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What could be said about remainders of nice spaces? E.g., what
kind of properties could have remainders of topological groups? O
Theorem (Arhangel’skii 2009)

Let G be a topological group and bG a compactification of G. If
Y =bG \ G, then'Y is either Lindeléf or pseudocompact. O
Theorem (Arhangel’skii 2008)

Let G be a topological group and bG a compactification of G. If
Y =bG \ G, thenY is either o-compact or Baire. O

Note that these theorems are dichotomies.

3/12



Between o-compact and Lindel6f: combinatorial properties

A Lindelof topological space X is called
» Hurewicz,

4/12



Between o-compact and Lindel6f: combinatorial properties

A Lindelof topological space X is called
» Hurewicz, if for any continuous f : X — R¥, the range f[X]
is bounded;

4/12



Between o-compact and Lindel6f: combinatorial properties

A Lindelof topological space X is called
» Hurewicz, if for any continuous f : X — R¥, the range f[X]
is bounded;

» Scheepers,

4/12



Between o-compact and Lindel6f: combinatorial properties

A Lindelof topological space X is called
» Hurewicz, if for any continuous f : X — R¥, the range f[X]
is bounded;
> Scheepers, if for any continuous f : X — RY, the range f[X]
is not finitely dominating (i.e., the collection
{max A : A € [f[X]]=“} is not dominating);

4/12



Between o-compact and Lindel6f: combinatorial properties

A Lindelof topological space X is called
» Hurewicz, if for any continuous f : X — R¥, the range f[X]
is bounded;
> Scheepers, if for any continuous f : X — RY, the range f[X]
is not finitely dominating (i.e., the collection
{max A : A € [f[X]]=“} is not dominating);

> Menger,

4/12



Between o-compact and Lindel6f: combinatorial properties

A Lindelof topological space X is called

» Hurewicz, if for any continuous f : X — R¥, the range f[X]
is bounded;

> Scheepers, if for any continuous f : X — RY, the range f[X]
is not finitely dominating (i.e., the collection
{max A : A € [f[X]]=“} is not dominating);

» Menger, if for any continuous f : X — R¥, the range f[X] is
not domonating. O

4/12



Between o-compact and Lindel6f: combinatorial properties

A Lindelof topological space X is called

» Hurewicz, if for any continuous f : X — R¥, the range f[X]
is bounded;

> Scheepers, if for any continuous f : X — RY, the range f[X]
is not finitely dominating (i.e., the collection
{max A : A € [f[X]]=“} is not dominating);

» Menger, if for any continuous f : X — R¥, the range f[X] is
not domonating. O

4/12



Between o-compact and Lindel6f: combinatorial properties

A Lindelof topological space X is called
» Hurewicz, if for any continuous f : X — R¥, the range f[X]
is bounded;
> Scheepers, if for any continuous f : X — RY, the range f[X]
is not finitely dominating (i.e., the collection
{max A : A € [f[X]]=“} is not dominating);
» Menger, if for any continuous f : X — R¥, the range f[X] is
not domonating. O
If X is zero-dimensional, then it is enough to consider functions
into w®.

4/12



Between o-compact and Lindel6f: combinatorial properties

A Lindelof topological space X is called
» Hurewicz, if for any continuous f : X — R¥, the range f[X]
is bounded;
> Scheepers, if for any continuous f : X — RY, the range f[X]
is not finitely dominating (i.e., the collection
{max A : A € [f[X]]=“} is not dominating);
» Menger, if for any continuous f : X — R¥, the range f[X] is
not domonating. O
If X is zero-dimensional, then it is enough to consider functions
into w®.

o-compact = Hurewicz = Scheepers = Menger = Lindeldf.
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Counterparts to combinatorial covering properties

Theorem
Let G be a topological group. If BG \ G is Hurewicz, then it is
o-compact.

Proof. On the blackboard for groups G having dense o-compact
subsets, using the following characterization:

A space X is Hurewicz iff for any Cech-complete Z containing X
as a dense subspace, there exists a o-compact F' such that
XCcFcZ. O.
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Corollary
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The Scheepers property, continued

Corollary
If 0 = ¢, then there exists a topological group G such that G \ G
is Scheepers and not o-compact.

Theorem
There exists a topological group G such that G \ G is Scheepers
and not o-compact iff there exists a Scheepers ultrafilter U on w.

Observation
Every Scheepers (equiv. Menger ultrafilter) is a P-point.

Corollary

The existence of a topological group G such that SG \ G is
Scheepers and not o-compact is independent from ZFC.
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O

The proof uses the following forcing:

For a semifilter F we denote by Px the poset consisting of all
partial maps p from w x w to 2 such that for every n € w the
domain of p, : k — p(n, k) is an element of

~F ={w\F:FeF}

If, moreover, we assume that and dom(p,,) C dom(py,+1) for all n,
the corresponding poset will be denoted ny IP%.

A condition ¢ is stronger than p (in this case we write ¢ < p) if
pCaq.
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Question

Is there a ZFC example of a topological group with a Menger
non-o-compact remainder?

Question

Is it consistent that there exists a topological group G such that
BG\ G is Menger and not Scheepers? Does CH imply the
existence of such a group?

Question

Suppose that B(Cp(X)) \ Cp(X) is Menger. Is it then o-compact?
Equivalently, is X countable discrete?
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The last slide

Thank you for your attention.
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