
Some applications of finite-support
products of Jensen’s minimal ∆1

3 forcing

Vladimir Kanovei1

1 IITP RAS and MIIT, Moscow kanovei@googlemail.com

February 2016
Heinice, Czech Republic

Vladimir Kanovei (Moscow) Products of Jensen’s minimal ∆1
3 forcing February 2016 1 / 26



Abstract Titlepage TOC Back

Jensen 1970 defined a forcing J ∈ L such that any J -generic real a :

does not belong to L;

is the only J -generic real in L[a],

is ∆1
3 in L[a].

It is the most elementary example of a Goedel-nonconstructible
definable real !
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We present some new applications of this forcing and its variations.

1 a countable definable set of reals w/o a definable element;
2 a definable Vitali -equivalence class w/o a definable element;
3 a definable Groszek-Laver pair of Vitali classes;
4 a Π1

2 set P ⊆ R× R, such that:
1) P is non-uniformizable by ROD sets, and
2) each cross-section Px = {y : 〈x , y〉 ∈ P} is a Vitali class;

5 in a choiceless model: a countable sequence of Vitali classes
whose union is uncountable.

Vladimir Kanovei (Moscow) Products of Jensen’s minimal ∆1
3 forcing February 2016 3 / 26



Abstract Titlepage TOC Back

We present some new applications of this forcing and its variations.

1 a countable definable set of reals w/o a definable element;

2 a definable Vitali -equivalence class w/o a definable element;
3 a definable Groszek-Laver pair of Vitali classes;
4 a Π1

2 set P ⊆ R× R, such that:
1) P is non-uniformizable by ROD sets, and
2) each cross-section Px = {y : 〈x , y〉 ∈ P} is a Vitali class;

5 in a choiceless model: a countable sequence of Vitali classes
whose union is uncountable.

Vladimir Kanovei (Moscow) Products of Jensen’s minimal ∆1
3 forcing February 2016 3 / 26



Abstract Titlepage TOC Back

We present some new applications of this forcing and its variations.

1 a countable definable set of reals w/o a definable element;
2 a definable Vitali -equivalence class w/o a definable element;

3 a definable Groszek-Laver pair of Vitali classes;
4 a Π1

2 set P ⊆ R× R, such that:
1) P is non-uniformizable by ROD sets, and
2) each cross-section Px = {y : 〈x , y〉 ∈ P} is a Vitali class;

5 in a choiceless model: a countable sequence of Vitali classes
whose union is uncountable.

Vladimir Kanovei (Moscow) Products of Jensen’s minimal ∆1
3 forcing February 2016 3 / 26



Abstract Titlepage TOC Back

We present some new applications of this forcing and its variations.

1 a countable definable set of reals w/o a definable element;
2 a definable Vitali -equivalence class w/o a definable element;
3 a definable Groszek-Laver pair of Vitali classes;

4 a Π1
2 set P ⊆ R× R, such that:

1) P is non-uniformizable by ROD sets, and
2) each cross-section Px = {y : 〈x , y〉 ∈ P} is a Vitali class;

5 in a choiceless model: a countable sequence of Vitali classes
whose union is uncountable.

Vladimir Kanovei (Moscow) Products of Jensen’s minimal ∆1
3 forcing February 2016 3 / 26



Abstract Titlepage TOC Back

We present some new applications of this forcing and its variations.

1 a countable definable set of reals w/o a definable element;
2 a definable Vitali -equivalence class w/o a definable element;
3 a definable Groszek-Laver pair of Vitali classes;
4 a Π1

2 set P ⊆ R× R, such that:
1) P is non-uniformizable by ROD sets, and
2) each cross-section Px = {y : 〈x , y〉 ∈ P} is a Vitali class;

5 in a choiceless model: a countable sequence of Vitali classes
whose union is uncountable.

Vladimir Kanovei (Moscow) Products of Jensen’s minimal ∆1
3 forcing February 2016 3 / 26



Abstract Titlepage TOC Back

We present some new applications of this forcing and its variations.

1 a countable definable set of reals w/o a definable element;
2 a definable Vitali -equivalence class w/o a definable element;
3 a definable Groszek-Laver pair of Vitali classes;
4 a Π1

2 set P ⊆ R× R, such that:
1) P is non-uniformizable by ROD sets, and
2) each cross-section Px = {y : 〈x , y〉 ∈ P} is a Vitali class;

5 in a choiceless model: a countable sequence of Vitali classes
whose union is uncountable.

Vladimir Kanovei (Moscow) Products of Jensen’s minimal ∆1
3 forcing February 2016 3 / 26



Table of contents Titlepage Back

1 Jensen’s basic result

2 Countable product of Jensen’s forcing

3 Variation: Vitali-invariant forcing

4 Groszek – Laver pairs of Vitali classes

5 Infinite products of large trees

6 Final remarks

Vladimir Kanovei (Moscow) Products of Jensen’s minimal ∆1
3 forcing February 2016 4 / 26



Section 1 Back

Section 1.
Jensen’s basic result

Vladimir Kanovei (Moscow) Products of Jensen’s minimal ∆1
3 forcing February 2016 5 / 26



Jensen: basic result TOC Back

Theorem (Jensen 1970)

There is a forcing notion J ∈ L such that:

1 it is true in any J -generic extension of L that: there is
a single real a ∈ R, J -generic over L ;

2 being a J -generic real over L is absolutely Π1
2 .

Therefore if a real x is J -generic over L then x is ∆1
3 in L[x ] .

Jensen’s forcing J consists of perfect sets X ⊆ R, a subset of the
Sacks forcing
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Jω is the finite-support countable product of Jensen’s forcing J

Theorem 1 (K + Lyubetsky, conjectured by Ali Enayat)
It is true in any Jω -generic extension of L that

all J -generic reals over L are the obvious ones;
the set X of all reals x ∈ R, J -generic over L, is a countable
non-empty Π1

2 set containing no definable elements. **

The existence of countable non-empty definable set of reals
with no definable elements was discussed at Mathoverflow.

Here Π1
2 is the best possible since any non-empty Σ1

2 set of reals
surely contains a definable element.
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Variation: Vitali-invariant forcing
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A Vitali class is any set of reals, of the form:

x + Q = {x + q : q is rational} ,

that is. a shift of the set Q of all rationals.

Theorem 2 (K+Lyubetsky, Archive for ML, 2015, 54, 5)

There is a forcing notion K ∈ L which adds a Π1
2 (hence definable)

Vitali class of generic reals containing no OD reals .

This is a strenthening of Theorem 1 .
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Both K and Jensen’s forcing J consist of perfect sets in R, are
CCC, and admit continuous reading of real names.

Differences between K and J :
1 if F : R→ R is continuous then

J forces: either F (.a) = .a or F (.a) is not J -generic ,

K forces: either F (.a)− .a ∈ Q or F (.a) is not K -generic ;

where .a is the name for the principal generic real.

2 K consists of Vitali-large trees.

3 K is Vitali-invariant, that is, is invariant under rational shifts.
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Thus there are two methods of getting a countable Π1
2 set X ⊆ R

containing no definable elements:

(1) X = {xn : n < ω}, where xn are independently J -generic reals
added by the finite-support product Jω of Jensen’s forcing J ;

(2) X is the Vitali class of a K -generic real x .
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Groszek – Laver pairs of Vitali classes
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A Groszek – Laver pair is any pair of sets X 6= Y ⊆ R inseparable by
an OD (ordinal-definable) set, that is, if S ⊆ R is OD then

X ∩ S 6= ∅ ⇐⇒ Y ∩ S 6= ∅ .

Example 1. If 〈x , y〉 is a Cohen×Cohen generic pair of reals over
L then their L-degrees X = [x ]L ∩ R and Y = [y ]L ∩ R form a
Groszek – Laver pair in L[x , y ].

Example 2 (Groszek and Laver 1987). If 〈x , y〉 is a Sacks×Sacks
generic pair of reals over L then their L-degrees X = [x ]L ∩ R and
Y = [y ]L ∩ R form an OD Groszek – Laver pair in L[x , y ] .

The sets X ,Y is this example are obviously uncountable .
Is there an OD Groszek – Laver pair of countable sets in R?
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Countable Groszek – Laver pairs TOC Back

Theorem 3 (Golshani + K + Lyubetsky, MLQ 2016)

There is a special Vitali-connected version of the forcing product
K ×K in L, which adds a pair of reals x , y such that
1 the set {x , y}+ Q is Π1

2 in L[x , y ] ,
2 the Vitali classes x + Q , y + Q are OD-inseparable ,

hence x + Q , y + Q is a Π1
2 Groszek – Laver pair of ctble sets .

The Vitali-connected product consists of all pairs 〈X ,Y 〉 of sets
X ,Y ∈ K such that X + Q = Y + Q .
An old idea of Harrington – Marker – Shelah, 1990.
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Section 5.
Infinite products of large trees
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Countable non-uniformization TOC Back

Theorem 4 (K and Lyubetsky, APAL, 2016, 167, 3)
It is consistent with ZFC that there is a set W ⊆ R× R such that

1 W is (lightface) Π1
2 ;

2 W is not uniformizable by a ROD (real-ordinal definable) set;
3 every section Wx = {y : 〈x , y〉 ∈ W } is a Vitali class , hence,

at most countable.

The forcing is essentially a finite-support product ∏
α<ω1 Kα , where

each Kα is a clone of the forcing notion K .
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Theorem 4 (K and Lyubetsky)
It is consistent with ZF (no axiom of choice!) that there is a
countable sequence {Xn}n<ω of Vitali classes Xn ⊆ R, such the
union X = ⋃

n Xn is not countable.
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Section 6.
Final remarks
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A tentative result TOC Back

Theorem (still work in progress, with Ali Enayat)
There is a generic model in which

every analytically definable non-empty set of reals contains an
analytically definable element;

there is no projective wellordering of the reals.
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Problem (countable definable sets not of reals)
Is it true in the Solovay model that every countable definable
non-empty set X of any kind contains a definable element ?

Yes if X is a set of reals.

The most elementary open case: X is a ctble set of sets of reals.
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Vitali-large sets TOC Back

Definition
A set X ⊆ R is Vitali-large if the Vitali equivalence restricted to X
has no Borel transversal.

A transversal for Vitali restricted to X is a set Y ⊆ X which meets
any Vitali class in X in exactly one point.

Example
The whole set R is Vitali-large.
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Technical note TOC Back

J is defined in L in the form J = ⋃
α<ω1 Jα , where each Jα is a

ctble set of trees, pre-dense in J , and generic , in some sense, over a
certain ctble model Mα containing the union J<α = ⋃

γ<α Jγ of
previous steps. This implies:

(∗) If n < ω , a set D ∈ Mα , D ⊆ (J<α)n is dense in (J<α)n , and
trees T1, . . . ,Tn ∈ Jα are 2wise different, then there is a finite
subset D′ ⊆ D such that T1 × . . .× Tn ⊆

⋃D′ .

The standard corollary is that in a Jn -generic extension, the only
J -generic reals are the obvious ones.

The main technical problem for Theorem 1 was to adapt (∗) to
the case of the infinite product (J<α)ω .
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Forcing is a tool to define set theoretic universes.

A universe is a structure of sets which satisfies the axioms of ZFC,
Zermelo – Fraenkel axiomatic system, with the axiom of choice.

The minimal universe is the universe L of Goedel-constructible sets.

More universes can be obtained as extensions of L by forcing, called
forcing extensions.

The properties of a forcing extension depend on the choice of a
partially-ordered set, called a forcing notion, or just a forcing.
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The problem of definable elements TOC Back

The problem was mentioned in Sinq Lettres, an exchange between
Baire, Borel, Hadamard, Lebesgue in 1905.
DEP: every definable set of reals ∅ 6= X ⊆ R contains an
ordinal-definable (OD, in brief) element.

1 DEP holds for Σ1
2 sets of reals: Luzin – Novikov choice

method, aka uniformization / scale / absoluteness theorems.
2 DEP holds for all definable sets X in the Goedel constructible

universe L — because of the canonical OD wellordering of L.
3 DEP fails in many set theoretic universes for instance for the set

X = Rr L of all non-constructible reals.

However until recently all known counterexamples to DEP have been
rather large sets, definitely uncountable . Therefore one can ask: is
there a countable counterexample to DEP in some universe? **
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