpha}:\alpha<\mathfrak{c}\}\text{- an almost disjoint family in }\mathscr{P}(\omega)\end{array}$$

Definition of generators

$$P_{\alpha} = \{t_{n}^{\alpha} : n \in \omega\} \subseteq 2^{\omega}$$
$$B_{\alpha} = \{m_{i}^{\alpha} : i \in \omega\} \subseteq \omega$$

$$\varphi_0^{\alpha} = t_0^{\alpha}|_{\{m_0^{\alpha}, m_1^{\alpha}\}}, \ \varphi_1^{\alpha} = t_1^{\alpha}|_{\{m_2^{\alpha}, m_3^{\alpha}, m_4^{\alpha}\}}, \ \varphi_2^{\alpha} = t_2^{\alpha}|_{\{m_5^{\alpha}, m_6^{\alpha}, m_7^{\alpha}, m_8^{\alpha}\}}, \ \text{etc.}$$

Notations

$$\begin{array}{l} \{P_{\alpha}:\alpha<\mathfrak{c}\}=[2^{\omega}]^{\leq\omega}\\ \{B_{\alpha}:\alpha<\mathfrak{c}\}\text{- an almost disjoint family in }\mathscr{P}(\omega)\end{array}$$

Definition of generators

$$P_{\alpha} = \{t_{n}^{\alpha} : n \in \omega\} \subseteq 2^{\omega}$$
$$B_{\alpha} = \{m_{i}^{\alpha} : i \in \omega\} \subseteq \omega$$

$$\begin{split} & \varphi_0^{\alpha} = t_0^{\alpha}|_{\{m_0^{\alpha}, m_1^{\alpha}\}}, \ \varphi_1^{\alpha} = t_1^{\alpha}|_{\{m_2^{\alpha}, m_3^{\alpha}, m_4^{\alpha}\}}, \ \varphi_2^{\alpha} = t_2^{\alpha}|_{\{m_5^{\alpha}, m_6^{\alpha}, m_7^{\alpha}, m_8^{\alpha}\}}, \ \text{etc.} \end{split}$$

We define $U_{\alpha} = \bigcup_{i \in \omega} [\varphi_i^{\alpha}].$

Notations

$$\begin{array}{l} \{P_{\alpha}:\alpha<\mathfrak{c}\}=[2^{\omega}]^{\leq\omega}\\ \{B_{\alpha}:\alpha<\mathfrak{c}\}\text{- an almost disjoint family in }\mathscr{P}(\omega)\end{array}$$

Definition of generators

$$P_{\alpha} = \{t_{n}^{\alpha} : n \in \omega\} \subseteq 2^{\omega}$$
$$B_{\alpha} = \{m_{i}^{\alpha} : i \in \omega\} \subseteq \omega$$

$$\begin{split} & \varphi_0^{\alpha} = t_0^{\alpha}|_{\{m_0^{\alpha}, m_1^{\alpha}\}}, \ \varphi_1^{\alpha} = t_1^{\alpha}|_{\{m_2^{\alpha}, m_3^{\alpha}, m_4^{\alpha}\}}, \ \varphi_2^{\alpha} = t_2^{\alpha}|_{\{m_5^{\alpha}, m_6^{\alpha}, m_7^{\alpha}, m_8^{\alpha}\}}, \text{ etc.} \\ & \text{We define } U_{\alpha} = \bigcup_{i \in \omega} [\varphi_i^{\alpha}]. \end{split}$$

イロト イポト イヨト イヨト 二日

Definition of algebra

$$\mathfrak{A} = alg \Big(\operatorname{Clop}(2^{\omega}) \cup \{ U_{\alpha} : \alpha < \mathfrak{c} \} \Big)$$

• λ is a strictly positive measure on ${\mathfrak A}$

- λ is a strictly positive measure on ${\mathfrak A}$
- $ult(\mathfrak{A})$ is not separable

- λ is a strictly positive measure on $\mathfrak A$
- $ult(\mathfrak{A})$ is not separable
- there exists a Boolean embedding Ψ_0 : $\operatorname{Clop}(2^{\omega}) \to \mathscr{P}(\omega)/fin$ transferring measure to asymptotic density

- λ is a strictly positive measure on $\mathfrak A$
- ult(\mathfrak{A}) is not separable
- there exists a Boolean embedding Ψ_0 : $\operatorname{Clop}(2^{\omega}) \to \mathscr{P}(\omega)/fin$ transferring measure to asymptotic density
- we define for any $\alpha < \mathfrak{c}$ such $\Psi_0(U_\alpha)$ that $\lambda(U_\alpha) = d(\Psi_0(U_\alpha))$ and we can extend Ψ_0 to a homomorphism $\Psi : \mathfrak{A} \to \mathscr{P}(\omega)/fin$

- λ is a strictly positive measure on $\mathfrak A$
- ult(\mathfrak{A}) is not separable
- there exists a Boolean embedding Ψ_0 : $\operatorname{Clop}(2^{\omega}) \to \mathscr{P}(\omega)/fin$ transferring measure to asymptotic density
- we define for any $\alpha < \mathfrak{c}$ such $\Psi_0(U_\alpha)$ that $\lambda(U_\alpha) = d(\Psi_0(U_\alpha))$ and we can extend Ψ_0 to a homomorphism $\Psi : \mathfrak{A} \to \mathscr{P}(\omega)/fin$
- $\Psi:\mathfrak{A}\to \mathscr{P}(\omega)/\textit{fin}$ also transfers the Lebesgue measure to the asymptotic density

- λ is a strictly positive measure on $\mathfrak A$
- ult(\mathfrak{A}) is not separable
- there exists a Boolean embedding Ψ_0 : $\operatorname{Clop}(2^{\omega}) \to \mathscr{P}(\omega)/fin$ transferring measure to asymptotic density
- we define for any $\alpha < \mathfrak{c}$ such $\Psi_0(U_\alpha)$ that $\lambda(U_\alpha) = d(\Psi_0(U_\alpha))$ and we can extend Ψ_0 to a homomorphism $\Psi : \mathfrak{A} \to \mathscr{P}(\omega)/fin$
- $\Psi:\mathfrak{A} o\mathscr{P}(\omega)/\textit{fin}$ also transfers the Lebesgue measure to the asymptotic density
- the homomorphism Ψ is an embedding, which is an easy corollary from transferring the measure to density

Theorem (Borodulin-Nadzieja, Inamdar, 2015)

There is a Boolean algebra $\mathfrak{T}\subseteq \mathscr{P}(\omega)/\mathit{Fin}$ such that

イロト (部) (日) (日) (日) (日)

- \mathfrak{T} is not σ -centered,
- $\Vdash_{\mathfrak{B}} `\check{\mathfrak{T}}$ is σ -centered".

Theorem (Borodulin-Nadzieja, Inamdar, 2015)

There is a Boolean algebra $\mathfrak{T}\subseteq \mathscr{P}(\omega)/\mathit{Fin}$ such that

- \mathfrak{T} is not σ -centered,
- $\Vdash_{\mathfrak{B}} `\check{\mathfrak{T}}$ is σ -centered".

Theorem (Kamburelis, 80')

If \mathfrak{C} is a Boolean algebra and $\Vdash_{\mathfrak{B}}$ " $\check{\mathfrak{C}}$ is σ -centered", then \mathfrak{C} supports a strictly positive measure.