Steinhaus properies of σ -ideals in Polish groups

Taras Banakh L.Karchevska, A.Ravsky

Lviv & Kielce

Hejnice, 31.01.2016

T.Banakh Steinhaus properies of σ -ideals in Polish groups

σ -Ideals on groups

A family \mathcal{I} of subsets of a set X is called a σ -*ideal* if \mathcal{I} is closed under countable unions and taking subsets.

Example

Standard examples of σ -ideals are:

- \mathcal{M} , the ideal of meager sets;
- \mathcal{N} , the ideal of (Lebesgues) null sets;
- \mathcal{E} , the σ -ideal generated by closed null sets in $\mathbb R$

(more generally, in a Polish locally compact group G).

These three σ -ideals relate as follows:

$$\mathcal{M} \longleftrightarrow \mathcal{M} \cap \mathcal{N} \longrightarrow \mathcal{N}$$

Theorem (S.Banach, 1931)

Any Borel subgroup H of a Polish group G is either open or belongs to the σ -ideal \mathcal{M} of meager sets in G.

Theorem (H.Steinhaus, 1920)

Any Borel subgroup H of a Polish locally compact group G is either open or belongs to the σ -ideal N of Haar null sets in G.

Theorem (Laczkovich, 1998)

Any Borel subgroup H of a Polish locally compact group G is either open or belongs to the σ -ideal \mathcal{E} generated by closed Haar null sets in G.

A 3 1

Problem

Detect σ -ideals \mathcal{I} on a Polish group containing all non-open Borel subgroups of the group.

We shall show that a σ -ideal \mathcal{I} has this property if \mathcal{I} is $\pm n$ -Steinhaus for some $n \in \mathbb{N}$. Before defining $\pm n$ -Steinhaus ideals, let us discuss the reason why Banach and Steinhaus Theorems are true.

Theorems of Steinhaus and Piccard-Pettis

Theorems of Steinhaus and Banach are immediate corollaries of the following two classical results:

Theorem (Steinhaus, 1920)

For any measurable sets $A, B \notin N$ in a locally compact group Gthe product $AB = \{ab : a \in A, b \in B\}$ has non-empty interior and the difference AA^{-1} is a neighborhood of the unit in G.

Theorem (Piccard, 1939; Pettis, 1951)

For any BP-sets $A, B \notin M$ in a Polish group G the product $AB = \{ab : a \in A, b \in B\}$ has non-empty interior and the difference AA^{-1} is a neighborhood of the unit in G.

A set A of a topological space X has the *Baire property* (or is a *BP-set*) if there exists an open set $U \subset X$ such that the symmetric difference $A\Delta U$ is meager in X.

Definition

An ideal \mathcal{I} of subsets of a topological group G is *n*-Steinhaus for some $n \in \mathbb{N}$ if for any subsets $A_1, \ldots, A_n \notin \mathcal{I}$ the product $A_1 \cdots A_n$ is not nowhere dense (= the closure $\overline{A_1 \cdots A_n}$ has non-empty interior) in G.

An equivalent reformulation:

Definition

An ideal \mathcal{I} of subsets of a topological group G is *n*-Steinhaus for some $n \in \mathbb{N}$ if for any closed subsets $A_1, \ldots, A_n \notin \mathcal{I}$ the product $A_1 \cdots A_n$ is not nowhere dense (= the closure $\overline{A_1 \cdots A_n}$ has non-empty interior) in G.

The reason:
$$\overline{\overline{A_1}\cdots\overline{A_n}} = \overline{A_1\cdots A_n}$$
.
n-Steinhaus \Rightarrow (*n*+1)-Steinhaus

向下 イヨト イヨト

For a subset A of a group G put $A^{\pm} = A \cup A^{-1}$.

Definition

An ideal \mathcal{I} of subsets of a topological group G is $\pm n$ -Steinhaus if for any (closed) subsets $A_1, \ldots, A_n \notin \mathcal{I}$ the set $A_1^{\pm} \cdots A_n^{\pm}$ is not nowhere dense in G.

For any Polish locally compact group G the σ -ideal

- \mathcal{M} is 1-Steinhaus;
- $\mathcal N$ is 2-Steinhaus;
- $\mathcal{M} \cap \mathcal{N}$ is 2-Steinhaus;
- \mathcal{E} is 2-Steinhaus.

$\pm n$ -Steinhaus σ -ideals contain meager analytic subgroups

A space A is *analytic* if A is a continuous image of a Polish space.

Theorem (B-K-R, 2015)

Any non-open analytic subgroup H of a Polish group G belongs to any $\pm n$ -Steinhaus σ -ideal on G.

Corollary (Laczkovich, 1998)

Any non-open analytic subgroup H of a Polish locally compact group G belongs to the σ -ideal \mathcal{E} .

We shall derive the theorem from:

Theorem (BKR, 2015)

Any meager quasi-analytic subgroup H of a Polish group G belongs to any $\pm n$ -Steinhaus σ -ideal \mathcal{I} on G.

A topological space is *quasi-analytic* if it is a continuous image of a metrizable separable hereditarily Baire space.

Theorem (BKR, 2015)

Any meager quasi-analytic sub(semi)group H of a Polish group G belongs to any $\pm n$ -Steinhaus (n-Steinhaus) σ -ideal \mathcal{I} on G.

This theorem will be derived from two characterizations:

Theorem (BKR, 2015)

A σ -ideal \mathcal{I} on a Polish group G is $\pm n$ -Steinhaus iff for any quasianalytic sets $A_1, \ldots, A_n \notin \mathcal{I}$ the product $A_1^{\pm} \ldots A_n^{\pm}$ is non-meager.

Theorem (BKR,2015)

A σ -ideal \mathcal{I} on a Polish group G is n-Steinhaus iff for any quasianalytic sets $A_1, \ldots, A_n \notin \mathcal{I}$ the product $A_1 \cdots A_n$ is non-meager.

Proof

Given an *n*-Steinhaus σ -ideal \mathcal{I} on a top group G and quasi-analytic sets $A_1, \ldots, A_n \notin \mathcal{I}$ of G, we need to prove that $A_1 \cdots A_n$ is not meager in G. To derive a contradiction, assume that $A_1 \cdots A_n$ is meager and hence is contained in a union $\bigcup_{m \in \omega} F_m$ of closed nowhere dense sets $F_m \subset G$. Write each quasi-analytic space A_i as a continuous image of a hereditarily Baire metrizable separable space B_i under a continuous map $f_i : B_i \to A_i$. Let \mathcal{U}_i be the family of all open sets $U \subset B_i$ with $f_i(U) \in \mathcal{I}$. Then $U_i = \bigcup U_i \in U_i$ and $B'_i = B_i \setminus U_i$ is not empty, Baire, and for every non-empty open set $V \subset B'_i$ we get $f_i(V) \notin \mathcal{I}$. Consider the map $\pi: B'_1 \times \cdots \times B'_n \to G, \ \pi: (x_1, \ldots, x_n) \mapsto f_1(x_1) \cdots f_n(x_n), \ \text{and observe}$ that $B = B'_1 \times \cdots \times B'_n$ is a Baire space. By Baire Theorem, for some $m \in \omega$ the closed set $\pi^{-1}(F_m)$ has non-empty interior in B and hence contains some open set $V_1 \times \cdots \times V_n$. The choice of B'_i guarantees that the sets $A'_i = f_i(V_i) \notin \mathcal{I}$ and hence $A'_1 \cdots A'_n$ is not nowhere dense in G. On the other hand, $A'_1 \cdots A'_n = \pi(V_1 \times \cdots \times V_n) \subset F_m$ is nowhere dense. This contradiction completes the proof.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We recall that a space X is *quasi-analytic* if X is a continuous image of a hereditarily Baire metrizable separable space. It is clear that each analytic space is quasi-analytic. A Bernstein set on the real line is an example of a quasi-analytic (in fact, a hereditarily Baire) space which is not analytic. It is not so easy to find a metrizable separable space, which is not quasi-analytic.

The simplest example is any uncountable universally meager set. A subset A of the real line \mathbb{R} is *universaly meager* if for any nowhere locally constant map $f : P \to \mathbb{R}$ from a Polish space the preimage $f^{-1}(A)$ is meager.

It is known that universally meager sets exist in ZFC but in some models universally meager sets have cardinality $\leq \aleph_1 < \mathfrak{c}$.

Theorem (B., Zdomskyy, 2016)

Each uncountable quasi-analytic space has cardinality c.

<ロ> <同> <同> < 同> < 同>

Steinhaus properties of σ -ideals $\mathcal{M}_{|K|}$

For a Baire subspace K of a topological group G by $\mathcal{M}_{|K}$ denote the σ -ideal generated by closed subsets $A \subset G$ such that for every $x \in G$ the intersection $K \cap xA$ is meager in K.

For example, the ideal $\mathcal{M}_{|[0,1]}$ coinicides with the ideal \mathcal{M} on \mathbb{R} .

Proposition

Let K be a Baire subspace of an abelian topological group. The ideal $\mathcal{M}_{|K}$ is n-Steinhaus (resp. $\pm n$ -Steinhaus) for some $n \in \mathbb{N}$ iff for any non-empty open sets $U_1, \ldots, U_n \subset K$ the product $U_1 \cdots U_n$ (resp. $U_1^{\pm} \cdots U_n^{\pm}$) is not nowhere dense in G.

Corollary

Let $G = \prod_{i \in \omega} G_i$ be the Tychonoff product of discrete abelian groups and $K = \prod_{i \in \omega} K_i \subset G$. The σ -ideal $\mathcal{M}_{|K}$ is n-Steinhaus (resp. $\pm n$ -Steinhaus) if and only if $(K_i)^n = G_i$ (resp. $(K_i^{\pm})^n = G_i$) for all but finitely many $i \in \omega$.

Example

For every $n \in \mathbb{N}$ there exists a compact topological group G and a σ -ideal \mathcal{I} which is (n + 1)-Steinhaus but not $\pm n$ -Steinhaus.

Proof.

Consider the cyclic group $\mathbb{Z}_{2n+3} = \{-n-1, \ldots, 0, \ldots, n+1\}$ and the 3-element set $\{-1, 0, 1\}$ in \mathbb{Z}_{2n+3} . For the compact set $K = \{-1, 0, 1\}^{\omega}$ the ideal $\mathcal{M}_{|K}$ in the group $G = \mathbb{Z}_{2n+3}^{\omega}$ is (n+1)-Steinhaus but not $\pm n$ -Steinhaus.

伺 ト イヨト イヨト

Example

There exists a compact topological groups G and a σ -ideal $\mathcal{I} = \mathcal{I}^{-1}$ which is ± 2 -Steinhaus but is *n*-Steinhaus for no $n \in \mathbb{N}$.

Proof.

By a result of Haight (1973) for every $n \in \mathbb{N}$ there exists a subset K_n in a finite cyclic group G_n such that $K_n K_n^{-1} = G_n$ but $(K_n)^n \neq G_n$. Then for the compact set $K = \prod_{n \in \omega} K_n$ the σ -ideal $\mathcal{I} = \mathcal{M}_{|K}$ is ± 2 -Steinhaus but is not *n*-Steinhaus for all $n \in \mathbb{N}$. Moreover, for the symmetric set $K^{\pm} = K \cup K^{-1}$ the ideal $\mathcal{I} = \mathcal{M}_{|K^{\pm}}$ is equal to \mathcal{I}^{-1} , is ± 2 -Steinhaus but is *n*-Steinhaus for no $n \in \mathbb{N}$.

向 ト イヨ ト イヨト

Theorem

Any meager quasi-analytic subsemigroup H of a Polish locally compact group G belongs to the σ -ideal \mathcal{E} generated by closed Haar null sets.

Problem

Can this theorem be generalized to non-locally compact groups?

Problem

Can the σ -ideals \mathcal{N}, \mathcal{E} be defined in non-locally compact groups?

Yes! In many different ways!

Definition (Chrystensen, 1973)

A Borel subset *B* of a Polish group *G* is *Haar null* if there exists a Borel probability measure μ on *G* such that $\mu(xB) = 0$ for all $x \in G$.

Theorem (Chrystensen, 1973)

The family \mathcal{N}_{Ch} of all subsets of Borel Haar null sets in an abelian Polish group G is a σ -ideal containing all non-open Borel subgroups of G.

This follows from:

Theorem (Chystensen, 1973)

If a Borel subset B of an abelian Polish group G is not Haar null, then BB^{-1} is a neighborhood of the unit in G.

Definition (Dodos, 2004)

A Borel subset *B* of a Polish group *G* is *generically Haar null* if the set $\{\mu \in P(G) : \forall x \in G \ \mu(xB) = 0\}$ is comeager in the space P(G) of probability measures on *G*.

Theorem (Dodos, 2004)

The family \mathcal{N}_{Ds} of subsets of Borel generically Haar null subsets of a Polish group G is a σ -ideal containing all non-open Borel subgrops of G.

This follows from:

Theorem (Dodos, 2004)

If an analytic subset A of a Polish group G is not generically Haar null, then AA^{-1} is not meager and $AA^{-1}AA^{-1}$ is a neighborhood of the unit in G. Consequently, each non-open analytic subgroup H of G is generically Haar null.

Definition (Darji, 2013)

A Borel subset B of a Polish group G is *Haar meager* if there exists a map $f : 2^{\omega} \to G$ such that for every $x \in G$ the set $f^{-1}(xA)$ is meager in 2^{ω} .

Theorem (Darji, Jablonska)

The family \mathcal{M}_{Dj} of subsets of Borel Haar-meager subsets of an abelian Polish group G is a σ -ideal containing all non-open Borel subgroups of G.

The latter statement follows from:

Theorem (Jablonska, 2015)

If a Borel subset A of an abelian Polish group G is not Haar-meager, then AA^{-1} is a neighborhood of the unit in G. Consequently, each non-open analytic subgroup H of G is Haar-meager.

Definition (B.-K.-R., 2015)

A subset *B* of a Polish group *G* is *generically Haar meager* if the set $\{K \in \mathcal{K}(G) : \forall x \in G \ xA \cap K \text{ is meager in } K\}$ is comeager in the hyperspace $\mathcal{K}(X)$ of all non-empty compact sets in *X*.

Theorem (B.-K.-R., 2015)

The family \mathcal{M}_{BKR} of all subsets of Borel generically Haar meager subsets of a Polish group G is a σ -ideal containing all non-open Borel subgroups of G.

This follows from:

Theorem

If an analytic subset A of an abelian Polish group G is not generically Haar-meager, then AA^{-1} is non-meager and $AA^{-1}AA^{-1}$ is a neighborhood of the unit in G.

Interplay beteen the σ -ideals \mathcal{N}_{Ch} , \mathcal{N}_{Ds} , \mathcal{M}_{Dj} , \mathcal{M}_{BKR}

э

For a Polish group G let \mathcal{E}_{Ch} , \mathcal{E}_{Ds} , \mathcal{E}_{Dj} , \mathcal{E}_{BKR} be the σ -ideals generated by closed subsets in the ideals \mathcal{N}_{Ch} , \mathcal{N}_{Ds} , \mathcal{M}_{Dj} , \mathcal{M}_{BKR} , respectively.

These ideals in Polish locally compact groups

Theorem

Every non-open Borel subgroup of a Polish group belongs to the σ -ideals $\mathcal{N}_{Ds} \subset \mathcal{N}_{Ch}$ and $\mathcal{M}_{BKR} \subset \mathcal{M}_{Dj} \subset \mathcal{M}$.

Theorem of Steinhaus and Piccard-Pettis imply:

Theorem

Every Borel subsemigroup with empty interior in a Polish locally compact group belongs to the σ -ideals $\mathcal{E} \subset \mathcal{M} \cap \mathcal{N}$.

Example

The nowhere dense subsemigroup \mathbb{N}^{ω} in the Polish group \mathbb{Z}^{ω} does not belong to the σ -ideals \mathcal{N}_{Ch} and \mathcal{M}_{Dj} (because \mathbb{N}^{ω} is thick in the sense that for each compact subset $K \subset \mathbb{Z}^{\omega}$ there is a shift $x + K \subset \mathbb{N}^{\omega}$).

| 4 同 1 4 三 1 4 三 1

Theorem (Laczkovich, 1998)

Any Borel subgroup H of a Polish locally compact group G belongs to the ideal \mathcal{E} .

Example (B.-K.-R., 2015)

The Polish group \mathbb{Z}^{ω} contains a Borel (in fact, σ -Polish) subgroup H which belongs to the σ -ideals $\mathcal{N}_{Ds} \cap \mathcal{M}_{BKR}$ but not to the σ -ideal \mathcal{E}_{Dj} generated by closed Haar-meager sets (of Darji).

Problem

Is there a ZFC-example of a subgroup $H \in \mathcal{M} \cap \mathcal{N} \setminus \mathcal{E}$ of the compact group \mathbb{Z}_2^{ω} ?

Theorem (Talagrand, 1982)

There is a ZFC-example of a subgroup $H \in \mathcal{N} \setminus \mathcal{M}$ of \mathbb{Z}_2 .

Theorem (Burke, 198?)

There is no ZFC-example of a subgroup $H \in \mathcal{M} \setminus \mathcal{N}$ of \mathbb{Z}_2^{ω} .

同 ト イ ヨ ト イ ヨ ト

T.Banakh, L.Karchevska, A.Ravsky, *The closed Steinhaus* properties of -ideals on topological groups, preprint (http://arxiv.org/abs/1509.09073).

3 N

Thank You!

æ

∃ → < ∃</p>