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Remainders.

We shall consider only Tuchono� spaces, i.e., spaces embeddable
into a power of R.

A space Y is a remainder of X, if there exists a compacti�cation
bX of X such that Y = bX \X. We consider remainders only of
nowhere locally compact spaces.

Question
What could be said about remainders? I.e., do they have some

special interesting properties? 2

:-(
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Remainders of nice spaces.

Question
What could be said about remainders of nice spaces? E.g., what

kind of properties could have remainders of topological groups? 2

Theorem (Arhangel'skii 2009)

Let G be a topological group and bG a compacti�cation of G. If
Y = bG \G, then Y is either Lindelöf or pseudocompact. 2

Theorem (Arhangel'skii 2008)

Let G be a topological group and bG a compacti�cation of G. If
Y = bG \G, then Y is either σ-compact or Baire. 2

Note that these theorems are dichotomies.
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Between σ-compact and Lindelöf: combinatorial properties

A Lindelöf topological space X is called
I Hurewicz,

if for any continuous f : X → Rω
+, the range f [X]

is bounded;
I Scheepers, if for any continuous f : X → Rω

+, the range f [X]
is not �nitely dominating (i.e., the collection
{maxA : A ∈ [f [X]]<ω} is not dominating);

I Menger, if for any continuous f : X → Rω
+, the range f [X] is

not domonating. 2

If X is zero-dimensional, then it is enough to consider functions
into ωω.

σ-compact⇒ Hurewicz⇒ Scheepers⇒ Menger⇒ Lindelöf.
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Counterparts to combinatorial covering properties

Theorem
Let G be a topological group. If βG \G is Hurewicz, then it is

σ-compact.

Proof. On the blackboard for groups G having dense σ-compact
subsets, using the following characterization:

A space X is Hurewicz i� for any �ech-complete Z containing X
as a dense subspace, there exists a σ-compact F such that
X ⊂ F ⊂ Z. 2.
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The Scheepers property

Do the properties of Scheepers and Menger also imply being
σ-compact for remainders of topological groups?

Observation
There exists a topological group G such that βG \G is Scheepers

and not σ-compact if there exists a Scheepers ultra�lter U on ω.

Proof. Let U∗ be the dual ideal. (U∗,∆) is a topological group
and U

⋃
U∗ = P(ω). 2

Theorem (Canjar 1988)

If d = c, then there exists an ultra�lter U such that the Mathias

forcing MU associated to it does not add dominating reals.

Theorem (Chodounsky-Repovs-Z. 2014)

For an ultra�lter U on ω, the Mathias forcing MU associated to it

does not add dominating reals i� U is Scheepers i� U is Menger.
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The Scheepers property, continued

Corollary

If d = c, then there exists a topological group G such that βG \G
is Scheepers and not σ-compact.

Theorem
There exists a topological group G such that βG \G is Scheepers

and not σ-compact i� there exists a Scheepers ultra�lter U on ω.

Observation
Every Scheepers (equiv. Menger ultra�lter) is a P -point.

Corollary

The existence of a topological group G such that βG \G is

Scheepers and not σ-compact is independent from ZFC.
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The Menger property

Theorem
It is consistent that for any topological group G and

compacti�cation bG, if (bG \G)2 is Menger, then it is σ-compact.

2

The proof uses the following forcing:

For a semi�lter F we denote by PF the poset consisting of all
partial maps p from ω × ω to 2 such that for every n ∈ ω the
domain of pn : k 7→ p(n, k) is an element of
∼ F := {ω \ F : F ∈ F}.
If, moreover, we assume that and dom(pn) ⊂ dom(pn+1) for all n,
the corresponding poset will be denoted ny P∗F .
A condition q is stronger than p (in this case we write q ≤ p) if
p ⊂ q.
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The poset, continued

For �lters F the poset P∗F is obviously dense in PF , and the latter
is well-known to be proper and ωω-bounding if F is a non-meager
P -�lter.

F+ = {X ⊂ ω : ∀F ∈ F (X ∩ F 6= ∅)}
Lemma
If F+ is a Menger semi�lter, then both PF and P∗F are proper and

ωω-bounding. 2

Example. F = [ω]ω. Then F+ is the Frechét �lter
{ω \A : A ∈ [ω]<ω}, hence Menger (even countable). Then PF is
proper and ωω-bounding. Note that it is the full support product
of countably many Silver forcings.
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Then PF is
proper and ωω-bounding. Note that it is the full support product
of countably many Silver forcings.
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Lemma
If F+ is a Menger semi�lter, then both PF and P∗F are proper and

ωω-bounding. 2

The requirement that F+ is Menger cannot be dropped, even for
�nice semi�lters�:

If F is the Frechét �lter, hence ∼ F = [ω]<ω, i.e., PF is the
countably supported product of the Cohen forcing, and therefore
PF collapses (2ω)V to ω.

Note that in this case F+ = [ω]ω and hence is not Menger.
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Questions

Question
Is there a ZFC example of a topological group with a Menger

non-σ-compact remainder?

Question
Is it consistent that there exists a topological group G such that

βG \G is Menger and not Scheepers? Does CH imply the

existence of such a group?

Question
Suppose that β(Cp(X)) \ Cp(X) is Menger. Is it then σ-compact?

Equivalently, is X countable discrete?
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The last slide

Thank you for your attention.
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