Remainders of topological groups and ultrafilters

Lyubomyr Zdomskyy

Kurt Gödel Research Center for Mathematical Logic, Universität Wien http://www.logic.univie.ac.at/~lzdomsky

Joint work with Angelo Bella and Seçil Tokgöz

Winter School in Abstract Analysis 2015 Hejnice, 6.02.2015

イロト イポト イヨト イヨト 二日

1/12

We shall consider only Tuchonoff spaces, i.e., spaces embeddable into a power of $\mathbb{R}.$

We shall consider only Tuchonoff spaces, i.e., spaces embeddable into a power of $\mathbb{R}.$

A space Y is a *remainder* of X, if there exists a compactification bX of X such that $Y = bX \setminus X$.

We shall consider only Tuchonoff spaces, i.e., spaces embeddable into a power of \mathbb{R} .

A space Y is a *remainder* of X, if there exists a compactification bX of X such that $Y = bX \setminus X$. We consider remainders only of nowhere locally compact spaces.

We shall consider only Tuchonoff spaces, i.e., spaces embeddable into a power of $\mathbb{R}.$

A space Y is a *remainder* of X, if there exists a compactification bX of X such that $Y = bX \setminus X$. We consider remainders only of nowhere locally compact spaces.

Question

What could be said about remainders? I.e., do they have some special interesting properties?

We shall consider only Tuchonoff spaces, i.e., spaces embeddable into a power of $\mathbb{R}.$

A space Y is a *remainder* of X, if there exists a compactification bX of X such that $Y = bX \setminus X$. We consider remainders only of nowhere locally compact spaces.

Question

What could be said about remainders? I.e., do they have some special interesting properties?

:-(

What could be said about remainders of nice spaces? E.g., what kind of properties could have remainders of topological groups? \Box

What could be said about remainders of nice spaces? E.g., what kind of properties could have remainders of topological groups? \Box

Theorem (Arhangel'skii 2009)

Let G be a topological group and bG a compactification of G. If $Y = bG \setminus G$, then Y is either Lindelöf or pseudocompact.

What could be said about remainders of nice spaces? E.g., what kind of properties could have remainders of topological groups? \Box

Theorem (Arhangel'skii 2009)

Let G be a topological group and bG a compactification of G. If $Y = bG \setminus G$, then Y is either Lindelöf or pseudocompact.

Theorem (Arhangel'skii 2008)

Let G be a topological group and bG a compactification of G. If $Y = bG \setminus G$, then Y is either σ -compact or Baire.

What could be said about remainders of nice spaces? E.g., what kind of properties could have remainders of topological groups? \Box

Theorem (Arhangel'skii 2009)

Let G be a topological group and bG a compactification of G. If $Y = bG \setminus G$, then Y is either Lindelöf or pseudocompact.

Theorem (Arhangel'skii 2008)

Let G be a topological group and bG a compactification of G. If $Y = bG \setminus G$, then Y is either σ -compact or Baire.

Note that these theorems are dichotomies.

A Lindelöf topological space \boldsymbol{X} is called

► Hurewicz,

A Lindelöf topological space \boldsymbol{X} is called

• Hurewicz, if for any continuous $f: X \to \mathbb{R}^{\omega}_+$, the range f[X] is bounded;

A Lindelöf topological space \boldsymbol{X} is called

- Hurewicz, if for any continuous $f: X \to \mathbb{R}^{\omega}_+$, the range f[X] is bounded;
- ► Scheepers,

A Lindelöf topological space \boldsymbol{X} is called

- Hurewicz, if for any continuous $f: X \to \mathbb{R}^{\omega}_+$, the range f[X] is bounded;
- Scheepers, if for any continuous f : X → ℝ^ω₊, the range f[X] is not finitely dominating (i.e., the collection {max A : A ∈ [f[X]]^{<ω}} is not dominating);

A Lindelöf topological space \boldsymbol{X} is called

- Hurewicz, if for any continuous $f: X \to \mathbb{R}^{\omega}_+$, the range f[X] is bounded;
- Scheepers, if for any continuous f : X → ℝ^ω₊, the range f[X] is not finitely dominating (i.e., the collection {max A : A ∈ [f[X]]^{<ω}} is not dominating);

4 / 12

Menger,

A Lindelöf topological space \boldsymbol{X} is called

- Hurewicz, if for any continuous $f: X \to \mathbb{R}^{\omega}_+$, the range f[X] is bounded;
- Scheepers, if for any continuous f : X → ℝ^ω₊, the range f[X] is not finitely dominating (i.e., the collection {max A : A ∈ [f[X]]^{<ω}} is not dominating);
- Menger, if for any continuous f : X → ℝ^ω₊, the range f[X] is not domonating.

A Lindelöf topological space \boldsymbol{X} is called

- Hurewicz, if for any continuous $f: X \to \mathbb{R}^{\omega}_+$, the range f[X] is bounded;
- Scheepers, if for any continuous f : X → ℝ^ω₊, the range f[X] is not finitely dominating (i.e., the collection {max A : A ∈ [f[X]]^{<ω}} is not dominating);
- Menger, if for any continuous f : X → ℝ^ω₊, the range f[X] is not domonating.

A Lindelöf topological space \boldsymbol{X} is called

- Hurewicz, if for any continuous $f: X \to \mathbb{R}^{\omega}_+$, the range f[X] is bounded;
- Scheepers, if for any continuous f : X → ℝ^ω₊, the range f[X] is not finitely dominating (i.e., the collection {max A : A ∈ [f[X]]^{<ω}} is not dominating);
- Menger, if for any continuous f : X → ℝ^ω₊, the range f[X] is not domonating.

If X is zero-dimensional, then it is enough to consider functions into $\omega^\omega.$

A Lindelöf topological space \boldsymbol{X} is called

- Hurewicz, if for any continuous $f: X \to \mathbb{R}^{\omega}_+$, the range f[X] is bounded;
- Scheepers, if for any continuous f : X → ℝ^ω₊, the range f[X] is not finitely dominating (i.e., the collection {max A : A ∈ [f[X]]^{<ω}} is not dominating);
- Menger, if for any continuous $f: X \to \mathbb{R}^{\omega}_+$, the range f[X] is not domonating.

If X is zero-dimensional, then it is enough to consider functions into $\omega^\omega.$

 σ -compact \Rightarrow Hurewicz \Rightarrow Scheepers \Rightarrow Menger \Rightarrow Lindelöf.

Let G be a topological group. If $\beta G \setminus G$ is Hurewicz, then it is σ -compact.

Let G be a topological group. If $\beta G \setminus G$ is Hurewicz, then it is σ -compact.

Proof. On the blackboard for groups G having dense σ -compact subsets, using the following characterization:

Let G be a topological group. If $\beta G \setminus G$ is Hurewicz, then it is σ -compact.

Proof. On the blackboard for groups G having dense σ -compact subsets, using the following characterization:

A space X is Hurewicz iff for any Čech-complete Z containing X as a dense subspace, there exists a σ -compact F such that $X \subset F \subset Z$.

Do the properties of Scheepers and Menger also imply being σ -compact for remainders of topological groups?

Do the properties of Scheepers and Menger also imply being σ -compact for remainders of topological groups?

Observation

There exists a topological group G such that $\beta G \setminus G$ is Scheepers and not σ -compact if there exists a Scheepers ultrafilter \mathcal{U} on ω .

Do the properties of Scheepers and Menger also imply being σ -compact for remainders of topological groups?

Observation

There exists a topological group G such that $\beta G \setminus G$ is Scheepers and not σ -compact if there exists a Scheepers ultrafilter \mathcal{U} on ω . **Proof.** Let \mathcal{U}^* be the dual ideal.

Do the properties of Scheepers and Menger also imply being σ -compact for remainders of topological groups?

Observation

There exists a topological group G such that $\beta G \setminus G$ is Scheepers and not σ -compact if there exists a Scheepers ultrafilter \mathcal{U} on ω . **Proof**. Let \mathcal{U}^* be the dual ideal. (\mathcal{U}^*, Δ) is a topological group and $\mathcal{U} \bigcup \mathcal{U}^* = \mathcal{P}(\omega)$.

Do the properties of Scheepers and Menger also imply being σ -compact for remainders of topological groups?

Observation

There exists a topological group G such that $\beta G \setminus G$ is Scheepers and not σ -compact if there exists a Scheepers ultrafilter \mathcal{U} on ω .

Proof. Let \mathcal{U}^* be the dual ideal. (\mathcal{U}^*, Δ) is a topological group and $\mathcal{U} \bigcup \mathcal{U}^* = \mathcal{P}(\omega)$.

Theorem (Canjar 1988)

If $\mathfrak{d} = \mathfrak{c}$, then there exists an ultrafilter \mathcal{U} such that the Mathias forcing $\mathbb{M}_{\mathcal{U}}$ associated to it does not add dominating reals.

Do the properties of Scheepers and Menger also imply being σ -compact for remainders of topological groups?

Observation

There exists a topological group G such that $\beta G \setminus G$ is Scheepers and not σ -compact if there exists a Scheepers ultrafilter \mathcal{U} on ω . **Proof**. Let \mathcal{U}^* be the dual ideal. (\mathcal{U}^*, Δ) is a topological group and $\mathcal{U} \bigcup \mathcal{U}^* = \mathcal{P}(\omega)$.

Theorem (Canjar 1988)

If $\mathfrak{d} = \mathfrak{c}$, then there exists an ultrafilter \mathcal{U} such that the Mathias forcing $\mathbb{M}_{\mathcal{U}}$ associated to it does not add dominating reals.

Theorem (Chodounsky-Repovs-Z. 2014)

For an ultrafilter \mathcal{U} on ω , the Mathias forcing $\mathbb{M}_{\mathcal{U}}$ associated to it does not add dominating reals iff \mathcal{U} is Scheepers

Do the properties of Scheepers and Menger also imply being σ -compact for remainders of topological groups?

Observation

There exists a topological group G such that $\beta G \setminus G$ is Scheepers and not σ -compact if there exists a Scheepers ultrafilter \mathcal{U} on ω . **Proof**. Let \mathcal{U}^* be the dual ideal. (\mathcal{U}^*, Δ) is a topological group and $\mathcal{U} \bigcup \mathcal{U}^* = \mathcal{P}(\omega)$.

Theorem (Canjar 1988)

If $\mathfrak{d} = \mathfrak{c}$, then there exists an ultrafilter \mathcal{U} such that the Mathias forcing $\mathbb{M}_{\mathcal{U}}$ associated to it does not add dominating reals.

Theorem (Chodounsky-Repovs-Z. 2014)

For an ultrafilter \mathcal{U} on ω , the Mathias forcing $\mathbb{M}_{\mathcal{U}}$ associated to it does not add dominating reals iff \mathcal{U} is Scheepers iff \mathcal{U} is Menger.

Do the properties of Scheepers and Menger also imply being σ -compact for remainders of topological groups?

Observation

There exists a topological group G such that $\beta G \setminus G$ is Scheepers and not σ -compact if there exists a Scheepers ultrafilter \mathcal{U} on ω . **Proof**. Let \mathcal{U}^* be the dual ideal. (\mathcal{U}^*, Δ) is a topological group and $\mathcal{U} \bigcup \mathcal{U}^* = \mathcal{P}(\omega)$.

Theorem (Canjar 1988)

If $\mathfrak{d} = \mathfrak{c}$, then there exists an ultrafilter \mathcal{U} such that the Mathias forcing $\mathbb{M}_{\mathcal{U}}$ associated to it does not add dominating reals.

Theorem (Chodounsky-Repovs-Z. 2014)

For an ultrafilter \mathcal{U} on ω , the Mathias forcing $\mathbb{M}_{\mathcal{U}}$ associated to it does not add dominating reals iff \mathcal{U} is Scheepers iff \mathcal{U} is Menger.

If $\mathfrak{d} = \mathfrak{c}$, then there exists a topological group G such that $\beta G \setminus G$ is Scheepers and not σ -compact.

If $\mathfrak{d} = \mathfrak{c}$, then there exists a topological group G such that $\beta G \setminus G$ is Scheepers and not σ -compact.

If $\mathfrak{d} = \mathfrak{c}$, then there exists a topological group G such that $\beta G \setminus G$ is Scheepers and not σ -compact.

Theorem

There exists a topological group G such that $\beta G \setminus G$ is Scheepers and not σ -compact **iff** there exists a Scheepers ultrafilter \mathcal{U} on ω .

If $\mathfrak{d} = \mathfrak{c}$, then there exists a topological group G such that $\beta G \setminus G$ is Scheepers and not σ -compact.

Theorem

There exists a topological group G such that $\beta G \setminus G$ is Scheepers and not σ -compact **iff** there exists a Scheepers ultrafilter \mathcal{U} on ω .

Observation

Every Scheepers (equiv. Menger ultrafilter) is a P-point.

If $\mathfrak{d} = \mathfrak{c}$, then there exists a topological group G such that $\beta G \setminus G$ is Scheepers and not σ -compact.

Theorem

There exists a topological group G such that $\beta G \setminus G$ is Scheepers and not σ -compact **iff** there exists a Scheepers ultrafilter \mathcal{U} on ω .

Observation

Every Scheepers (equiv. Menger ultrafilter) is a P-point.

Corollary

The existence of a topological group G such that $\beta G \setminus G$ is Scheepers and not σ -compact is independent from ZFC.

It is consistent that for any topological group G and compactification bG, if $(bG \setminus G)^2$ is Menger, then it is σ -compact. \Box

It is consistent that for any topological group G and compactification bG, if $(bG \setminus G)^2$ is Menger, then it is σ -compact. \Box

The proof uses the following forcing:

It is consistent that for any topological group G and compactification bG, if $(bG \setminus G)^2$ is Menger, then it is σ -compact. \Box

The proof uses the following forcing:

For a semifilter \mathcal{F} we denote by $\mathbb{P}_{\mathcal{F}}$ the poset consisting of all partial maps p from $\omega \times \omega$ to 2 such that for every $n \in \omega$ the domain of $p_n : k \mapsto p(n,k)$ is an element of $\sim \mathcal{F} := \{\omega \setminus F : F \in \mathcal{F}\}.$

It is consistent that for any topological group G and compactification bG, if $(bG \setminus G)^2$ is Menger, then it is σ -compact. \Box

The proof uses the following forcing:

For a semifilter \mathcal{F} we denote by $\mathbb{P}_{\mathcal{F}}$ the poset consisting of all partial maps p from $\omega \times \omega$ to 2 such that for every $n \in \omega$ the domain of $p_n : k \mapsto p(n, k)$ is an element of $\sim \mathcal{F} := \{\omega \setminus F : F \in \mathcal{F}\}.$

If, moreover, we assume that and $\operatorname{dom}(p_n) \subset \operatorname{dom}(p_{n+1})$ for all n, the corresponding poset will be denoted by $\mathbb{P}^*_{\mathcal{F}}$.

It is consistent that for any topological group G and compactification bG, if $(bG \setminus G)^2$ is Menger, then it is σ -compact. \Box

The proof uses the following forcing:

For a semifilter \mathcal{F} we denote by $\mathbb{P}_{\mathcal{F}}$ the poset consisting of all partial maps p from $\omega \times \omega$ to 2 such that for every $n \in \omega$ the domain of $p_n : k \mapsto p(n, k)$ is an element of $\sim \mathcal{F} := \{\omega \setminus F : F \in \mathcal{F}\}.$

If, moreover, we assume that and $\operatorname{dom}(p_n) \subset \operatorname{dom}(p_{n+1})$ for all n, the corresponding poset will be denoted by $\mathbb{P}^*_{\mathcal{F}}$.

A condition q is stronger than p (in this case we write $q \leq p$) if $p \subset q$.

<ロト < 部 > < 目 > < 目 > こ 2 の Q (C) 9 / 12

For filters \mathcal{F} the poset $\mathbb{P}_{\mathcal{F}}^*$ is obviously dense in $\mathbb{P}_{\mathcal{F}}$, and the latter is well-known to be proper and ω^{ω} -bounding if \mathcal{F} is a non-meager P-filter.

For filters \mathcal{F} the poset $\mathbb{P}_{\mathcal{F}}^*$ is obviously dense in $\mathbb{P}_{\mathcal{F}}$, and the latter is well-known to be proper and ω^{ω} -bounding if \mathcal{F} is a non-meager P-filter.

 $\mathcal{F}^+ = \{ X \subset \omega : \forall F \in \mathcal{F} \ (X \cap F \neq \emptyset) \}$

For filters \mathcal{F} the poset $\mathbb{P}_{\mathcal{F}}^*$ is obviously dense in $\mathbb{P}_{\mathcal{F}}$, and the latter is well-known to be proper and ω^{ω} -bounding if \mathcal{F} is a non-meager P-filter.

$$\mathcal{F}^+ = \{ X \subset \omega : \forall F \in \mathcal{F} \ (X \cap F \neq \emptyset) \}$$

Lemma

If \mathcal{F}^+ is a Menger semifilter, then both $\mathbb{P}_{\mathcal{F}}$ and $\mathbb{P}_{\mathcal{F}}^*$ are proper and ω^{ω} -bounding.

For filters \mathcal{F} the poset $\mathbb{P}_{\mathcal{F}}^*$ is obviously dense in $\mathbb{P}_{\mathcal{F}}$, and the latter is well-known to be proper and ω^{ω} -bounding if \mathcal{F} is a non-meager P-filter.

 $\mathcal{F}^+ = \{ X \subset \omega : \forall F \in \mathcal{F} \ (X \cap F \neq \emptyset) \}$

Lemma

If \mathcal{F}^+ is a Menger semifilter, then both $\mathbb{P}_{\mathcal{F}}$ and $\mathbb{P}_{\mathcal{F}}^*$ are proper and ω^{ω} -bounding.

Example. $\mathcal{F} = [\omega]^{\omega}$. Then \mathcal{F}^+ is the Frechét filter $\{\omega \setminus A : A \in [\omega]^{<\omega}\}$, hence Menger (even countable).

For filters \mathcal{F} the poset $\mathbb{P}_{\mathcal{F}}^*$ is obviously dense in $\mathbb{P}_{\mathcal{F}}$, and the latter is well-known to be proper and ω^{ω} -bounding if \mathcal{F} is a non-meager P-filter.

 $\mathcal{F}^+ = \{ X \subset \omega : \forall F \in \mathcal{F} \ (X \cap F \neq \emptyset) \}$

Lemma

If \mathcal{F}^+ is a Menger semifilter, then both $\mathbb{P}_{\mathcal{F}}$ and $\mathbb{P}_{\mathcal{F}}^*$ are proper and ω^{ω} -bounding.

Example. $\mathcal{F} = [\omega]^{\omega}$. Then \mathcal{F}^+ is the Frechét filter $\{\omega \setminus A : A \in [\omega]^{<\omega}\}$, hence Menger (even countable). Then $\mathbb{P}_{\mathcal{F}}$ is proper and ω^{ω} -bounding.

For filters \mathcal{F} the poset $\mathbb{P}_{\mathcal{F}}^*$ is obviously dense in $\mathbb{P}_{\mathcal{F}}$, and the latter is well-known to be proper and ω^{ω} -bounding if \mathcal{F} is a non-meager P-filter.

 $\mathcal{F}^+ = \{ X \subset \omega : \forall F \in \mathcal{F} \ (X \cap F \neq \emptyset) \}$

Lemma

If \mathcal{F}^+ is a Menger semifilter, then both $\mathbb{P}_{\mathcal{F}}$ and $\mathbb{P}_{\mathcal{F}}^*$ are proper and ω^{ω} -bounding.

Example. $\mathcal{F} = [\omega]^{\omega}$. Then \mathcal{F}^+ is the Frechét filter $\{\omega \setminus A : A \in [\omega]^{<\omega}\}$, hence Menger (even countable). Then $\mathbb{P}_{\mathcal{F}}$ is proper and ω^{ω} -bounding. Note that it is the full support product of countably many Silver forcings.

For filters \mathcal{F} the poset $\mathbb{P}_{\mathcal{F}}^*$ is obviously dense in $\mathbb{P}_{\mathcal{F}}$, and the latter is well-known to be proper and ω^{ω} -bounding if \mathcal{F} is a non-meager P-filter.

 $\mathcal{F}^+ = \{ X \subset \omega : \forall F \in \mathcal{F} \ (X \cap F \neq \emptyset) \}$

Lemma

If \mathcal{F}^+ is a Menger semifilter, then both $\mathbb{P}_{\mathcal{F}}$ and $\mathbb{P}_{\mathcal{F}}^*$ are proper and ω^{ω} -bounding.

Example. $\mathcal{F} = [\omega]^{\omega}$. Then \mathcal{F}^+ is the Frechét filter $\{\omega \setminus A : A \in [\omega]^{<\omega}\}$, hence Menger (even countable). Then $\mathbb{P}_{\mathcal{F}}$ is proper and ω^{ω} -bounding. Note that it is the full support product of countably many Silver forcings.

If \mathcal{F}^+ is a Menger semifilter, then both $\mathbb{P}_{\mathcal{F}}$ and $\mathbb{P}_{\mathcal{F}}^*$ are proper and ω^{ω} -bounding.

If \mathcal{F}^+ is a Menger semifilter, then both $\mathbb{P}_{\mathcal{F}}$ and $\mathbb{P}_{\mathcal{F}}^*$ are proper and ω^{ω} -bounding.

The requirement that \mathcal{F}^+ is Menger cannot be dropped, even for "nice semifilters":

If \mathcal{F}^+ is a Menger semifilter, then both $\mathbb{P}_{\mathcal{F}}$ and $\mathbb{P}_{\mathcal{F}}^*$ are proper and ω^{ω} -bounding.

The requirement that \mathcal{F}^+ is Menger cannot be dropped, even for "nice semifilters":

If \mathcal{F} is the Frechét filter, hence $\sim \mathcal{F} = [\omega]^{<\omega}$, i.e., $\mathbb{P}_{\mathcal{F}}$ is the countably supported product of the Cohen forcing, and therefore $\mathbb{P}_{\mathcal{F}}$ collapses $(2^{\omega})^V$ to ω .

If \mathcal{F}^+ is a Menger semifilter, then both $\mathbb{P}_{\mathcal{F}}$ and $\mathbb{P}_{\mathcal{F}}^*$ are proper and ω^{ω} -bounding.

The requirement that \mathcal{F}^+ is Menger cannot be dropped, even for "nice semifilters":

If \mathcal{F} is the Frechét filter, hence $\sim \mathcal{F} = [\omega]^{<\omega}$, i.e., $\mathbb{P}_{\mathcal{F}}$ is the countably supported product of the Cohen forcing, and therefore $\mathbb{P}_{\mathcal{F}}$ collapses $(2^{\omega})^V$ to ω .

Note that in this case $\mathcal{F}^+ = [\omega]^\omega$ and hence is not Menger.

If \mathcal{F}^+ is a Menger semifilter, then both $\mathbb{P}_{\mathcal{F}}$ and $\mathbb{P}_{\mathcal{F}}^*$ are proper and ω^{ω} -bounding.

The requirement that \mathcal{F}^+ is Menger cannot be dropped, even for "nice semifilters":

If \mathcal{F} is the Frechét filter, hence $\sim \mathcal{F} = [\omega]^{<\omega}$, i.e., $\mathbb{P}_{\mathcal{F}}$ is the countably supported product of the Cohen forcing, and therefore $\mathbb{P}_{\mathcal{F}}$ collapses $(2^{\omega})^V$ to ω .

Note that in this case $\mathcal{F}^+ = [\omega]^\omega$ and hence is not Menger.

If \mathcal{F}^+ is a Menger semifilter, then both $\mathbb{P}_{\mathcal{F}}$ and $\mathbb{P}_{\mathcal{F}}^*$ are proper and ω^{ω} -bounding.

The requirement that \mathcal{F}^+ is Menger cannot be dropped, even for "nice semifilters":

If \mathcal{F} is the Frechét filter, hence $\sim \mathcal{F} = [\omega]^{<\omega}$, i.e., $\mathbb{P}_{\mathcal{F}}$ is the countably supported product of the Cohen forcing, and therefore $\mathbb{P}_{\mathcal{F}}$ collapses $(2^{\omega})^V$ to ω .

Note that in this case $\mathcal{F}^+ = [\omega]^\omega$ and hence is not Menger.

Is there a ZFC example of a topological group with a Menger non- σ -compact remainder?

Is there a ZFC example of a topological group with a Menger non- σ -compact remainder?

Question

Is it consistent that there exists a topological group G such that $\beta G \setminus G$ is Menger and not Scheepers? Does CH imply the existence of such a group?

Is there a ZFC example of a topological group with a Menger non- σ -compact remainder?

Question

Is it consistent that there exists a topological group G such that $\beta G \setminus G$ is Menger and not Scheepers? Does CH imply the existence of such a group?

Question

Suppose that $\beta(C_p(X)) \setminus C_p(X)$ is Menger. Is it then σ -compact?

Is there a ZFC example of a topological group with a Menger non- σ -compact remainder?

Question

Is it consistent that there exists a topological group G such that $\beta G \setminus G$ is Menger and not Scheepers? Does CH imply the existence of such a group?

Question

Suppose that $\beta(C_p(X)) \setminus C_p(X)$ is Menger. Is it then σ -compact? Equivalently, is X countable discrete?

Thank you for your attention.