Compact sets in Euclidean spaces as IFS-attractors

Magdalena Nowak

Jan Kochanowski University in Kielce

Hejnice 2016

joint work with T. Banakh

A metric space (X, d) is called **doubling** if there exists a natural number M such that each open ball B(x, r) is contained in the union of at most M open balls $B(y, \frac{r}{2})$.

A metric space (X, d) is called **doubling** if there exists a natural number M such that each open ball B(x, r) is contained in the union of at most M open balls $B(y, \frac{r}{2})$.

Assouad's theorem

For each doubling space (X, d) and for each $\alpha \in (0, 1)$ there exists $n \in \mathbb{N}$ and bi-Lipschitz function $\varphi \colon (X, d^{\alpha}) \to \mathbb{R}^{n}$.

An **Iterated Function System** (IFS) is a finite collection of contractions on the metric space X:

$$\mathcal{F} = \{f_1, f_2, \ldots, f_n \colon X \to X; \max_{i=1,\ldots,n} \{\operatorname{Lip} f_i\} < 1\}.$$

A nonempty compact set $A \subset X$ which is invariant by the IFS \mathcal{F} , in the sense:

$$A = f_1(A) \cup f_2(A) \cup \cdots \cup f_n(A)$$

is called the **attractor of the IFS** \mathcal{F} (IFS-attractor).

An **Iterated Function System** (IFS) is a finite collection of contractions on the metric space X:

$$\mathcal{F} = \{f_1, f_2, \ldots, f_n \colon X \to X; \max_{i=1,\ldots,n} \{\operatorname{Lip} f_i\} < 1\}.$$

A nonempty compact set $A \subset X$ which is invariant by the IFS \mathcal{F} , in the sense:

$$A = f_1(A) \cup f_2(A) \cup \cdots \cup f_n(A)$$

is called the **attractor of the IFS** \mathcal{F} (IFS-attractor).

Theorem

For every IFS on a complete metric space X there exist a unique IFS-attractor.

イロト イポト イヨト イヨト

Being an IFS-attractor is not a topological invariant

Magdalena Nowak Compact sets in Euclidean spaces as IFS-attractors

イロト イポト イヨト イヨト

э

Problem

Which compact space is homeomorphic to an IFS-attractor **in the Euclidean space**?

伺 ト イヨ ト イヨト

Problem

Which compact space is homeomorphic to an IFS-attractor **in the Euclidean space**?

Definition

A compact space A is a **Euclidean fractal** if it is homeomorphic to some IFS-attractor in \mathbb{R}^n (there exists a metric on A and IFS $\mathcal{F} = \{f : A \to A\}$ such that $A = \bigcup_{f \in \mathcal{F}} f(A)$).

Being an IFS-attractor is a bi-Lipschitz invariant

Fact

Bi-Lipschitz image of IFS-attractor is also IFS-attractor.

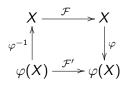
イロト イポト イヨト イヨト

э

Being an IFS-attractor is a bi-Lipschitz invariant

Fact

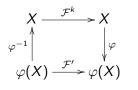
Bi-Lipschitz image of IFS-attractor is also IFS-attractor.



X - IFS-attractor for family \mathcal{F} and each $f \in \mathcal{F}$ is λ -Lipschitz in X ($\lambda < 1$).

Fact

Bi-Lipschitz image of IFS-attractor is also IFS-attractor.



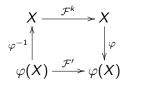
X - IFS-attractor for family \mathcal{F} and each $f \in \mathcal{F}$ is λ -Lipschitz in X ($\lambda < 1$).

For every $k \in \mathbb{N}$, X is an IFS-attractor for the family $\mathcal{F}^k = \{f_1 \circ \cdots \circ f_k : f_1, \ldots, f_k \in \mathcal{F}\}$ of a λ^k -Lipschitz function.

・ロト ・ 一 ト ・ 日 ト ・ 日 ト

Fact

Bi-Lipschitz image of IFS-attractor is also IFS-attractor.



X - IFS-attractor for family \mathcal{F} and each $f \in \mathcal{F}$ is λ -Lipschitz in X ($\lambda < 1$).

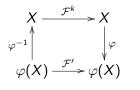
For every $k \in \mathbb{N}$, X is an IFS-attractor for the family $\mathcal{F}^k = \{f_1 \circ \cdots \circ f_k : f_1, \ldots, f_k \in \mathcal{F}\}$ of a λ^k -Lipschitz function.

 φ - bi-Lipschitz function so $\varphi \colon X \to \varphi(X)$ is a homeomorphism and φ, φ^{-1} are Lipschitz.

イロト 不得 トイヨト イヨト 三日

Fact

Bi-Lipschitz image of IFS-attractor is also IFS-attractor.



X - IFS-attractor for family \mathcal{F} and each $f \in \mathcal{F}$ is λ -Lipschitz in X ($\lambda < 1$).

For every $k \in \mathbb{N}$, X is an IFS-attractor for the family $\mathcal{F}^k = \{f_1 \circ \cdots \circ f_k : f_1, \ldots, f_k \in \mathcal{F}\}$ of a λ^k -Lipschitz function.

 φ - bi-Lipschitz function so $\varphi \colon X \to \varphi(X)$ is a homeomorphism and φ, φ^{-1} are Lipschitz.

Take a $k \in \mathbb{N}$ such that $\operatorname{Lip} \varphi \cdot \lambda^k \cdot \operatorname{Lip} \varphi^{-1} < 1$ then $\varphi(X)$ is an IFS-attractor for $\mathcal{F}' = \{\varphi \circ f_1 \circ \cdots \circ f_k \circ \varphi^{-1} \colon f_1, \ldots, f_k \in \mathcal{F}\}$

イロト イポト イヨト イヨト 二日

A sufficient condition of beeing Euclidean fractal

Corollary

Each IFS-attractor which is doubling, is an Euclidean fractal.

Magdalena Nowak Compact sets in Euclidean spaces as IFS-attractors

э

A sufficient condition of beeing Euclidean fractal

Corollary

Each IFS-attractor which is doubling, is an Euclidean fractal.

(X, d) $h \downarrow homeo.$ (X, d^{α}) $\varphi \downarrow bi-Lipschitz$ \mathbb{R}^{n}

$$(X, d)$$
 is an IFS-attractor for λ -Lipschitz function from \mathcal{F} ($\lambda < 1$).

イロト 不得下 イヨト イヨト 二日

A sufficient condition of beeing Euclidean fractal

Corollary

Each IFS-attractor which is doubling, is an Euclidean fractal.

 $\begin{array}{ll} (X,d) & (X,d) \text{ is an IFS-attractor for } \lambda\text{-Lipschitz} \\ & \downarrow \\ h \downarrow \text{homeo.} & \text{function from } \mathcal{F} \ (\lambda < 1). \\ (X,d^{\alpha}) & (X,d^{\alpha}) \text{ is an IFS-attractor for} \\ & \varphi \downarrow \text{bi-Lipschitz} & \chi^{\alpha}\text{-Lipschitz functions from } \mathcal{F} \ (\alpha \in (0,1)). \\ & \mathbb{R}^n \end{array}$

イロト イポト イヨト イヨト 三日

Corollary

Each IFS-attractor which is doubling, is an Euclidean fractal.

 $\begin{array}{ll} (X,d) & (X,d) \text{ is an IFS-attractor for } \lambda\text{-Lipschitz} \\ & \downarrow & \text{function from } \mathcal{F} \ (\lambda < 1). \\ (X,d^{\alpha}) & (X,d^{\alpha}) \text{ is an IFS-attractor for} \\ & \varphi \downarrow bi-Lipschitz \\ & \mathbb{R}^n & \varphi(X) \subset \mathbb{R}^n \text{ is an IFS-attractor.} \end{array}$

イロト 不得下 イヨト イヨト 二日

Theorem (Banakh, N 2015)

Let X be compact doubling space and Z be its uncountable, zero-dimensional, subset open in X. Then X is an Euclidean fractal.

伺下 イヨト イヨト

Theorem (Banakh, N 2015)

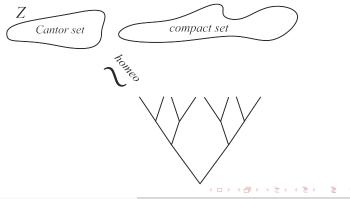
Let X be compact doubling space and Z be its uncountable, zero-dimensional, subset open in X. Then X is an Euclidean fractal.

1992 - Duvall & Husch ($X \subset \mathbb{R}^n$ and Z - Cantor set)

Theorem (Banakh, N 2015)

Let X be compact doubling space and Z be its uncountable, zero-dimensional, subset open in X. Then X is an Euclidean fractal.

1992 - Duvall & Husch ($X \subset \mathbb{R}^n$ and Z - Cantor set)



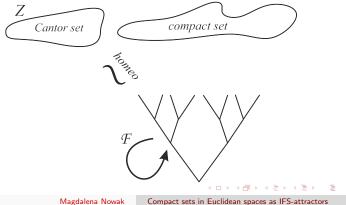
Magdalena Nowak

Compact sets in Euclidean spaces as IFS-attractors

Theorem (Banakh, N 2015)

Let X be compact doubling space and Z be its uncountable, zero-dimensional, subset open in X. Then X is an Euclidean fractal.

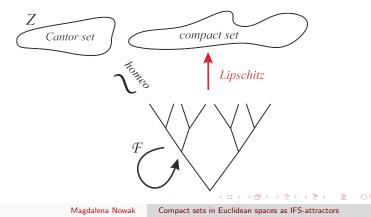
1992 - Duvall & Husch ($X \subset \mathbb{R}^n$ and Z - Cantor set)



Theorem (Banakh, N 2015)

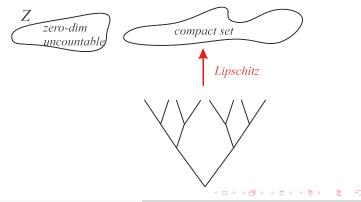
Let X be compact doubling space and Z be its uncountable, zero-dimensional, subset open in X. Then X is an Euclidean fractal.

1992 - Duvall & Husch ($X \subset \mathbb{R}^n$ and Z - Cantor set)



Theorem (Banakh, N 2015)

Let X be compact doubling space and Z be its uncountable, zero-dimensional, subset open in X. Then X is an Euclidean fractal.

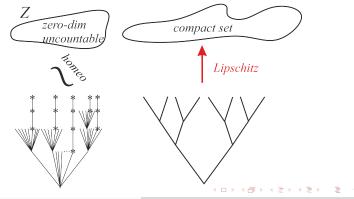


Magdalena Nowak

Compact sets in Euclidean spaces as IFS-attractors

Theorem (Banakh, N 2015)

Let X be compact doubling space and Z be its uncountable, zero-dimensional, subset open in X. Then X is an Euclidean fractal.

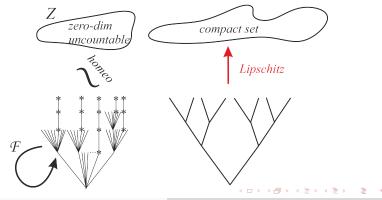


Magdalena Nowak

Compact sets in Euclidean spaces as IFS-attractors

Theorem (Banakh, N 2015)

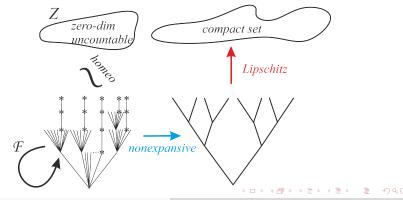
Let X be compact doubling space and Z be its uncountable, zero-dimensional, subset open in X. Then X is an Euclidean fractal.



Magdalena Nowak

Theorem (Banakh, N 2015)

Let X be compact doubling space and Z be its uncountable, zero-dimensional, subset open in X. Then X is an Euclidean fractal.



Magdalena Nowak

THANK YOU 🏶

Magdalena Nowak Compact sets in Euclidean spaces as IFS-attractors